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Abstract

The intricate three-dimensional geometries of protein tertiary structures underlie protein

function and emerge through a folding process from one-dimensional chains of amino acids.

The exact spatial sequence and configuration of amino acids, the biochemical environment

and the temporal sequence of distinct interactions yield a complex folding process that can-

not yet be easily tracked for all proteins. To gain qualitative insights into the fundamental

mechanisms behind the folding dynamics and generic features of the folded structure, we

propose a simple model of structure formation that takes into account only fundamental geo-

metric constraints and otherwise assumes randomly paired connections. We find that

despite its simplicity, the model results in a network ensemble consistent with key overall

features of the ensemble of Protein Residue Networks we obtained from more than 1000

biological protein geometries as available through the Protein Data Base. Specifically, the

distribution of the number of interaction neighbors a unit (amino acid) has, the scaling of the

structure’s spatial extent with chain length, the eigenvalue spectrum and the scaling of the

smallest relaxation time with chain length are all consistent between model and real pro-

teins. These results indicate that geometric constraints alone may already account for a

number of generic features of protein tertiary structures.

I. Introduction

Proteins consist of sequences of amino acids. The resulting primary structure of a protein, is

expected to provide constraints for the folded three-dimensional (3D) structure of a globular

protein, its tertiary structure. The problem of predicting the 3D structure of an amino acid

sequence in an aqueous solution is known as the protein folding problem consisting of three

sub-problems: First, to find the chemically active folded state; second, to uncover the pathway

to get to that state; and third, to develop computational tools capable of accurately predicting

the folded state [1–6]. Many different avenues have been taken to explore solutions towards
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this problem, ranging from atomistic models using molecular dynamics approaches [7], to

coarse grained models e.g [8], and to machine learning-based and heuristic physical models

that disregard the atomistic details of the amino acid sequence [9, 10]. While much progress

has been made improving molecular dynamics simulations using atomistic detail, the folding

process of long chains is computationally highly expensive or even infeasible, and still requires

access to purpose build massively parallel computers such as Anton [11], or distributed com-

puting projects such as folding@home in order to generate quantitative data [12]. The other

avenue often explored for structure models is tested in community-wide challenges such as the

‘Critical Assessment of Protein Structure Prediction’ (CASP) [13–15]. CASP is run every other

year to see if a protein’s tertiary structure can be predicted based on its primary sequence of

protein structures unresolved at the time of the challenge [16]. Predictions have improved

drastically over previous CASP challenges [1], however, often rely on existing structural infor-

mation in the protein data base (PDB) and homology modeling, comparing new proteins

based on existing insights from known template proteins using computational models such as

HHPred [17] or I-TASSER [18] or, more recently, machine-learning based predictions of the

distance matrix [19]. These approaches support accurate prediction of 3D structures, yet by

construction limit insights into fundamental physical mechanisms and constraints underlying

the folding processes and final structures observed in the many and various proteins observed

in nature.

In a complementary approach, a number of theories and structure analyses have been con-

ducted into broader mechanisms of the folding process. Examples include tube models as in

[20], where it was shown that secondary structures, such as helices and β-sheets, arise from

explicit hydrogen bonds. Alternatively the behaviour of the chain can be expressed through a

heuristic field equation of the backbone curvature, as in [21], where helices and sheets consti-

tute the energy minimum. For this reason we here want to focus on the tertiary structure.

We propose an approach to further understand geometry and formation processes using a

complex network framework. The 3D tertiary structures in our model arise from chain-like

primary protein structures without comparing to specifically chosen protein structures avail-

able on the PDB, and without using complex molecular dynamics simulations. First, we ana-

lyze 1122 protein structures from the PDB, consider them as an ensemble of network

structures representing protein tertiary structures, and quantify overall properties of this

ensemble. In particular we (i) uncover the scaling of the diameter of proteins with their chain

length, (ii) reveal the distribution of the number of other amino acids any given amino acid

closely interacts with and (iii) find the distribution of second largest eigenvalues of their associ-

ated graph Laplacians, characterizing the most persistent time scales on which proteins are

dynamically responding to perturbations. Second, we propose and analyze a simple stochastic

process modeling the folding of chains of units. The minimal model takes into account geo-

metric constraints only and does not consider any other protein property. The model process

keeps connected units connected, forbids geometric overlap of units (volume exclusion) and

connects randomly chosen units if geometrically permitted. Based only on such random

monomer interactions and geometric constraints, akin to those in Lennard-Jones clusters and

sticky hard spheres [22, 23], the 3D structures self-organizing through the simple model pro-

cess are consistent with those of real protein ensembles in all of the above-mentioned features

simultaneously.

These results suggest that beyond the details of pairwise interaction of amino acids, from

intermediate scales of a few amino acids to the full spatial extent of proteins, geometric con-

straints play an important role in structure formation and strongly impact the final protein ter-

tiary structure. Our insights may put into perspective the influence of the specific details of
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sequences of amino acids relative to simpler geometric constraints on structure forming pro-

cesses of proteins.

II. Methods

A. Ensemble analysis of protein residue networks

With their modular polymer structure and their complex interaction patterns, proteins lend

themselves naturally to a description as ensembles of complex networks. The mathematical

object of a graph, simply termed network, represents a structure of nodes (units) and links,

each describing an interaction between two units [24–26]. Networks and graphs have been

used to describe the structure of a wide variety of systems, as different as social networks [27–

29] and the global climate system [30, 31]. In this article, we analyze an ensemble of 1122 pro-

tein tertiary structures of chain lengths ranging from N = 8 to N = 1500 amino acids. Detailed

structures have been experimentally determined to great accuracy and stored in the protein

data bank (PDB) [32]. Part of the information stored in the PDB are the coordinates xi 2 R
3 of

the individual amino acid’s central carbon atoms Cα, where i indexes the amino acid’s position

along the chain.

Given such geometric data, the structures resulting from protein folding are commonly

expressed as protein residue networks (PRN’s) [33–36], in which the central carbon atom of

each amino acid is taken to be a node and a link represents the interaction of two nodes if their

spatial distance is small, i.e. less than a distance dc apart.

Here, the distance between the amino acids indexed i and j is given by the Euclidean dis-

tance metric di,j = kxi − xjk. An adjacency matrix Aij encodes the topology of a network, its

entries are 1 if di,j� dc, i.e. the units are considered connected, and 0 otherwise. The distance

matrix resulting from PDB data thus defines the adjacency matrix as

APDB
ij ¼

0; if di;j > dc or i ¼ j

1; if di;j � dc:

8
<

:
ð1Þ

The threshold of the PRN is commonly chosen between dc = 4 Å(approximate length of a

peptide bond [35]) and dc = 8 Å, reflecting an upper bound for a significant interaction to

occur between two units [35]. Here, we created the PRNs of 1122 proteins selected from the

PDB list in [37], covering a range of chain lengths N for comparison to simulations. Their geo-

metric structures have been determined previously via NMR and x-ray studies. We choose a

threshold value of dc = 6.5 Å to calibrate the average degree (the degree ki of node i counts the

number of nodes it is connected to) of nodes in the PRNs to the average degree found in the

model simulations in the range of large N 2 [200, 400], Fig 1a. The average degree k grows

with N and appears to saturate at a value determined by dc. The ratio of this cutoff threshold

and the unit size in the model, which we take half their mean distance, constitutes the only free

structural parameter we employ in the current study.

The degree distribution of the resulting network ensemble, displayed in Fig 1b, is unimodal

and covers effective degrees between k = 2 and k = 11. Interestingly, the degree distribution

resulting from simulations of the model ensemble we are about to introduce below is statisti-

cally indistinguishable from those of the network of real PRNs (no additional fit parameter),

Fig 1b. Equally, other quantifiers obtained from the simple, geometry-only model ensemble

agree surprisingly well with those obtained from our data analysis of the experimentally

obtained protein structures. For the network measures and manipulations NetworkX [38] was

used.
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B. Simple model focused on geometric constraints

To better understand the impact of geometric constraints on the topology of protein tertiary

structures, we introduce a random network formation model that takes into account geomet-

ric constraints and leaves out almost all other properties of real proteins, including heteroge-

neous sequences of amino acids, the amino acids’ specifics molecular properties, different

forms of electrochemical interactions, conformational details of interactions between nearby

amino-acids, and the influence of the fluid environment on protein folding. This formation

Fig 1. Degree distributions of simple model ensemble and real proteins are statistically indistinguishable. a) The

average degree k of real protein ensemble (red dots) asymptotically saturates to k� 6.8 as the chain length N becomes

large. The average degree of the nodes resulting from 30 model simulations for each chain length N, ranging from

N = 3 to N = 398. b) The degree distribution P(k) of the model simulation within the error margin is indistinguishable

from that of real proteins (error bars indicate standard deviation of the distribution at each k).

https://doi.org/10.1371/journal.pone.0229230.g001
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mechanism can be interpreted as the intersection of random graphs and self-avoiding random

walks, which has vastly different properties from the two individual sets. We find that the sim-

ple, geometry-centered model already reproduces a range of overall topological properties of

real protein residue networks well.

The model is built on the simple observation that proteins consist of a chain of close-to

identical units that interact in complex ways when folding, yet can not intersect, giving rise to

geometric constraints. The individual units of the chain interact when they come into contact;

typically there is an attraction that is the stronger the closer they are but repelling once they

overlap. Depending on the specific amino acid, size, shape, and electromagnetic properties

vary. In our model, however, all amino acids are represented as unit spheres and the interac-

tions between each pair become very simple and identical across all pairs.

The model’s initial state consists of a chain of N connected spheres, each of diameter and

bond length of unity (later rescaled to match the mean distance between neighboring amino

acids dmean). A folding proceeds by sequentially picking random pairs of spheres (not con-

nected with each other) and connecting them if possible, given the geometric constraints of

volume exclusion. Here, volume exclusion also applies to co-moving other spheres connected

either initially along the chain or through a previous step (see S1 File). The process repeats

until all pairs are either connected or geometrically incapable of connecting. The adjacency

matrix Asim of the simulated chain keeps track of which spheres are linked to each other. Ini-

tially, it contains only zeros except for its secondary diagonal elements which equal 1 since

neighboring spheres are connected via the backbone chain. The model is motivated by a two-

dimensional model of network-based formation of aggregates where link constraints due to

geometry in space have been approximately mapped to purely graph-theoretic constraints dur-

ing network formation [39].

As described in the method section, the process of moving spheres towards each other is

realized in a simple consistent way to satisfy all geometric constraints continuously in time.

The forces and potentials employed, however, are not intended to reflect any physical forces or

potentials created by amino acids. They plainly help to realize to attempt the joining of two

randomly selected spheres.

Snapshots of the folding process are illustrated in Fig 2, three examples of the final aggre-

gates in Fig 3. The aggregates are highly compact compared to the straight initial conditions.

They are also much more compact than aggregates generated from self-avoiding random

walks and close to, yet not quite maximally densely packed (see below), consistent with previ-

ous suggestions based on 2D aggregates [39].

All simulation details, including the code for reproducing the geometric constraint simula-

tions, as well as the preparation and analysis of PDB files can be found in the following github

repository: https://github.com/ppxasjsm/Geometric-constraints-protein-folding.

Fig 2. Model folding process at different times. Starting from an initial chain with N = 60, randomly picked units connect if geometrically possible.

Shown here are examples after l = 0, 2, 7, 14 and 140 successful connection attempts.

https://doi.org/10.1371/journal.pone.0229230.g002
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III. Results

A. Spatial scaling of protein structures

The ensemble of protein tertiary structures exhibits an algebraic scaling law indicating that

their radii of gyration Rg depend on their chain length N such that:

Rg � Nn; ð2Þ

as expected from a number of previous studies [21, 37, 39, 40]. As the overall geometry of a

folded protein is often characterized by the locations of the central carbon atoms (Cα-atoms,

one for each amino acid) of its backbone chain, its spatial extension is commonly measured by

the radius of gyration

Rg ¼ ðN � 1
X

i

ðxi � �xÞ2Þ1=2
; ð3Þ

quantifying the average distance of units from the center of mass �x, where xi is the location

of unit i 2 {1, . . ., N}. Our previous study [39] revealed that the scaling law indeed is alge-

braic and that the exponent ν is (slightly) larger than for space filling aggregates (where

nSF ¼
1

3
¼ 0:3333 . . . in 3D) yet (far) smaller than for aggregates created through a self-avoid-

ing random walk (where nRW ¼
3

5
¼ 0:6 in 3D). That study found ν = 0.3916±0.0008 for

Fig 3. Final model aggregates. The final aggregates of the simulation for N = {5, 60, 100} display the expected compactness. The corresponding

networks are non-planar.

https://doi.org/10.1371/journal.pone.0229230.g003
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37162 proteins. For our smaller data set of 1122 proteins, we find νexp = 0.374±0.03, see Fig 4

for illustration.

To compare the spatial extent of model aggregates, i.e. graph-theoretically defined networks

of spheres, to biological proteins on the same footing, we first study how the network diameter

D compares to the radius of gyration defined through Eq (3). The graph diameter is defined as

the maximum number of links to be taken on the shortest link sequence (also referred to as

shortest simple paths) between any pair of units in the PRN. We find that D is strongly linearly

correlated with the spatial extent Rg of the PRN, Fig 4. Both the ensemble of biological proteins

and the model ensembles studied exhibit a roughly proportional dependence of D+ 1 on Rg,

with the slope obtained from the model data ( @

@Rg
D ¼ 0:777A

�� 1

) being lower and more

Fig 4. The network diameter D scales linearly with the radius of gyration Rg. This holds for both biological protein residue networks and simulated

model networks. Scaling the model link length to the average link length of the PRN (see text for details), yields a scaling of the graph diameter of model

networks within the experimentally observed range. The best fitting proportionality constant, however, differs, with @D
@Rg
¼ 0:942A�� 1

for experimental

data and @D
@Rg
¼ 0:777A

�� 1

for the model data.

https://doi.org/10.1371/journal.pone.0229230.g004
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precisely determined than that obtained for the PRNs ( @

@Rg
D ¼ 0:942A

�� 1

). As proportionality

factors do not affect the scaling, we thus also find

ðDþ 1Þ � Nn; ð4Þ

for both the PDB proteins and geometric-constraint model.

With the cutoff distance for the creation of networks chosen to be dc = 6.5 Å the resulting

average link length in the biological proteins becomes dmean� 5.066 Å, which in Fig 4 we

substituted for the unit length of our model simulations. In the PRNs the network diameters

are more dispersed. The lower bound of the experimental data fits well with the simulated

structures, suggesting geometric constraints as a major driving mechanism influencing the

spatial density during network formation.

Both ensembles show power-law scaling of the diameter. The exponent of νsim = 0.345±0.01

of the simulation is very close to the value of νexp = 0.374±0.03, measured in the PDB data. The

plots are shown in Fig 5. Simulations for heterogeneous systems where the radii of individual

units are drawn randomly from the uniform distribution on [1 − a, 1 + a] for a 2 {0.0, 0.1, 0.2,

0.3, 0.4, 0.5} increased the variance of the measurements for the radius of gyration, as expected.

We did not observe any significant bias in the averages such that the scaling relations stay the

same also for heterogeneous systems. The simulated results are found to align very well with

the lower bound of folded protein diameters, suggesting that much of the discrepancy (con-

stant factor shifting the measured results up in Fig 5) can be explained by the fact that the sim-

ulation only ceases to make new links when this is no longer geometrically possible. In real

proteins on the other hand interactions range from Van-der-Waals interactions to hydrogen

bonds and individual monomers vary in size and chemical properties and are subject to ther-

modynamic fluctuations. All this leads to larger gaps within the folded molecule and hence

larger diameters of the PRN’s.

Fig 5. Diameter scaling with chain length. (a) The diameter D of simulated and measured PRN’s scales according to Eq 4 with the chain length N. The

model results coincide with the lower bound of measured results, which we attribute to the fact that we fold maximally. (b) Matching the proportional

scaling relation between graph diameter D and radius of gyration (Fig 4) yields scaling relations between aggregate extent and chain length to be

statistically indistinguishable between model and real proteins. For both panels, we simulated 30 random dynamic realizations each for 48 aggregate

lengths N with logarithmically spaced between N = 3 to N = 398. The data displayed shows the network diameter averaged across realizations as a

function of chain length.

https://doi.org/10.1371/journal.pone.0229230.g005
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B. Distribution and scaling of Laplacian eigenvalues

Lastly we explore the scaling of the second largest eigenvalue of the graph Laplacian with N in

Fig 6 and find that it grows with N, approaching a saturation point of�15 for large N.

As two additional features roughly characterizing the dynamic properties of protein residue

networks, we consider the distribution and scaling of Laplacian eigenvalues. The Laplacian of

a network captures both its interaction topology and its relaxation and vibration properties

Fig 6. Model eigenvalue spectra of the graph Laplacian are similar to those of the PRN spectra. a) Histograms

P(EV) of eigenvalue spectra of PRN’s with N� 400 and rc = 6.5 Å compared to model output at N = 400. b) Second

largest eigenvalues EV2 grow in similar ways for simulation and data. All eigenvalues λ1, . . ., λN for an (NxN) Laplacian

matrix Ls im = As im − diagi(Aii) are computed using the routine provided by NetworkX [38]; the second largest

eigenvalue λ2 = EV2 of those is plotted in panel b.

https://doi.org/10.1371/journal.pone.0229230.g006
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[41, 42]. If the PRN were made only of the central Cα atoms, the Laplacian would exactly quan-

tify the networks vibrational and relaxational modes. As real PRNs are more complex, the

Laplacian spectrum can be taken as a proxy for oscillatory and relaxation dynamics.

Because the eigenvalue spectra intrinsically scale with graph size (here: chain length), we

have evaluated the spectra of simulated structures and PRNs of lengths of N = 400±30. Fig 6a

shows the histogram of eigenvalues for the 18 PRNs (red) in that length range, accumulating

all N eigenvalues for each of the 18 PRNs. For comparison, we computed 28 simulated struc-

tures (black), that fall in the same length range.

Both eigenvalue spectra exhibit a characteristic unimodal shape. The simulated structures

have a more symmetric, slightly broader spectrum with a peak at λ� 7, while the PRN’s have a

slightly sharper peak at λ� 8 and higher probabilities for very small eigenvalues. Similarly, the

second largest Laplacian eigenvalue exhibits the same qualitative scaling with chain length N
for PRNs and geometric-constraint model. The second largest eigenvalue of a network’s Lapla-

cian quantifies the time scale of its slowest relaxing mode; as such, its scaling with chain length

N indicates how intrinsic relaxation time scales change due to the aggregates becoming larger.

The spectra and equally the scaling of the second largest eigenvalues are not indistinguish-

able between model and biological protein data yet overall exhibit similar properties. Whether

or not spectra of model ensemble and PRN ensemble actually agree or disagree cannot be con-

cluded without doubt from the data available, both because at (exactly) fixed chain length N
there typically is no, one, or only very few proteins available in the real protein data set and

because the model realizations at fixed N yield very similar spectra due to chain homogeneity.

There is no unbiased way we know of to account for uncertainties in N and simultaneously

inhomogeneities in the chain units such that a unambiguous conclusion can be drawn.

IV. Discussion

In this article we have proposed a simple model of spatial network formation taking into

account geometric constraints only. Decoupling the constraints, that drive the folding process

(geometry, sequence and solution) and focusing on the geometry allows us insights into the

folding mechanisms behind the ensemble features. While this approach does not yield direct

predictive power to find the native state of a specific sequence it may narrow down the land-

scape of possibilities.

We find that geometrically constrained random linking already leads to strong similarities

of the resulting structures with protein residue networks in biology. Generalizing a 2D model

of purely graph-theoretical network formation presented in [39] to 3D, the model is based

upon random link additions with geometric constraints. As the topological shortcut is no lon-

ger possible, the geometric constraints are simulated directly. The simulation results were then

compared to protein residue networks (PRN’s), choosing the threshold such that the mean

degrees of simulation results and PRN’s matched. As a result, the degree distributions are

within the error margins of each other.

The network diameter is linearly related to the radius of gyration in both simulation and

data and matches when the simulation results are correctly scaled with the mean connection

lengths. The network diameter scales with the chain length as a shifted power law with an

exponent of νsim = 0.345±0.01, which is in agreement with value of νexp = 0.374±0.03, measured

in PRN’s. As in 2D, this is slightly less than space filling.

Furthermore, we have studied the Laplacian eigenvalue spectrum and the scaling of the sec-

ond largest eigenvalue with system size, finding that the two systems are compatible. Using the

findings from [41, 42] we can infer that the structure of vibrational modes and relaxation prop-

erties produced by the model are similar to those found in biological proteins.
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These results can be taken as an indication that geometric constraints may be a mechanism

behind the scaling behaviour of real protein structures, generating an ensemble also compati-

ble on degree distribution and Laplacian spectrum. Further research, however, is necessary to

determine how far the structural similarity reaches. For example by comparing further topo-

logical characteristics of PRN’s vs. model simulations. If the analogy persists, the model could

be extended to allow simple sequence features, such as hydrophobicity to attempt to get a sim-

pler predictive model. This may give insights into the folding process, that are otherwise lost in

simulation complexity.

Taken together, the above results indicate that coarse ensemble properties of protein ter-

tiary structures are already induced by geometric constraints alone such that only finer scales

of the folded structures of individual proteins may be controlled by the details of their amino

acid sequences. Such simple models provide a new angle of analyzing protein structures at the

coarse scale of ensembles and may help understand core mechanisms underlying the complex

folding processes.
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