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Findings 

The capacity of a street segment quantifies the maximal density of vehicles before 
congestion arises. Here we show in a simple mathematical model that fluctuations 
in the instantaneous number of vehicles entering a street segment are sufficient to 
induce persistent congestion. Congestion emerges even if the average flow is 
below the segment’s capacity where congestion is absent without fluctuations. 
We explain how this fluctuation-induced congestion emerges due to a self-
amplifying reduction of the average vehicle velocities. 

Research question and hypothesis 
Stationary traffic flows of vehicles on street segments are commonly 
characterized by the average number of vehicles passing the segment per unit 
time (Highway Capacity Manual 2000). In reality, vehicles enter and leave a 
segment at discrete points in time such that the density of vehicles on the 
segment fluctuates over time. What is the effect of these fluctuations on traffic 
flow? We hypothesize that stochastic number fluctuations alone may induce 
congestion. 

Methods and Data 
Vehicles travelling at a free-flow velocity  pass through a street segment of 
length  in a time . In the presence of other vehicles, this time 
increases. We model the travel time of a vehicle entering a street segment with a 
current vehicle density  using Greenshields’ model (Greenshields et al. 1935; 
Rakha and Crowther 2002) 

where  is the jam density of the street segment: when  , the travel time 
diverges as the velocity of all vehicles drops to zero. 

A simple macroscopic model of this process describes the change of the average 
density  of vehicles on the street segment over time as the difference 
between the incoming flow of vehicles  and the outgoing flow 
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where we substituted the average velocity 
according to Eq. (1). This model thus neglects stochastic fluctuations of  . 

We contrast this macroscopic model for average vehicle density  with 
a stochastic model for the instantaneous number density  of vehicles, 
implemented in an agent-based simulation. Vehicles enter the segment 
individually according to a Poisson process (Gardiner 2004) with rate 
Each vehicle has a velocity that is determined by the present vehicle density 
when it enters the segment and stays constant over time. We neglect here 
temporary changes in the velocity due to, e.g., random braking (Nagel and 
Schreckenberg 1992) that would not counter the mechanism described here 
but rather cause even more frequent traffic breakdowns. We also do not 
consider a speed-up of vehicles when others leave the segment in front of them. 

As a specific setting, we consider a one-lane highway (HW) segment of length 
  with free-flow velocity  . We estimate the 

critical density of vehicles  simultaneously on the road above which 
congestion is likely to occur by considering a critical distance between vehicles 
of  , given as the distance driven by a vehicle with velocity 
in one second. This critical density becomes  in the 
deterministic setting. 

The jam density is derived by noting that the outflow is maximal at the critical 
density, thus 

Thus, the critical flow is 

Findings 
In the stochastic model, where vehicles enter the street segment in a Poisson 
process, the time  between two subsequent vehicles is a random variable 
drawn from the exponential probability density 
(Peebles 1987). Hence, the higher  , the more frequent are small values of 
Several vehicles may enter during a small time interval (Fig. 1b), temporarily 
increasing the density of vehicles  on the segment above the expected mean 
value. As a result we observe two different types of dynamics for  during 
a longer observation interval (Fig. 1c). For low   the density of vehicles 
fluctuates near some fixed base level such that traffic flows freely. However, for 
a sufficiently large in-flow, once  surpasses a threshold value the density of 
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FIG. 1. The constant in-flow entering the macroscopic model (a) does not capture the stochastic vehicle number 
fluctuations resulting from a Poisson process (b). However, these fluctuations may cause congestion, even though stable 
fixed points (indicated by dashed lines) are predicted from the differential equation (c). Considering a sample of 500 
random realizations, for  a majority of realizations eventually reaches a congested state (d). 

vehicles increases rapidly and the segment congests. When performing repeated 
simulations we find that such emergent congestions are not negligible outliers 
but instead are highly probable to occur over time. 

How does this spontaneous breakdown of traffic flow emerge? To answer this 
question, we compare the deterministic model with the stochastic model. In 
Eq. (2), the out-flow  is a function of the average number density of 
vehicles with a maximal value  , which equals the maximal in-flow. 
For sufficiently small incoming flows , we find that small temporary 
changes in the instantaneous number density of entering vehicles are 
counterbalanced by changes in the instantaneous number of vehicles leaving 
the segment per time, reflecting a stable equilibrium flow (Fig. 2a) near a fixed 
point  of the differential equation Eq. (2). Fluctuations of the number 
density of vehicles are small and thus, on average, the equilibrium value serves 
well as a prediction of the traffic state. However, already for  below the 
maximal in-flow  set by the macroscopic model, small changes in  induce 
congestion: Once a second, unstable equilibrium  is exceeded, the 
instability pushes  to grow further. The probability of returning below 

 decreases as the density of vehicles increases, thus causing the 
congestion to be persistent. 

Roughly speaking, with an increasing density of vehicles on the segment, their 
velocities become lower so rapidly that the number of vehicles leaving the 
segment is persistently lower than the number of vehicles entering during a 
given time interval, thus causing further velocity reductions in a self-amplifying 
process. In reality, the system ultimately reaches a fully congested state with 
vehicles lining up throughout the segment. 

We can intuitively understand why the unstable state becomes more important 
for larger values of : consider the right-hand side of Eq. (2). As we are 
interested in the dynamics of vehicle density when perturbed from 
equilibrium, we picture a sliding block whose position corresponds to the 
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Figure 2. The higher the in-flow, the more easily the density of vehicles on the street segment exceeds the threshold to 
congestion . (a) The out-flow-curve defined in equation (2) resembles the qualitative form of the well-known 
fundamental diagram (Helbing 2001) . For each in-rate below  , a stable and an unstable equilibrium exist (filled and 
open circle, respectively). (b) The effective potential resulting from Eq. (2) resembles a valley-and-peak landscape and the 
dynamics of the vehicle density is analogous to a block sliding in this potential. On the left side of the valley, representing 
the stable state, a steep slope pushes the vehicle density away from zero for small . For large  there is a deep canyon, 
representing a congested state. This landscape changes depending on the flow of vehicles entering the street segment. For 
small , the stable valley itself is also deep. The block within the valley is prevented from falling into the canyon by a peak 
of large height . Thus, the chances that small displacements of the block (small fluctuations of the in-flow of vehicles) 
push it outside the safe region are very low. With increasing  the distance to the peak and the height  decrease. 
Smaller and smaller fluctuations may cause the block to slip over the peak and into the canyon (congested state) more and 
more easily. 

density value  (Fig. 2b). In this image, the differential equation (2) would 
determine the velocity of the block, which equals the negative derivative of an 
effective potential, a valley-and-peak landscape, with a minimum at  and a 
maximum at  (Fig. 2b). This potential is defined via 

In our traffic flow scenario, the height difference  and the distance between 
the peak and valley reflect the proximity of the two equilibria. The closer the 
in-flow  is to the maximal flow , the closer the two equlibria are and 
the smaller the vehicle number density fluctuations needed to end up in a 
congested state. Thus, the randomness of the vehicle-entering process crucially 
underlies the spontaneous transition from free flow to congestion. 

Moreover, these fluctuations become increasingly more likely: Based on the 
general theory of stochastic processes (Kampen 1992; Gardiner 2004), we 
predict a mean time  after which a transition to congestion occurs. For a 
one-lane-highway with  vehicles per hour (see Methods), congestion 
emerges roughly once in half an hour already if the in-flow is  below the 
maximal in-flow, i.e.,  vehicles per hour. If the in-flow is  below 
the maximal value (  vehicles per hour), the transition is expected to 
occur already after just twenty minutes. 
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There exist several studies discussing the instability of traffic flow caused by 
stochasticity (Treiber and Kesting 2013), for example, due to random route 
choices (Andreotti et al. 2015) or the emergence of vehicle clusters due to 
random distance fluctuations (Kühne et al. 2002). Typically, explanations for 
traffic fluctuations are random decelerations due to imperfect human driving 
behavior (Nagel and Schreckenberg 1992), external factors such as weather 
conditions, daytime (Kim, Mahmassani, and Dong 2010) or the existence of 
bottlenecks (Kerner 2019). In contrast, our minimal model shows that 
spontaneous number fluctuations alone already suffice to induce congestion. 
Although the aforementioned factors that influence traffic have to be 
considered for (the prediction and prevention of) traffic jams, we thus 
emphasize that even in the absence of such external influences, congested states 
may arise due to pure number fluctuation. As neither the model details for the 
stochastic process nor those for the travel time are relevant for the fundamental 
mechanism inducing the presented transition (Gardiner 2004), we conclude 
that congestion may emerge spontaneously even for, in general, subcritical 
traffic flows. Hence, for analyzing traffic flow and planning infrastructure, one 
needs to go beyond average quantities and take into account pure number 
fluctuations. Future investigations should aim at quantifying the effect of 
number fluctuations in isolation, by analyzing the emergence of traffic jams 
in the absence of other external influences on traffic flow. A promising setup 
may be a highway where traffic consists only of autonomous vehicles, to ensure 
that imperfect driving behavior does not have to be taken into account in 
the analysis. Furthermore, a thorough study of the described mechanism in 
the presence of varying traffic conditions would be particularly valuable for 
estimating the relevance of vehicle number fluctuations in real-world settings. 
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