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Phase separation induces congestion waves in electric vehicle charging
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Electric vehicles may dominate motorized transport in the next decade, yet the impact of the collective
dynamics of electric mobility on long-range traffic flow is still largely unknown. We demonstrate a type of
congestion that arises if charging infrastructure is limited or electric vehicle density is high. This congestion
emerges solely through indirect interactions at charging infrastructure by queue-avoidance behavior that—
counterintuitively—induces clustering of occupied charging stations and phase separation of the flow into free
and congested stations. The resulting congestion waves always propagate forward in the direction of travel, in
contrast to typically backward-propagating congestion waves known from traditional traffic jams. These results
may guide the planning and design of charging infrastructure and decision support applications in the near future.
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The ongoing transition towards more sustainable mobility
centrally relies on electric vehicles to provide low-emission
transport. As the number of battery electric vehicles (EVs)
grows rapidly [1–3], EVs may soon become the primary form
of individual mobility [4]. However, with their limited range
and long recharge periods, EVs critically depend on the avail-
able charging infrastructure.

Current research on electric mobility thus focuses on
cornerstone aspects surrounding the charging process, in-
cluding the technical implementation of charging and battery
technologies [5,6], the optimal placement of charging infras-
tructure [7–12], and the efficient routing of vehicles within
a given infrastructure [13,14]. In addition, the dependence of
electric vehicles on the charging infrastructure has prompted
investigations of the interactions, risks, and potential syner-
gies between electric mobility and the larger-scale power grids
and energy infrastructure [15–17]. Yet, fundamental aspects
of the collective EV charging dynamics remain poorly under-
stood to date.

In the past, researchers have applied methods of statistical
physics, nonlinear dynamics, network science, and complex
systems theory to the dynamics of traffic and mobility systems
with astounding success. Applications range from describing
congestion and phase coexistence in traffic flow and transport
processes [18–23] to understanding the complex interactions
in modern networked mobility systems [24–31].

In this Letter, we study the collective dynamics of electric
vehicles and their interaction with charging infrastructure. We
uncover a class of spatiotemporal congestion states for long-
distance travel. In particular, we find congestion waves that are
caused solely by indirect interactions of the vehicles with the
charging infrastructure in the form of queueing dynamics. We
explain the emergence of these waves through phase separa-
tion of the charging demand along the available infrastructure.

Interestingly, the congestion waves always propagate in the
direction of travel, not against it as known for typical [32,33]
congestion waves in traditional traffic flow.

Electric vehicle travel differs from travel by internal com-
bustion engine (ICE) vehicles in two key aspects. Firstly,
current EVs possess a typical range of the order of 300 km
[34], significantly lower than that of ICE vehicles. Secondly,
EVs recover range slowly during charging. A recharging event
at a fast charging station typically lasts more than 20 min
[35] and even high-end EVs need about 30 min to recharge
80% of their battery [36]. As an example of a characteristic
EV recharging rate, we consider ξ = 480 km/h. In contrast,
internal combustion engine vehicles take mere minutes to
refuel, with refuelling rates ξICE > 104 km/h. Consequently,
refueling times contribute little to average ICE vehicle travel
times while recharging times contribute substantially to EV
travel times on long-distance trips.

Electric vehicles traveling over long distances s spend
characteristic times tdriving = s/v moving and tcharging = s/ξ
charging. Their average velocity

vF = s

tdriving + tcharging
= 1

1/v + 1/ξ
(1)

is thus only partly determined by the characteristic driving
velocity v. For instance, for v = 120 km/h, the charging
time contribution to travel time yields an effective velocity
of vF = 96 km/h, representing a decrease of 20% due to
charging alone. Queues at charging stations exacerbate this
effect because waiting times add to the charging times and
further reduce the effective velocity. Faced with waiting times
comparable in length to the travel time, EV drivers are likely
to employ strategies to avoid queues, similar to queue avoid-
ance behavior observed, for example, during shopping [37]
and parking [38].
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FIG. 1. Charging decisions of EVs. At each charging station, vehicles decide to charge or to continue driving. (a) If the remaining range
is smaller than a threshold, q(t ) � q∗, the EV charges at an available charging station without a queue. (b) If the charging station is currently
unavailable and the range is sufficient to reach the next station down the road, the vehicle continues driving to avoid the queue. (c) If the
vehicles range is insufficient to reach the next charging station, q(t ) < ��, it charges at its current station regardless of queue length.

We consider the basic dynamics of an EV battery gaining
and losing charge, specified in terms of the range q(t ) avail-
able to the vehicle at time t . A fully charged vehicle has a
maximum range qmax. While driving with a fixed velocity v,
the available range decreases linearly with time.

At each charging station, the vehicle decides to charge or
to continue driving (Fig. 1). If the available range is below
a threshold, q(t ) � q∗, and the charging station is available,
the vehicle stops to charge. If there is a queue at the charging
station and the vehicle has sufficient range to reach the next
station, it continues driving to avoid the queue. If at any time
the vehicle does not have sufficient range q(t ) < �� to reach
the next charging station at distance ��, it charges at its
current station regardless of the queue length to avoid running
out of range in the middle of the road. During the charging
process, the vehicle regains range at a constant rate ξ until it
is fully charged and continues driving.

To isolate the impact of the charging process on electric
vehicle travel, we analyze a basic model where vehicles do
not interact or contribute to congestion while driving between
charging stations. We focus on a highwaylike system with
total length L and periodic boundaries with K equidistant
charging stations, each with m charging ports, separated by a
distance �� = L/K . Vehicles enter the system at a uniformly
randomly chosen charging station following a Poisson process
with rate λ with a uniformly sampled random initial charge
q(0) ∈ [0, qmax]. They travel an average distance L/2 and
exit the system at another uniformly random charging station.
Thus, to complete their journey, a fraction of vehicles will
need to recharge at least once.

At a critical rate

λc = 2mKξ

L
, (2)

the average consumed range per unit time λL/2 exactly
matches the maximum total range mKξ potentially supplied
by all charging stations per unit time. For λ � λc, the system
is in free flow with vehicles traveling with an average velocity
vF, unaffected by charging queues [Fig. 2(a)]. While short
queues may appear randomly even at low numbers of vehicles,
they dissolve quickly as vehicles do not enter any particular
queue consistently. In contrast, for λ > λc, the charging in-
frastructure cannot supply sufficient range for all vehicles. On
average, queues grow at every charging station and the system
is overloaded [Fig. 2(b)]. A third, qualitatively different state
emerges at rates just below the critical rate λc where self-
organized congestion waves form across the charging stations
[Fig. 2(c)]. Like in conventional traffic jams, regions of high
vehicle density, here represented by long queue lengths at

some charging stations, restrict the flow of vehicles. When
queues emerge at localized groups of stations, they propagate
along the system with a velocity substantially lower than the
effective velocities of the vehicles [slopes of dashed vs purple
lines in Fig. 2(c)].

In contrast to conventional traffic jams that often propagate
backwards, against the direction of travel, charging congestion
waves always propagate in the direction of travel. Conven-
tional traffic jams grow at the upstream boundary due to
the inability of vehicles to pass through each other on the
road, forcing cars to stop or slow down when reaching the
traffic jam. In contrast, charging congestion is caused solely
by the queue avoidance and charging processes of the vehi-
cles. Vehicles that encounter a group of occupied charging
stations continue driving to recharge further downstream due
to their reluctance to enqueue. Once the vehicles are forced

(h)(h)

(1
00

 k
m

)

1

2 3

FIG. 2. Three classes of collective EV charging dynamics.
Space-time plots show the number of vehicles (increasing from white
to black) at charging stations distributed along a simulated circular
highway with a theoretical capacity λc (see main text). (a) At low
inflow rates (few EVs entering the highway per time, λ1 � λc), only
short, transient queues appear. The trajectory (purple line) of a single
vehicle is characterized by frequent, short charging stops moving
with an effective velocity given by Eq. (1). (b) At λ2 > λc, the system
becomes overloaded as vehicles spend a significant amount of time
waiting at a charging station; the sample trajectory (purple) exhibits
long waiting periods (horizontal) and a significantly smaller effective
velocity (average slope). (c) A third regime emerges at intermediate
inflow rates (λ3 ≈ λc), exhibiting persistent short queues at some
charging stations (gray) that propagate forward in the form of waves
(dashed line) at a velocity substantially lower than vehicle velocity
(purple). The congested state emerges already at λ3 < λc. Model
settings in main text; see [1] and [39] for additional details.
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to enqueue as their remaining charge is too low to reach the
next station, they enter queues in the bulk or at the down-
stream end of the jam. Simultaneously, queues at the upstream
end shrink as more vehicles finish charging than enter that
queue. Thus, queue lengths grow downstream of the jam and
shrink upstream, thereby causing a forward-propagating wave
of occupied charging stations. This mechanism is similar to
forward-propagating conventional traffic jams where traffic
does not come to a complete standstill in the regions of
high vehicle density, moving the congestion forward with it
[32,40]. Similarly, the electric vehicles in our model still drive
in the jammed region though with a lower effective veloc-
ity due to charging queues. These dynamics remain robust
under substantially more general conditions such as hetero-
geneous properties of both vehicles and charging stations,
including varying charging rates, vehicle velocities, maximum
ranges, number of ports per station, and station locations (see
Supplemental Material [1]).

We observe the congestion waves more clearly if the total
number and thus the overall density of vehicles ρ on the
highway is conserved. To estimate the maximum density ρc

of vehicles at which a free-flow state is possible, we consider
vehicles as sinks of total charge, i.e., range, available in the
system and charging stations as sources. Jointly, all K charg-
ing stations maximally provide new range mKξ per unit time.
Under free-flow conditions, each vehicle consumes charge at
a rate matching the effective velocity vF defined in Eq. (1), in
total consuming a range of LρvF. Balancing these source and
sink strengths and substituting K = L/�� yields the critical
density

ρc = mξ

vF��
(3)

of vehicles on the highway.
The fundamental diagram (Fig. 3) that links the flow

Q(ρ) = v(ρ)ρ to the vehicle density, offers two helpful re-
lations for quantifying the properties of traffic flow [32]. First,
it provides the time-average velocity

〈v〉 = 〈Q(ρ)〉
ρ

(4)

of the vehicles. Second, it offers insights about the propaga-
tion of density variations of the form ρ̃(x − ct ) through the
group velocity [32]

c = ∂〈Q(ρ)〉
∂ρ

. (5)

At densities ρ < ρc , queues do not form at all. In this
free-flow state, the average velocity is independent of the ve-
hicle density and the flow increases linearly with the number
of vehicles in the system. Without queue avoiding behavior
[q∗ = 0; Fig. 3(b)], the system overloads as the density ex-
ceeds the critical density ρc, where the flow saturates and
becomes density independent, 〈Q(ρ)〉 = ξ/��, because it is
limited by the total available charging rate. Furthermore, since
the group velocity c = 0, density fluctuations do not propa-
gate in space and the vehicle densities at all charging stations
are approximately constant in time [compare Fig. 2(b)].

With active queue avoidance, q∗ > 0 [Figs. 3(c) and 3(d)],
the flow dynamic changes fundamentally. Close to the critical

FIG. 3. Congestion waves near the critical density. (a) The fun-
damental diagram quantifies the flow states as a function of the
vehicle density qualitatively observed in Fig. 2. At low densities
the system settles in a free-flow state where 〈Q〉 = vFρ, with an
effective velocity vF defined by Eq. (1). Substantially above the
critical density, the system overloads and the flow saturates at a
maximum flow 〈Q〉 = Qmax set by the total charging rate of the sys-
tem. At intermediate densities ρ/ρc ≈ 1, a congested state emerges,
reducing the average velocity of individual vehicles to 〈v〉 = 〈Q〉/ρ.
Congestion waves move at a group velocity c = ∂ 〈Q〉/∂ ρ > 0 indi-
cated by the local slope. (b) The congested state does not emerge if
vehicles deplete their batteries completely before charging [q∗ = 0
(light green)]. (c),(d) Congestion occurs at lower densities for higher
charging thresholds [(c), q∗ = 1/8 qmax (blue) and (d) q∗ = 1/2 qmax

(purple)]. The fundamental diagram shows the time-averaged flow
from 25 realizations for each density in a system with a fixed number
of vehicles N = ρL and m = 1 charging port per station; all other
parameters are identical to Fig. 2.

density ρc, the fundamental diagram exhibits a discontinuity
and propagating congestion waves emerge, decreasing the
flow regardless of whether the system would be overloaded
or in free flow. The discontinuity becomes stronger with
larger charging threshold and the flow exhibits bistability:
congestion waves may already emerge at densities below ρc,
effectively decreasing the critical density before the free-flow
state breaks down.

To further understand the spatiotemporal structure of the
congestion waves, we classify each station as either congested
or free at a given time, taking into account the immediate
temporal and spatial neighborhood using a Gaussian mixture
model [Fig. 4(a); see [1] for details]. The probability density
for finding a certain vehicle density at a station differs between
the congested and the free-flow state. The probability densities
exhibit peaks below the critical vehicle density ρc in the free-
flow state and above ρc in the congested state.

These findings indicate the emergence of phase separation
in the system. In a system exhibiting congestion waves at
some density ρ0 close to ρc, the flow splits into two distinct
phases of flow, represented by two points on the fundamental
diagram. As observed in Fig. 4(a), the free-flow phase has an
average conditional vehicle density ρfree < ρc, the congested
flow phase has an average conditional density ρjam > ρc, both
insensitive to the total vehicle density ρ0 (see [1]). These flow
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FIG. 4. Phase separation of the flow into a free-flow phase and
an overloaded phase. (a) Continuous interpolation of the conditional
probability distributions of the vehicle densities in both states. The
system separates into a free-flow state with low density (green)
and an overloaded state with high density (purple). A larger overall
vehicle density (darker colored lines) leads to a larger number of
charging stations that are simultaneously congested captured in the
relative weight of the probability density distributions. The average
conditional densities of the respective free-flow and congested states,
however, are independent of the overall density (see [1]). (a), inset:
Classification into free-flow and congested states (see [1] for details).
(b) Illustration of the phase separation along the tangent in the
fundamental diagram. The flow of a system exhibiting propagating
congestion at overall vehicle density ρ0 is the weighted average of
the flow in the congested phase (purple circle) and the flow in the
free-flow phase (green circle). (b), inset: Measuring the conditional
vehicle densities ρfree in free-flow regions and ρjam in congested
regions predicts the fraction w of congested stations using Eq. (6).
The fraction of congested stations observed (points) matches the pre-
diction (dashed line). Parameters are identical to Fig. 3 with charging
threshold qc = 1/2 qmax.

states are marked by the intersection of the tangent of the
fundamental diagram at the point (ρ0, 〈Q(ρ0)〉) with the free-
flow and overloaded branch, respectively [Fig. 4(b)]. Since
the conditional densities in the free-flow and congested phase
are constant, the fraction w of congested stations is directly
related to the overall vehicle density

ρ0 = wρjam + (1 − w)ρfree (6)

that is the weighted average of the free-flow and congested
densities. Eq. (6) predicts the fraction of congested stations w

just from the measured densities ρ0, ρfree, and ρjam. Compar-
ing the result to the measured fraction of congested stations

confirms this prediction and the phase separation hypothesis
[see Fig. 4(b) inset].

In conclusion, our analysis demonstrates that charging
dynamics of EVs together with individual queue-avoidance
behavior jointly induce spatio-temporal congestion. Specifi-
cally, we find congestion waves of occupied charging stations
without direct interactions of the vehicles on the road. These
congestion waves always propagate forward, along the di-
rection of travel as vehicles continue to drive past occupied
charging stations and effectively enqueue at the downstream
end of the jam. The phase separation into free-flow and over-
loaded stations underlying these congestion waves is similar
to mechanisms of congestion phenomena in conventional traf-
fic jams [32,41] and other transport processes [21,22] and to
the phase separation known from standard thermodynamics
such as the liquid-gas transition in van der Waals fluids [42],
where the overall density is a superposition of the densities
of one gas and one liquid phase. If charging infrastructure
is limited or EV density is high, such congested states may
further increase the overall travel time of EVs during long-
distance trips, in addition to the already substantial charging
times. Charging dynamics of EVs thus constitute an additional
dimension in traffic flow analysis in addition to their impact
on power systems [15–17], becoming increasingly relevant as
society transitions toward electric transport.

The observed congestion states emerge exactly around the
mean-field critical point, reflecting the economic equilibrium
where charging stations are maximally utilized but the system
is not yet overloaded. While high charging thresholds and
vehicle densities strongly promote congestion, the congested
states appear for a wide range of (heterogeneous) system
parameters and conditions (see [1] for details). Understanding
the dynamics of congestion waves in EV charging infrastruc-
tures in further detail for specific infrastructure scenarios may
support civil engineers and policy makers to anticipate inef-
ficiencies and implement countermeasures. Our results may
already provide conceptual guidance on how to mitigate the
problem of congestion waves in EV charging by highlighting
the required information to design smart routing and charging
suggestions [13,14]. Moreover, the insights illustrated above
highlight one key ingredient to minimize the impact of charg-
ing congestion that goes beyond infrastructure development or
technological progress: Decreasing the charging threshold, for
example by strengthening confidence in the vehicle-predicted
remaining range or by automating charging decisions, limits
the congestion to a small range of vehicle densities.

More generally, our results indicate that emerging tech-
nologies not only change individual technical components
underlying transport, such as vehicles or infrastructure. Given
new forms of interactions among system elements, we also ex-
pect a range of unprecedented collective dynamics [30,43,44]
emerging in future-compliant mobility systems we need to
explore.
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