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ABSTRACT

The Kuramoto model and its generalizations have been broadly employed to characterize and mechanistically understand various collective
dynamical phenomena, especially the emergence of synchrony among coupled oscillators. Despite almost five decades of research, many
questions remain open, in particular, for finite-size systems. Here, we generalize recent work [Thümler et al., Phys. Rev. Lett. 130, 187201
(2023)] on the finite-size Kuramoto model with its state variables analytically continued to the complex domain and also complexify its
system parameters. Intriguingly, systems of two units with purely imaginary coupling do not actively synchronize even for arbitrarily large
magnitudes of the coupling strengths, |K| → ∞, but exhibit conservative dynamics with asynchronous rotations or librations for all |K|. For
generic complex coupling, both traditional phase-locked states and asynchronous states generalize to complex locked states, fixed points off
the real subspace that exist even for arbitrarily weak coupling. We analyze a new collective mode of rotations exhibiting finite, yet arbitrarily
large rotation numbers. Numerical simulations for large networks indicate a novel form of discontinuous phase transition. We close by
pointing to a range of exciting questions for future research.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0205897

Synchronization, the emergence of the temporal order of several
state variables, has been ubiquitously observed across natural and
engineered networks of interacting units, from neural circuits
in the brain to electric power grids. In its simplest instances, all
variables of a system become identical over time. Other forms of
synchrony include achieving one common frequency shared by
all units (frequency synchronization) and achieving fixed phase-
differences (phase-locking). In the past 70 years, analytic con-
tinuation of system variables and parameters into the complex
domain was successful in revealing and theoretically establish-
ing core aspects of statistical physics, fractal geometry, quantum
mechanics, and other fields. In this article, we complexify coupled
dynamical systems and explore the impact of analytically contin-
uing state variables and parameters of the Kuramoto model, a
fundamental model for investigating synchronization. We find
that complex synchrony, a locking phenomenon represented by

fixed points in the complex domain, is a generic feature of these
complexified models. At the same time, real-variable synchro-
nization seems to be the exception. For instance, systems with
purely imaginary coupling strengths K do not exhibit attrac-
tive locked states even if the coupling is arbitrarily strong, |K|

→ ∞. We numerically and analytically highlight further features
of complexified Kuramoto models, including analogies to phase-
shifted and delay-coupled systems as well as new phase transitions
at low |K| to strong forms of synchrony.

I. INTRODUCTION

The Kuramoto model and its generalizations characterize the
dynamics of a wide range of natural and engineered systems, from
fireflies to neural circuits and from Josephson junctions to power
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grids.1–10 The original model was proposed in 1975 as a simple model
for understanding the emergence of synchrony among coupled
oscillators.11–13 It has found ubiquitous applications across many
areas in physics, biology, engineering, and beyond.14–16

With its many generalizations, including the Kuramoto–
Sakaguchi model,17,18 the Winfree model,19–21 and the Lohe model
or higher-dimensional Kuramoto models,9,22–37 it describes vari-
ous synchronization and desynchronization phenomena, first and
second order phase transitions to synchrony,38–40 the coexistence
of synchrony with other states, and chimera states featuring both
some variables in synchrony and others with asynchronous irregular
dynamics.41–46

Most results on the Kuramoto models have been obtained in
the thermodynamic limit N → ∞, where phase transitions occur
in the form of bifurcations of lower-dimensional descriptions.47–51

However, for finite-N models, despite them more closely describ-
ing reality, most results are purely numerical, sometimes employing
intricate technical approaches52,53 and analytical approaches that
may offer stronger mechanistic insights are largely missing to date.
Recent work54 has studied the Kuramoto model analytically contin-
ued to complex state variables, yet still with all parameters staying
real, in part to access finite-N systems mathematically. The specific
work uncovered a new form of synchrony and especially highlighted
the option of understanding finite systems via analytically accessing
complex locked states, fixed points that exist off the real invariant
subspace in the complex domain even for small K. The complex
locked states represent generalized forms of synchrony reached even
if the coupling is not strong enough to induce synchrony in the
real-variable system. In contrast to previous studies on finite sys-
tems, the existence of these fixed points enables analytic access to
the dynamical states for finite systems without requiring standard
phase-locking (and thus sufficiently strong coupling).

In the past, analytic continuation has been highly successful
across fields due to its fundamental nature, encapsulated in a quota-
tion from Bernhard Riemann “In effect, if one extends these functions
by allowing complex values for the arguments, then there arises a
harmony and regularity which without it would remain hidden.”55

For instance, (i) the analysis of the complexified dynamics yield-
ing the Mandelbrot fractals56–58 has pushed the theory of fractals in
general, (ii) the analytic continuation of partition functions in Statis-
tical Physics to complex parameters (such as complex temperatures
and fields) has led to an analytic theory of phase transitions (see
Refs. 59 and 60 by Yang and Lee), and (iii) the complexification of
Hamiltonian operators initiated the research field of PT-symmetric
quantum mechanics.61–65 Moreover, a recent article suggested to
more closely focus on networks with complex weights, also men-
tioning dynamical systems models and the Kuramoto model,66 yet
did not present an analysis of the consequences. Although much of
the insights relied on analytically continuing also the system param-
eters, research on the analytically continued Kuramoto models with
complex parameters is missing so far.

In this article, we generalize the original real-variable
Kuramoto model and analytically continue it to both complex
state variables54 and complex parameters. Our findings for N =
2 coupled units include conditions underlying attracting and
non-attracting synchronous states, the coexistence of librating and
rotating motions and motion with finite, yet arbitrarily large

rotation numbers, phenomena akin to the undamped and damped
physical pendulum.67 Numerical analysis for networks of N = 128
also suggests a novel form of discontinuous phase transition at low
coupling magnitudes.

These results not only uncover conditions for non-
synchronization and synchronization for complexified Kuramoto
models that may help better understand finite-N real systems, they
also conceptually expand the perspective on the nonlinear dynamics
of coupled dynamical systems to their analytic continuation.

II. KURAMOTO MODEL: FROM REAL TO COMPLEX

A. The original, real-variable system

Let us first consider a system of (real-valued) Kuramoto oscil-
lators that characterizes the collective dynamics of a broad class of
coupled phase oscillators.14,15 Such an oscillator is fully described by
its phase variable xn that is either defined as a real number or as an
angular coordinate of the 1-torus, i.e., xn ∈ T := R/2πZ on the unit
circle. Their dynamics is governed by

d

dt
xn = ωn + K

N

N
∑

m=1

sin(xm − xn), (1)

for n ∈ [N] := {1, 2, . . . , N}. In Eq. (1), the intrinsic local dynamics
of each oscillator is determined by its natural (intrinsic) frequency
ωn ∈ R, often drawn from a given probability distribution. The
broadness of the natural frequency distribution characterizes the
degree of mismatch or heterogeneity of the oscillators. Also, the
Kuramoto oscillators are coupled via a sinusoidal function of phase
difference with a real coupling strength K ∈ R. For a positive K > 0,
the coupling between oscillators is attractive, tending to adjust their
states and frequencies. For negative K < 0, the coupling is repul-
sive such that oscillators tend to be repelled from each other. The
collective dynamics of the system of coupled Kuramoto oscillators
emerges from an interplay between the heterogeneity in the oscilla-
tors’ individual intrinsic frequencies ωn and the coupling strength,
cf. Sec. III A.

As a key observable, we study the degree of synchrony through
the Kuramoto order parameter,11,13

0(t) := r(t)ei2(t) = 1

N

N
∑

n=1

eixn(t), (2)

with i :=
√

−1 being the imaginary unit. The modulus r(t) of 0(t)
quantifies the degree of synchrony of oscillators while arg(0(t))
:= 2(t) is the mean phase of the system. For example,
r(t) = 1 marks complete synchronization of all units, i.e.,
x1(t) = x2(t) = · · · = xN(t), and small values of r(t) indicate broadly
spread state variables xn(t) at time t.

As Fig. 1 illustrates, the real-variable system exhibits a tran-
sition from an asynchronous to a synchronous state at some
coupling strength Kc. Figure 1(a) displays the collective behav-
ior of real-valued Kuramoto oscillators in terms of the Kuramoto
order parameter r(t) as a function of the coupling strength.
Here, a natural frequency is assigned to each oscillator from
ωn = σ tan

(

π(2n−1−N)

2N

)

for n ∈ [N], where σ is the scale parameter
of a Cauchy–Lorentz distribution. Increasing the coupling strength
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FIG. 1. Collective dynamics of real-valued Kuramoto oscillators.
(a) The magnitude of the Kuramoto order parameter as a function of the
coupling strength K for N = 128 (blue solid dots), N = 256 (red open squares),
N = 512 (green open rhombuses), and in the thermodynamic limit (gray solid
curve). (b) and (c) Time evolution of instantaneous velocities of seven selected
(of N = 128) oscillators whose intrinsic frequencies ωn are near zero, for (b)
K = 0.5 < Kc and (c) K = 5.0 > Kc. Here, the mean instantaneous velocity is

defined as 〈ẋ(t)〉 := 1
N

∑N

m=1 ẋm(t).

K from zero to the limit K → ∞, there is a phase transition in
the collective dynamics from incoherence with drifting oscillators
and 〈r(t)〉t near zero to a partially locked state characterized by
〈r(t)〉t > 0 and eventually to 〈r(t)〉t → 1 in the thermodynamic
limit N → ∞. Here, a time-averaged order parameter is defined

as 〈r(t)〉t := limT→∞
1
T

∫ T

0
r(t)dt. The Ott–Antonsen ansatz,47,48,68 a

self-consistency equation,12,69 or Fokker–Planck method51 analyti-
cally demonstrates a qualitative change in ordering if the coupling
strength crosses Kc = 2σ . Specifically, the Kuramoto order param-
eter in the thermodynamic limit N → ∞ (gray solid curve) is
r(K) = 0, indicating the absence of synchrony for K < Kc, and

r(K) =
√

1 − 2σ
K

for K > Kc, indicating an increasing degree of

synchrony in the system.
Different degrees of synchrony also emerge in systems consist-

ing of a finite number N ∈ N of units, see Fig. 1. For sufficiently
strong coupling, phase-locking emerges as a strong form of syn-
chrony where all pairs of units exhibit frequency differences that
are zero in time, ẋn(t) − ẋm(t) = 0. Decreasing K reduces the align-
ment among the phases, decreasing the order parameter up to a
point below which the phase-locked state no longer exists. If the
coupling strength decreases further, long-time averages of the order
parameter 〈r〉t gradually decrease to O(N−1/2) as K → 0. Most of the
insights about finite systems, however, are based on direct numeri-
cal simulations of the dynamics while several fundamental questions
remain open12,14–16 and even posing suitable questions remains a
challenge for finite-N systems.52,53,70

B. Complexified synchrony in the Kuramoto model

Recent work has taken a novel perspective and extended the
real state variables to become complex by analytic continuation.54

In this article, we moreover complexify the system parameters. Each
complexified oscillator zn ∈ C for n ∈ [N] is governed by

d

dt
zn = ωn + K

N

N
∑

m=1

sin(zm − zn), (3)

where complex velocities ωn ∈ C, generalizations of the intrinsic
or natural frequencies, determine the variables’ intrinsic dynam-
ics. We write zn = xn + iyn, thus introducing xn := Re[zn] ∈ R and
yn := Im[zn] ∈ R for all n ∈ [N], and parametrize the complexified
coupling constant as

K = |K|eiα ∈ C. (4)

Here, α := arg(K) ∈ R takes a role of the phase-lag parameter
between real parts of the complex oscillators (see Sec. IV). The state
of such a complexified oscillator can be alternatively defined on
an infinite cylinder71,72 with (xn, yn) ∈ T × R or on C ∼= R

2 with
2π-periodic real parts.

Confining parameters ωn and K to be real, the state space of
the original, real-valued Kuramoto model constitutes an invariant
manifold

M0 := {z ∈ C
N |∀n ∈ [N] : Im(zn) = 0} (5)

embedded into the full complex state space of Eq. (3). As a con-
sequence, all variables stay real, yn(t) = 0 for all times if all initial
conditions are from that manifold, yn(0) = 0. Analogously, for each
y ∈ R, there is an invariant manifold My with all imaginary parts the
same, yn = y for all n ∈ [N]. In the complex domain C

N, the model
exhibits fixed points that move off the real manifold if the coupling
strength K decreases through K(pl) from above.54 We emphasize
that such complex fixed points still exist for K < K(pl); in contrast,
phase-locked states represented by real fixed points disappear in the
real-variable model. These complex locked states constitute a new
form of complexified synchrony that moreover, is analytically acces-
sible. In particular, the original work in Ref. 54 suggests that stability
of the (completely analytically determined) complex locked states
implies phase-locking in the original, real-variable model.

III. A SYSTEM OF TWO COMPLEXIFIED OSCILLATORS

A. Two real-valued Kuramoto oscillators: Revisited

Let us first briefly revisit two coupled original (real-variable)
Kuramoto oscillators. The system (1) has a phase-shift invariance
since oscillators are coupled through their phase differences. Thus,
in Eq. (1) with N = 2, the phase difference 1x := x2 − x1 follows:

d

dt
1x = 1ω − K sin 1x =: f(1x), (6)

where 1ω := ω2 − ω1 ∈ R and K ∈ R. In Eq. (6), 1x = 0 is not
a fixed point unless 1ω = 0. As in general f(0) 6= 0, complete
synchrony of two oscillators (x1(t) = x2(t) for all t > 0) does not
constitute an invariant state. Complete synchronization occurs only
if either the oscillators have identical frequencies, i.e., 1ω = 0, or
in the limit of infinitely strong coupling, K → ∞. Nevertheless,
frequency synchronization and thereby phase-locking emerges for
sufficiently large K, such that two oscillators are entrained at the
same frequency ẋ1 = ẋ2, and d

dt
1x = f(1x) = 0. We remark that
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two locked states emerge as fixed points to Eq. (6): 1x∗
0 = sin−1 1ω

K

or 1x∗
1 = π − sin−1 1ω

K
. The former constitutes an in-phase state

where the phase difference decreases and converges to 1x∗
0 → 0 as

K → ∞ whereas the latter represents an anti-phase state with the
two phases nearly opposite to each other on the unit circle and con-
verging to 1x∗

1 → π as K → ∞. Both phase-locked states exist if
and only if |1ω

K
| ≤ 1, meaning that the system is required to have

either sufficiently strong coupling for a given mismatch in intrin-
sic frequencies or a small frequency mismatch at a given coupling
strength. In contrast, no fixed points exist for |1ω

K
| > 1, and thus the

oscillators are drifting relative to each other, i.e., the system shows
an incoherent state. For |1ω

K
| ≤ 1, a locked state is linearly stable if

df

d1x

∣

∣

∣

∣

1x=1x∗
0,1

= −K cos 1x∗
0,1 = ∓K

√

1 − 1ω2

K2
< 0. (7)

For K > 0, i.e., an attractive coupling, the locked state 1x∗
0 repre-

senting nearly in-phase synchrony is stable (and unstable for repul-
sive coupling K < 0). Thus, positive (attractive) coupling induces
“attraction” of the oscillators toward each other and thus toward
a common collective phase whereas negative (repulsive) coupling
induces repulsion of the oscillators away from each other, such
that 1x∗

1 is stable and 1x∗
0 is unstable. For more details about the

two-oscillator systems, whose differential equation for the phase
difference is also known as the Adler equation,73 see Sec. 8.6 in
Ref. 67.

B. Two complexified Kuramoto oscillators

Let us now study a system of two complexified oscillators,
i.e., N = 2 in Eq. (3). The anti-symmetric state-difference coupling
reduces (3) to one ordinary differential equation for the difference
1z := z2 − z1 of the two complex variables. Taking the parame-
ters K = |K|eiα and defining 1ω := ω2 − ω1 = |1ω|eiγ ∈ C with
γ := arg(1ω) ∈ R, the dynamics follows:

d

dt
1z = 1ω − K sin 1z = |1ω|eiγ − |K|eiα sin 1z, (8)

where |K| determines how strong the coupling between two oscilla-
tors is, while |1ω| characterizes the degree of heterogeneity of the
system. To unify the analysis, we hereafter explore two-oscillator
systems with time rescaled by the coupling strength |K| , with their
dynamics governed by

d

dt
1z = ceiγ − eiα sin 1z. (9)

Here,

c = |1ω|
|K| ≥ 0 (10)

is a bifurcation parameter that characterizes the inhomogeneity
|1ω| of the oscillators’ intrinsic dynamics relative to the strength
|K| of the coupling between them.

The dynamics (9) is controlled by three (scalar, real) effective
parameters: c, γ , and α. In the following, we analyze the influence of
each parameter on the system of two complexified oscillators.

C. Real natural frequencies and complex coupling

First, consider a system of two complexified oscillators with
real natural frequencies [ω1, ω2 ∈ R, and so γ = 0 in Eq. (9)]. The
governing equation then reads

d

dt
1z = c − eiα sin 1z =: f(1z), (11)

where α ∈ R. Via properties of a complex sine function, the govern-
ing equation (11) becomes

d

dt
1x = c + sin α cos 1x sinh 1y − cos α sin 1x cosh 1y,

d

dt
1y = − cos α cos 1x sinh 1y − sin α sin 1x cosh 1y,

(12)

in terms of the real and imaginary parts of the state variable
1z = 1x + i1y. Depending on the value of α, the system (11)
exhibits three qualitatively different dynamics: (i) for real-valued
coupling for α = 0 complex locked states emerge replacing real
locked states below some critical coupling K(pl), as uncovered in
Ref. 54. In the following subsections, we discuss systems with (ii)
purely imaginary coupling where α = π

2
and (iii) generic complex

coupling where α ∈ (0, π

2
).

1. Purely imaginary coupling: α = π

2

For purely imaginary coupling, where α := arg(K) = π

2
, the

governing equations become

d

dt
1x = c + cos 1x sinh 1y,

d

dt
1y = − sin 1x cosh 1y.

(13)

Two fixed point solutions are given by

(

1x∗
0 , 1y∗

0

)

=
(

0, − sinh−1 c
)

,
(

1x∗
1 , 1y∗

1

)

=
(

π , sinh−1 c
)

,
(14)

such that they are 1z∗
1 = π + i sinh−1 c and 1z∗

0 = −i sinh−1 c in a
complex number form. Since the complex vector field (11) satisfies
the Cauchy–Riemann condition, the two eigenvalues of the Jacobian
matrix of (13) are obtained as

λ+ = ∂

∂1x
Re[f] + i

∂

∂1y
Re[f] = f′(1z),

λ− = ∂

∂1x
Re[f] − i

∂

∂1y
Re[f] = f′(1z),

(15)

where an overbar indicates complex conjugation. For α = π

2
, the

eigenvalues of the Jacobian matrix evaluated at a fixed point 1z∗

are given by f′(1z∗) = −i cos 1z∗, which yields f′(1z∗
1) = i

√
1 + c2

and f′(1z∗
0) = −i

√
1 + c2 together with their complex conjugates.

Hence, both the two fixed points in Eq. (14) are linearly neutrally
stable for any c ∈ R. Moreover, since the sinusoidal function, sin 1x
is 2π-periodic in 1x, the system (13) has infinitely many fixed point
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FIG. 2. Libration and rotation for purely imaginary
coupling (N = 2). (a) A phase portrait around three
fixed points. Black solid dots indicate fixed points (16).
The orange solid curve indicates a rotation (with the rota-
tion number q = ∞) whereas the red curves display
librations (q = 0) encircling antiphase fixed points and the
purple curve indicates a libration around an in-phase syn-
chrony fixed point. (b) The same fixed points as in (a)
with separatrices (white solid curves) and the conserved
quantity defined in Eq. (17). (c) A trajectory that rotates
along the cylindrical axis with an infinite rotation number
q = ∞. All subfigures are obtained for c = 1.

solutions in the complex plane,

(

1x∗
2k, 1y∗

2k

)

=
(

0 + 2πk, − sinh−1 c
)

,
(

1x∗
2k+1, 1y∗

2k+1

)

=
(

π + 2πk, sinh−1 c
)

,
(16)

for all k ∈ Z.
Thus, both eigenvalues (15) are purely imaginary for all fixed

points so that all of them are neutrally stable (centers). We empha-
size that all the fixed points 1z∗

2k with even indices represent com-
plete in-phase synchrony with respect to their real parts, i.e., 1x2k

= 0 (mod 2π) whereas those with odd indices, 1z∗
2k+1, represent

exact antiphase or splay states with 1x2k+1 = π (mod 2π). Thus,
in contrast to the original, real-valued model, the complexified sys-
tem possesses (neutrally stable) states exhibiting complete in-phase
synchrony even though the intrinsic frequencies are different, 1ω 6= 0
and the coupling strength is finite, |K| < ∞.

Moreover, numerical integration of Eq. (13) indicates that the
system exhibits two and only two different types of periodic motion
if initialized from random initial conditions, see Fig. 2(a). First, an
infinite number of non-isolated periodic orbits exist around each
fixed point in Eq. (16). Considering phase space as the surface of
a cylinder, such periodic motions constitute librations that encir-
cle one given fixed point. Second, a topologically different type of
periodic motion exists further away from the fixed points, exhibiting
indefinite rotation on the cylindrical surface around the longitudinal
1x axis.

As the numerical results and the linear stability analysis sug-
gest, the neutrally stable fixed points arise due to the existence of a
conserved quantity. Indeed, an energy function defined as

E(1x, 1y) := − cos 1x

cosh 1y
+ c tanh 1y (17)

is conserved,

d

dt
E(1x, 1y) = 0, (18)

along any trajectory of the system (13), irrespective of the parameter
c = |1ω|

|K| , in particular also for both librating and rotating motion.

At all fixed points, the gradient of the energy function is the zero
vector,

∇E
(

1x∗, 1y∗) =
(

sin 1x∗

cosh 1y∗ ,
c + cos 1x∗ sinh 1y∗

cosh2
1y∗

)>
= (0, 0)>.

(19)
Moreover, its Hessian matrix

HE
(

1x∗
2k+1, 1y∗

2k+1

)

= − 1√
1 + c2

I2 (20)

with identity matrix I2 ∈ R
2×2 is negative-definite while

HE
(

1x∗
2k, 1y∗

2k

)

= 1√
1 + c2

I2 (21)

is positive-definite. Thus, the fixed points of in-phase synchrony
(

1x∗
2k, 1y∗

2k

)

are local minima of E(1x, 1y) whereas fixed points
of antiphase states (1x∗

2k+1, 1y∗
2k+1) are local maxima. As Fig. 2(b)

illustrates, separatrices in state space separate trajectories with librat-
ing motion and thus rotation number q = 0 from those with rotat-
ing motion and rotation number q = ∞, see also Fig. 2(c). Here,
the rotation number is defined as the integer number of turns that
the rotational trajectory takes along the 1x axis around the cylinder,
1x ∈ T, i.e., the integer multiple

q = lim
t→∞

⌊

1x(t) − 1x(0)

2π

⌋

(22)

of 2π that the variable 1x increases along the trajectory. Here, b.c is
the floor function.

Thus, for N = 2 coupled Kuramoto oscillators with a purely
imaginary coupling, no classical synchronization occurs, even for
arbitrarily large coupling strength |K| → ∞ and arbitrarily small
differences in the intrinsic frequencies 1ω > 0. In particular, tra-
jectories starting from almost all initial conditions do not reach any
of the fixed points, {(1x∗

k , 1y∗
k)|k ∈ Z} ⊂ T × R, because they are
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FIG. 3. Absence of transition to locking (N = 2).
Comparison between the Kuramoto model with pan-
els (a) and (b), purely imaginary coupling (α = π

2
)

and (c) and (d), the real-valued Kuramoto model
(α = 0). (a) Time evolution of the magnitude r(t) of
the complex Kuramoto order parameter for a rota-
tion (orange) and a libration around a locked state:
in-phase synchrony 1z∗

0 (purple) and an antiphase
state 1z∗

1 (red). Here, c = 1. Inset: the complex
Kuramoto order parameter (2) in the complex plane.
(b) Time-averaged 〈r(t)〉t as a function of the cou-
pling strength |K|. For every c, each data point is
obtained from an initial condition chosen close to the
respective type of solution (libration around one or
another fixed point or rotation). (c) Time evolution
r(t) for c > 1 (no locked state) and c < 1 (locked
state). (d) Time-averaged 〈r(t)〉t as a function of the
coupling strength K > 0 for c < 1. Data points are
obtained from initial conditions randomly drawn from
T
2. For all panels, we set1ω = 1 and vary c via |K|.

neutrally stable and thus non-attracting. Figure 3 illustrates that
the order parameter as a function of c (and thus |K|) exhibits no
transition for the complexified model, in contrast to the original
real-variable model.

2. Generic complex coupling: α ∈
(

0, π

2

)

We now study the dynamics of systems with generic complex
coupling, K = |K|eiα ∈ C for α ∈

(

0, π

2

)

.

The two-unit system (12) with α ∈
(

0, π

2

)

possesses fixed points

1x∗
2k = 2πk + sin−1





√

1 + c2 −
√

1 + c4 − 2c2 cos 2α

2



 ,

1y∗
2k = − sinh−1

( √
2c sin α

√

1 − c2 +
√

1 + c4 − 2c2 cos 2α

)

< 0,

(23)

for k ∈ Z that represent near in-phase states in their real parts
(1x∗

2k = 0), in particular 1x∗
2k = c cos α + O(c3) (mod 2π) asymp-

totically as c → 0. In addition, the other fixed points, representing
(near-) anti-phase states, are given as

1x∗
2k+1 = π − 1x∗

2k,

1y∗
2k+1 = −1y∗

2k > 0,
(24)

for k ∈ Z. Linear stability analysis from (15) shows that the com-
plex locked states (23) are linearly stable whereas the states (24) are
unstable. A bifurcation takes place at α = π

2
wherein neutrally sta-

ble fixed points associated with in-phase synchrony are stabilized.
Indeed, at a given fixed point 1z∗, the Jacobian has eigenvalues
f′(1z∗) = −eiα cos

(

sin−1(ce−iα)
)

for 1z∗ = sin−1(ce−iα). Their real

parts become zero if Im[e2iα − c2] = sin 2α = 0, i.e., for α = 0 or π

2

and integer multiples thereof. For more details, see Eq. (29).
For a complex coupling with α ∈ (0, π

2
), the system possesses

stable locked states (23). Moreover, a trajectory from a random ini-
tial condition does not exhibit a ceaseless rotation nor a libration
around a fixed point, but rather it eventually reaches one of the stable
equilibria after rotating around the cylindrical axis, i.e., with a finite
rotation number q < ∞. To see this, consider a trajectory starting
from an initial condition that reads 1x(0) = 1x∗

2k and 1y(0) � 1
for a given k. In Fig. 4(a), a trajectory initiated from 1x(0) = 1x∗

−2

and 1y(0) � 1 is depicted (black solid curve) for c = 1 and α < π

2
.

The trajectory winds around the cylinder and eventually spirals
down to a stable locked state, i.e., (1x∗

4 , 1y∗
4). Thus, the specific

trajectory takes the finite rotation number q = 5. We emphasize
that the rotation number of such a trajectory decreases down to
(any) finite integer q < ∞ from q = ∞ as the phase-lag parame-
ter decreases from α = π

2
(purely imaginary coupling; K ∈ iR) to

α < π

2
(complex coupling; K ∈ C\iR).

Recall that from a numerical integration for α = π

2
, e.g., in

Fig. 2(c), a trajectory around the 1x axis exhibits a nearly sinu-
soidal curve with the amplitude |1y∗| = sinh−1 c. Also, a numer-
ical integration for α . π

2
with the initial condition described

above shows a tilted sinusoidal trajectory near the 1x axis [see
Fig. 4(a)]. Thus, we assume that the intermediate trajectory near
the horizontal axis satisfies 1y = −|1y∗| cos(1x − 1x∗) + A1x
= − sinh−1

(c) cos(1x − 1x∗) + A1x with a slope A and shifted
horizontally by 1x∗. Also, assuming that the trajectory settles down
to a stable fixed point (1x∗ + 2πk, 1y∗) without spiraling down
to it leads to 1y∗ = − sinh−1 c + A1x∗. Then, the slope A deter-

mines the rotation number via A = 1y∗
2πq

= 1y∗+sinh−1 c

1x∗ . Solving this

algebraic equation, an analytical form of the rotation number as a
function of parameters reads
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q = 1

2π

1x∗1y∗

1y∗ + sinh−1 c
= 1

2π

sin−1

(√

1+c2−
√

1+c4−2c2 cos 2α

2

)

sinh−1

( √
2c sin α

√

1−c2+
√

1+c4−2c2 cos 2α

)

sinh−1 c − sinh−1

( √
2c sin α

√

1−c2+
√

1+c4−2c2 cos 2α

) , (25)

for α < π

2
. In Fig. 4(b), the analytic form (25) of the rotation number

is depicted together with numerically obtained results for three dif-
ferent values of c. The actual rotation number is an integer and thus
a step function of α. For the purpose of illustration, we therefore
plot it (only) for the phase-lag parameter α that is numerically clos-
est to the analytic curve. The good agreement between the numerical
results and analytical prediction means that our analytical estimate
(25) is very close to the actual rotation number step function. We
remark that our prediction (25) relies on the approximation of the
rotating motion by an exact (tilted) sinusoidal function 1y(1x).

We underline that the rotation number q(α) in Eq. (25)
diverges as α → π

2
−, consistent with the findings in the system fea-

turing a purely imaginary coupling, i.e., α = π

2
where q = ∞ in

Fig. 2(c). Employing an asymptotic series expansion74 with respect
to orders of π

2
− α, the leading order of the asymptotic behavior of

the rotation number reads

q−1 ∼ π

1 + c2

π

2
− α

sinh−1 c
, (26)

as α → π

2
−. In Fig. 4(c), we show the comparison of the analytic

form of the rotation number (25) with Eq. (26) near α = π

2
from

below. For any given c, the asymptotic behavior of the rotation

number follows Eq. (26) for α → π

2
−, i.e., as the complex coupling

approaches purely imaginary coupling.

3. Stabilization of synchrony

As previously explained, in a system comprising two complex-
ified oscillators with a purely imaginary coupling, there exists no
classical locked state from any arbitrary initial condition unless we
initialize the system precisely at the fixed points, all of which are
neutrally stable. To demonstrate the stabilization of neutrally sta-
ble in-phase synchrony and the destabilization of a neutrally stable
antiphase state upon the activation of the real part of the complex
coupling, we introduce a small perturbation to the phase-lag param-
eter, i.e., α = π

2
− β for 0 < β � 1. Consider the governing Eq. (11)

in the first order of β , which reads

d

dt
1z = c − eiα sin 1z ∼ c − i(1 − iβ) sin 1z =: f(z), (27)

as β → 0+. Exploiting an asymptotic series expansion for a
fixed point solution, i.e., 1z∗ ∼ a0 +

∑∞
n=1 anβ

n as β → 0+ where
0 = c − i(1 − iβ) sin 1z∗, the zeroth order coefficient is a fixed
point solution for the purely imaginary case (16), i.e., sin a0

= −ic. Then, the first order coefficient is given as a1 = i tan a0

FIG. 4. Full range of integer rotation numbers
q ∈ N for generic complex coupling (N = 2).
(a) A trajectory (black solid curve) for c = 1 and
α = 1.460 04 is depicted that circles around the
cylinder with a finite rotation number q = 5 and
eventually stops at a stable fixed point. Red dots
indicate fixed points: stable (solid) in Eq. (23) and
unstable (open) in Eq. (24). (b) The analytical form
(solid curves) of the rotation number q is depicted
as a function of the parameter α, together with
numerical results (solid dots). (c) The asymptotic
behavior [dashed line, Eq. (26)] of the rotation
number q as α → π

2

−: blue (c = 0.5 < 1), red
(c = 1), and green (c = 1.5 > 1).

Chaos 34, 053141 (2024); doi: 10.1063/5.0205897 34, 053141-7

© Author(s) 2024

 31 M
ay 2024 12:08:54

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

= ± c√
1+c2

. The equilibrium in the series expansion then reads

1z∗ = a0 ± c√
1 + c2

β + O
(

β2
)

=











− sin−1(ic) + c√
1 + c2

β + O
(

β2
)

: 1z∗
2k,

π + sin−1(ic) − c√
1 + c2

β + O
(

β2
)

: 1z∗
2k+1,

(28)

for k ∈ Z as β → 0+. The linear stability of the fixed points 1z∗ in
Eq. (28) is analyzed using Eq. (15). The eigenvalues of the Jacobian
matrix evaluated at the equilibrium are given as

f′(1z∗) = −i(1 − iβ) cos 1z∗

= −i cos a0 ± i
c√

1 + c2
β sin a0 − β cos a0 + O

(

β2
)

= ∓i
√

1 + c2 ∓ 1√
1 + c2

β + O
(

β2
)

, (29)

as β → 0+. The first term reflects the neutral stability of the zeroth
order, i.e., neutrally stable fixed points for a purely imaginary cou-
pling. It is the second term that allows the fixed points to be sta-
bilized for Im[1z∗] < 0 and destabilized for Im[1z∗] > 0, respec-
tively. Therefore, we deduce that even a slight activation of the real
part of the complex coupling stabilizes the equilibria associated with
phase synchrony, enabling the observation of classical locked states
for β > 0 with a finite coupling strength |K| ∈ R.

D. Complex natural frequencies and complex

coupling

So far we have investigated a system of two complexified
oscillators with complex coupling constant K ∈ C and real natural
frequency 1ω ∈ R. We now briefly discuss a two-oscillator sys-
tem where also the natural frequencies in Eq. (9) are complex, i.e.,
1ω = |1ω|eiγ ∈ C for γ 6= 0. From Eq. (9) we obtain fixed point
solutions via

0 = c − ei(α−γ ) sin 1z,

0 = c − eiα̂ sin 1z,
(30)

where c := |1ω|
|K| . Here, an effective phase-lag parameter is intro-

duced as α̂ := α − γ . Then, as we demonstrate in the Appendix, the
fixed point solutions to Eq. (9) with γ 6= 0 have the same form as
Eqs. (23) and (24) for α̂ ∈ [0, π

2
) and as Eq. (16) for α̂ = π

2
, except

that the phase-lag parameter α is replaced with α̂ = α − γ . How-
ever, their linear stability is not determined by α̂, but by the value
of α itself since f′(1z∗) = −eiα cos

(

sin−1 1z∗). Therefore, the same
dynamical and spectral properties are expected, as classified in the
previous sections, with the form of fixed points being determined by
the effective phase-lag α̂ and their linear stability by α: (i) the sit-
uation follows that reported in Ref. 54 if α = γ , such that α̂ = 0;
(ii) the dynamics of the system for α̂ = π

2
is similar to that discussed

in Sec. III C 1. Finally, (iii) for α̂ ∈ (0, π

2
), the system is expected to

have the properties obtained in Sec. III C 2.

IV. SYSTEMS OF N ≥2 COMPLEXIFIED OSCILLATORS

How do the phenomena uncovered for N = 2 units transfer to
larger systems? Here we first consider key aspects for N ≥ 2 coupled
complexified Kuramoto oscillators. Rewriting Eq. (3) as

dzn

dt
= ωn + K

N

N
∑

m=1

sin(zm − zn)

= ωn + |K|
2iN

N
∑

m=1

[

ei(xm−xn+α)e−(ym−yn) − e−i(xm−xn−α)eym−yn

]

,

(31)

for n ∈ [N] highlights two general aspects. First, the magnitude
|K| of the coupling multiplies each coupling term and thus deter-
mines the strength of the coupling, as in real-valued Kuramoto
models. Second, the argument arg(K) = α takes the role of a
phase-lag parameter between two coupled oscillators, akin to the
Kuramoto–Sakaguchi model,17,18

Rearranging terms and taking real and imaginary parts, the
governing equations read

d

dt
xn = Re[ωn] + |K|

2N

N
∑

m=1

[

sin(xm − xn + α)e−(ym−yn)

+ sin(xm − xn − α)eym−yn

]

, (32)

d

dt
yn = Im[ωn] − |K|

2N

N
∑

m=1

[

cos(xm − xn + α)e−(ym−yn)

− cos(xm − xn − α)eym−yn

]

, (33)

for each n ∈ [N]. For example, considering a system of identi-
cal complexified oscillators, i.e., ωn = 0 for n ∈ [N], the phase-lag
parameter α delineates the boundary separating regions charac-
terized by linear stability and instability of uniform oscillations,
referred to as complete synchronization of complexified Kuramoto
oscillators. Here, such an instability point occurs at the argu-
ment α = π

2
of the complex coupling K. Interestingly, instabil-

ity occurs at the same value α = π

2
in a system of real-valued

Kuramoto–Sakaguchi oscillators.
To explore the collective behavior in a system of complexi-

fied Kuramoto oscillators with distributed natural frequencies, we
deterministically select their real parts from a Gaussian distribu-

tion g(ω) = 1

σ
√

2π
e
− ω2

2σ2 with zero mean and variances σ that we

here take to be σ = 1. Specifically, we choose a set of natural fre-
quencies according to inverse transform sampling, i.e., with Re[ωn]

=
√

2σ erf−1
(

2n−1−N
N

)

for n ∈ [N], where erf is the error function.
This way we choose a finite number of frequencies equally spaced
in probabilities, i.e., as arguments of an inverse cumulative distri-

bution function of g(ω), thereby enforcing
∑N

n=1 Re[ωn] = 0 exactly
for finite N. For the example study below, we pick all imaginary parts
to be zero, Im[ωn] = 0 for n ∈ [N], and select real parts Re[ωn] as
above.
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FIG. 5. Large systems of oscillators with complex
couplings. The magnitude of the Kuramoto order
parameter 〈r(t)〉t for N = 128 is depicted as a func-
tion of the coupling strength |K|: a complex coupling
(α = π

2
− 0.2, purple open circles), a real coupling

(α = 0, blue solid dots), a real coupling confined
within a real-valued invariant Kuramoto manifold
(α = 0, red open rhombuses), and a purely imagi-
nary coupling (α = π

2
, green open squares). Initial

conditions are drawn randomly and independently
from uniform distributions with xn(0) ∈ [−π ,π ] and
yn(0) ∈ [−10−4, 10−4].

Figure 5 depicts time-averaged Kuramoto order parameters
(2), directly measured from numerical simulations, as a function of
the modulus |K| of the coupling K = |K|eiα in four different set-
tings. First, for real coupling (with α = 0) and initial conditions
with zero imaginary parts (yn(0) = 0 for all n ∈ [N]), a transition
occurs as in the real-variable Kuramoto model. With increasing
|K|, a partially locked state emerges from an incoherent state (red
open diamonds). Indeed, the oscillators are constrained onto the real
invariant manifold (5), so the dynamics exactly resembles that of the
original, real-valued Kuramoto model, cf. also Fig. 1(a). In contrast,
the same system started from initial conditions with non-zero imag-
inary parts (yn(0) 6= 0 for all n ∈ [N]) displays markedly different
features (cf. Ref. 54): The Kuramoto order parameter discontin-
uously jumps from indicating an incoherent state coexisting with
unstable complex-locked states to a stable complex-locked state, i.e.,
a stable fixed point in complex vector space defined in Ref. 54.

For generic complex coupling α = π

2
− 0.2 (purple circles in

Fig. 5), the system exhibits a discontinuous synchronization tran-
sition at substantially smaller |K|, where the majority of oscillators
become closely locked and r is close to one. Past the transition, pro-
nounced synchrony emerges with a distribution variance in the real
parts xn on the order of 10−3 and non-zero imaginary parts. Finally,
for a purely imaginary coupling with α = π

2
, the oscillators are inco-

herently drifting, yielding a low order parameter relative to other
scenarios even at substantially large |K| (green open squares). These
findings qualitatively align with those for the two-oscillator systems
discussed in Sec. III C, where the systems fail to exhibit any classical
locked state and are asynchronous for purely imaginary coupling,
whereas oscillators subject to a generic complex coupling become
locked at a stable fixed point and exhibit a substantial degree of
synchrony.

V. CONCLUSIONS AND OPEN QUESTIONS

We have extended the Kuramoto model with analytically con-
tinued state variables54 by also complexifying the parameters and
analyzed their collective dynamics.

Our results illustrate a broad variety of novel ordering phe-
nomena in time, including indications for discontinuous transitions,
early transitions to strong synchrony and the persistence of asyn-
chronous dynamics even at arbitrarily large K. Simultaneously, as
previous works on complexified Kuramoto models indicate,54,71,75,76

studying models on fully complexified state spaces and their asso-
ciated state space topologies offers a more integrated perspective.
For instance, stable, unstable, and neutrally stable fixed points in
the complex domain control collective system dynamics. As these do
not exist in the real state space analogs, transient dynamics emerges
in real models thereby hindering the analysis of transitions between
more and less ordered states.

More specifically, we have presented a range of results: For
N = 2 coupled units and purely imaginary coupling, we discovered
motions of libration around fixed points of in-phase and antiphase
states, which are, respectively, local minima and maxima of a con-
served quantity, and a ceaseless rotation along the cylindrical axis
with an infinite rotation number q = ∞. No attractive locked state
emerges even for arbitrarily large |K|. In contrast, for generic com-
plex coupling, trajectories rotate a few times, exhibit finite rotation
numbers q < ∞, and stop at a stabilized fixed point. We have ana-
lytically determined the rotation number and derived its asymptotic
scaling as α → π/2 from below, where the coupling becomes purely
imaginary. For small β = π/2 − α, synchrony stabilizes: Slightly
turning on the real part of a coupling, the neutrally stable fixed
points of in-phase synchrony become stabilized to first order in
β . Larger, finite-size systems of N > 2 units similarly exhibit a
classically locked state for purely imaginary coupling whereas a dis-
continuous transition emerges to a locked state for a generic complex
coupling. The above analyses catalyze a range of future research.

1. The thermodynamic limit. Does the critical point at which a
complex-locked state becomes stable indicate transition proper-
ties in the real-variable system, perhaps indirectly? An appropri-
ately generalized order parameter and self-consistency equation
or dimension reduction methods like Ott–Antonsen47–49 or
Watanabe–Strogatz7,50,68 approaches might help address such
questions. For instance, related recent work has demon-
strated that for identical complexified oscillators, the dimen-
sion reduction method is applicable using the complex Riccati
equation.77,78 However, it remains unclear how these results
generalize to systems with heterogeneous natural frequencies.

2. What is the collective dynamics of spatially extended systems of
complexified oscillators, for instance on a ring or other, higher-
dimensional geometries such as a two-dimensional plane,
sphere, or torus? Spatiotemporal dynamics such as a traveling
wave or chimeras might yield starting points for novel behavior.
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Specific questions may cover, importantly, the role of the imag-
inary parts. Are complexified systems of oscillators capable of
describing chemical reactions or biological patterns in real sys-
tems, perhaps similar in spirit to the complex Ginzburg–Landau
equations?79,80

3. What is the dynamics of complexified oscillators on non-trivial
network topologies? Specifically, how does the network topol-
ogy affect the state of synchrony and the transition(s) toward
it? The main results may find a broad range of applications,
from understanding generic bifurcations in toy-model networks
to real networks, for instance addressing how power grids lose
stability.

4. What is the dynamics of analytically continued phase oscillator
networks and coupled dynamical systems models in general? Are
there typical, system-overarching features? If, so which are they
and which features are system-dependent? Suitable candidates
for initial studies include the Winfree model,72 the theta neu-
ron model,77,81 the (second order) Kuramoto model with inertia
that models power grid dynamics and also features intriguing
collective dynamics, van der Pol oscillators, and other models.

In summary, complexification by analytical continuation of state
variables54 and complexification of parameters may serve as a
general analysis tool for dynamical systems. It seems particularly
promising as the complexified systems may exhibit fixed points (e.g.,
complex-locked states) that are mathematically accessible whereas
the original real-variable systems only exhibit transients that require
intricate numerical simulations. Complexification may thus enable
a deeper understanding of the respective original systems as well
as unveil a number of collective phenomena worth investigating in
their own right.

VI. NONLINEAR DYNAMICS WITH DAVID K. CAMPBELL

David Campbell, who is approaching his 80th birthday in 2024,
has been a pioneer of nonlinear dynamics, has co-established the
field and impacted many paths of individual researchers within it.
David has repeatedly taken motivation from physics and in turn
demonstrated diverse valuable applications in physics and beyond.
By often leaving well-trodden paths and pointing to novel perspec-
tives, he has left his personal mark in the field. His groundbreaking
contributions to nonlinear phenomena include, for instance, reveal-
ing conditions and mechanisms underlying solitary waves and dis-
crete breathers that emerged from more traditional subfields such
as solid-state physics. Through many decades of work and inspira-
tion, he has created an enduring legacy that overarches the full range
from observed nonlinear phenomena in nature to advancing math-
ematical tools for their analysis. Thank you David, for advice, for
co-creating the field, and for showing the path forward. May you
have a truly happy birthday and a happy nonlinear time to come.
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APPENDIX: COMPLEX INTRINSIC FREQUENCIES

In this appendix, we provide details of linear stability analysis
of fixed point solutions to Eq. (9) discussed in Sec. III D: (i) For
α̂ = 0, i.e., α = γ , the fixed points read 1z∗ = sin−1 c. Here, we
follow the same argument reported in Ref. 54. First, two repre-
sentative fixed points for c < 1 read 1z∗

0 = sin−1 c and 1z∗
1 = π

− sin−1 c. For these fixed points, eigenvalues of the Jacobian matrix

of Eq. (9) are given as f′
(

1z∗
0,1

)

= ∓eiα
√

1 − c2 together with their
complex conjugates. Hence, 1z∗

0 (1z∗
1) is stable (unstable) for α

< π

2
whereas 1z∗

0 (1z∗
1) becomes unstable (stable) for α > π

2
. Sec-

ond, for c = 1, a degenerate semi-stable fixed point occurs at 1z∗

= π/2 with a tilted center manifold with respect to the real axis.
Note that the center manifold of the semi-stable fixed point for γ

= 0 and α = 0 is on the real axis. See Fig. 2(b) in Ref. 54. Third, for

c > 1, the fixed points are given as 1z∗
0,1 = π

2
± i log

(

c +
√

c2 − 1
)

and eigenvalues of the Jacobian matrix to Eq. (9) for these fixed

points are f′
(

1z∗
0,1

)

= ±ieiα
√

c2 − 1, which confirms that 1z∗
0 (1z∗

1)
is stable (unstable) for sin α > 0 whereas 1z∗

0 (1z∗
1) becomes unsta-

ble (stable) for sin α < 0. Hence, a bifurcation occurs at α = π .
(ii) In the case of α̂ = π/2, the system is investigated as discussed
in Sec. III C 1. It has fixed points that read 1z∗

0 = −i sinh−1 c and

1z∗
0 = π + i sinh−1 c with f′

(

1z∗
0,1

)

= ∓eiα
√

1 + c2, confirming the
former (the latter) is stable (unstable) for cos α > 0 and becomes
unstable (stable) for cos α < 0. (iii) For α̂ ∈ (0, π

2
), the fixed points

are given as Eqs. (23) and (24) replacing α by α̂ and are explored as
in Sec. III C 2, yet linear stability was determined by the value of α.
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models on spheres,” Anal. Math. Phys. 11, 129 (2021).

29S. Chandra, M. Girvan, and E. Ott, “Complexity reduction ansatz for systems
of interacting orientable agents: Beyond the Kuramoto model,” Chaos 29, 053107
(2019).
30G. L. Buzanello, A. E. D. Barioni, and M. A. M. de Aguiar, “Matrix coupling and
generalized frustration in Kuramoto oscillators,” Chaos 32, 093130 (2022).
31M. A. M. de Aguiar, “Generalized frustration in the multidimensional
Kuramoto model,” Phys. Rev. E 107, 044205 (2023).
32D. Witthaut and M. Timme, “Kuramoto dynamics in Hamiltonian systems,”
Phys. Rev. E 90, 032917 (2014).
33D. Witthaut, S. Wimberger, R. Burioni, and M. Timme, “Classical synchro-
nization indicates persistent entanglement in isolated quantum systems,” Nat.
Commun. 8, 14829 (2017).
34S. Lee and K. Krischer, “Chimera dynamics of generalized Kuramoto–Sakaguchi
oscillators in two-population networks,” J. Phys. A: Math. Theor. 56, 405001
(2023).
35S. Lee, Y. Jeong, S.-W. Son, and K. Krischer, “Volcano transition in a system of
generalized Kuramoto oscillators with random frustrated interactions,” J. Phys. A:
Math. Theor. 57, 085702 (2024).
36S. Chandra, M. Girvan, and E. Ott, “Continuous versus discontinuous transi-
tions in the D-dimensional generalized Kuramoto model: Odd D is different,”
Phys. Rev. X 9, 011002 (2019).
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