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Ride-sharing services may substantially contribute to future sustainable mobility. Their collective
dynamics intricately depend on the topology of the underlying street network, the spatiotemporal demand
distribution, and the dispatching algorithm. The efficiency of ride-sharing fleets is thus hard to quantify and
compare in a unified way. Here, we derive an efficiency observable from the collective nonlinear dynamics
and show that it exhibits a universal scaling law. For any given dispatcher, we find a common scaling that
yields data collapse across qualitatively different topologies of model networks and empirical street
networks from cities, islands, and rural areas. A mean-field analysis confirms this view and reveals a single
scaling parameter that jointly captures the influence of network topology and demand distribution. These
results further our conceptual understanding of the collective dynamics of ride-sharing fleets and support
the evaluation of ride-sharing services and their transfer to previously unserviced regions or unprecedented

demand patterns.
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Traditional forms of human mobility from pedestrian to
private car traffic and air travel exhibit a range of collective
dynamical phenomena including freezing by heating,
congestion, traffic flow oscillations, and perturbation
spreading [ 1-7]. Nonlinear dynamics and statistical physics
have substantially contributed to identifying many of these
phenomena and to providing a better understanding of the
mechanisms underlying them as well as their relations to
other collective dynamics [3—12].

However, mobility is currently becoming more and more
digitized such that the mobile agents—humans and
vehicles—interact in new, increasingly complex ways.
Ride-sharing platforms [13] constitute paradigmatic exam-
ples of such networked mobility services (Fig. 1). Each
traveler requests a ride from a desired origin to a desired
destination at a certain time. The service provider assigns
the request to one out of a large fleet of ride-sharing
vehicles, such as minibuses. The routes of these vehicles
are dynamically updated to simultaneously satisfy the
spatiotemporal constraints of all previously assigned
passengers, the vehicles themselves, and the new request.
Such on-demand assignment of passengers to vehicles and
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the simultaneous multivehicle routing [14—16] drastically
increases the complexity of ride-sharing platforms beyond
those of traditional line-based, fixed-schedule public
transport or simple taxi services. Recent studies [17-21]
have characterized the economic feasibility and the
theoretical potential of optimal ride-sharing services based
on the spatial distributions of simultaneous requests. Yet,
how efficient the dynamics of ride-sharing fleets may be, is
not well understood. Estimating service performance across

FIG. 1. Ride sharing combines similar trips to fewer vehicles.
(a) Private car traffic and traditional ride-hailing services (e.g.,
taxis) serve every request individually (one color for each request,
start and end point marked by disks and crosses, respectively).
(b) Ride-sharing services reduce the total distance driven by
combining similar requests. In the illustrative sketch, five
requests are served by two vehicles, one serving three requests
(blue), one serving two (red), exploiting substantial overlap of the
respective routes.
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regions, various street network topologies and demand
conditions requires an objective and transferrable measure
of ride-sharing efficiency that makes services comparable
across different settings.

Here, we introduce a quantitative measure of efficiency
of on-demand ride-sharing fleets based on their collective
nonlinear dynamics and reveal its universal scaling across
network topologies. Combining direct numerical simula-
tions and a mean-field analysis, we estimate the functional
form of a universal scaling function asymptotically for
large fleet sizes. The analysis uncovers a single scaling
parameter that simultaneously captures the influence of the
demand pattern and the topology of the street network.

The collective dynamics of a ride-sharing service cru-
cially depends on three factors: (i) the topology of the street
network, (ii) the demand distribution, i.e., the distribution
of origin and destination of all requests in space and time,
and (iii) the dispatcher algorithm that plans the routes of all
B ride-sharing vehicles (buses), dynamically updating these
routes to serve all incoming requests. Here, we focus on the
impact of the topology of the street network on the
efficiency of ride sharing, evaluating ride-sharing dynamics
on various empirical and model street networks. The
demand distribution naturally enters as it modifies the
importance of specific nodes and edges of the network and
thereby the effective topology created by the vehicles’
driving patterns.

To compare the collective dynamics of the ride-sharing
fleet across topologies, demand patterns, request rates A,
fleet sizes B, and characteristic bus velocities v, we
introduce a dimensionless parameter

x:%/l, (1)

where (/) is the average distance of requested trips on a
given topology. This effective system load x describes the
ratio of requested trip distance (/)A per unit time and the
total bus driving distance vB per unit time. A longer
average trip length (/) implies that buses are busy with
individual requests longer and the effective load is higher.
Increasing the driving velocity v or the number B of buses
reduces the load per bus. If x <1, all requests can
theoretically be served one by one (e.g., by taxis with
one passenger seat), if x > 1 ride sharing becomes neces-
sary as buses cannot cover the requested distance with trips
serving passengers individually.

To isolate the impact of the network topologies, we first
consider the simplest setting: we take requests to be
generated by a Poisson process of rate 1 and the origins
and destinations of all trips to be independently and
uniformly distributed among the nodes of an undirected
street network with buses that do not reach their passenger
capacity. We further consider a basic dispatcher that
minimizes the arrival time of a passenger at their

destination without delaying previously assigned passenger
trips or reshuffling passengers among buses. All results
presented in this work stay qualitatively the same under
substantially more general conditions, including correlated
and asymmetric demand distributions, directed street net-
works, and different dispatchers (see Supplemental
Material [22]).

What are suitable observables to quantify ride-sharing
efficiency? Instead of focusing on specific resources, such
as total fuel consumption, time of operation, or monetary
cost, we here evaluate efficiency based on the intrinsic fleet
dynamics. At any time, each bus of a ride-sharing service is
scheduled to serve a number C of passengers, including
passengers already on the bus as well as passengers
scheduled to be picked up in the future. As the load on
the system increases, more passengers per bus are sched-
uled and served. Figure 2 illustrates the scaling of the
average number of scheduled passengers (C) for various
model networks. If the number of scheduled passengers
exactly reflects the load on the system, i.e., per bus the fleet
serves (C) = x passengers at any given time, the system is
operating at ideal, i.e., maximal theoretically possible
efficiency. Consider, for example, the onset of ride sharing,
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FIG. 2. Scaling of the number of scheduled passengers mea-
sures ride-sharing efficiency. (a) Model networks with qualita-
tively different topologies: a minimal graph (N = 2, blue), a cycle
graph (ring, N = 25, green), a complete graph (N = 5, yellow), a
square lattice with periodic boundaries (torus, N = 100, blue), a
random geometric network (N = 100, red), and a Cayley tree
with degree 3 (N = 94, orange). (b) The average number of
scheduled passengers (C) grows linearly with the normalized
request rate x in the ride-sharing regime (x > 1), shown for the
different model networks each with B = 100 buses. Ride sharing
is easier in networks with few distinct shortest paths (e.g., ring,
green) and (C) is closer to the optimal service scaling (C) = x
(black dashed line). The colored lines indicate the expected
number of passengers, confirming the mean-field prediction from
the observed waiting and driving times, Eq. (6). (c) The scaling of
(C) converges to the optimal scaling as the number of buses is
increased, shown here for the torus network [blue in panels (a)
and (b)]. At constant normalized load x the number of requests
increases proportionally to the number of buses, thus also
increasing the number of similar trips that can be shared
efficiently.
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x =1: in the limit of perfectly efficient service, the
ride-sharing buses on average have exactly (C) = 1 pas-
senger scheduled at each time. In contrast, if the buses serve
individual requests less efficiently at a lower rate, they must
have (C) > 1 passengers scheduled. The deviation from the
ideal scaling (C) = x naturally measures the efficiency

E = lim (Q> B 2)

X—00 X

in terms of the intrinsic dynamics of the ride-sharing
system. Instead of measuring the total efficiency, measuring
the differential response to changes in load x defines the

susceptibility
a0 = (42)" 3)

of the networked system [23] describing the efficiency with
which the system handles additional requests. In the limit
of high load, the susceptibility becomes identical to the
efficiency,

E = lim #(x) (4)
due to the linear scaling of (C) for large x [compare
Figs. 2(b) and 2(c)].

Analyzing the efficiency across a broad variety of
street network topologies, ranging from one- and two-
dimensional lattices to random geometric graphs and from
star and other tree structures to all-to-all coupled networks,
we find quantitatively different dependencies on the
number of buses B [Fig. 3(a)].

Yet, the qualitative similarity of the efficiency curves
suggests an overarching scaling feature that holds across
topologies. Indeed, rescaling the number of buses by a
factor By, such that E(B,/,) = 1/2, yields a universal

scaling
B
E=fl—]|. 5
f<Bl/2> G)

of the efficiency with the number of ride-sharing buses
across topologies. As a consequence, for large B the
efficiency curves collapse onto a single scaling function
() [Fig. 3(b)]. We note that this collapse not only occurs
in the limit B — oo where E = 1, but equally holds for
smaller B until the efficiency is as small as E(B) = 107! or
below. We find the same original diversity [Fig. 3(a) inset]
and universality after rescaling [Fig. 3(b) inset] for empiri-
cal street networks of cities of different sizes and densities,
rural areas, and islands served with a different dispatcher,
see Supplemental Material [22] for more details. The
emergence of universality is insensitive against varying
system details and holds across a range of request
distributions with uncorrelated and correlated as well as
symmetric and asymmetric origin-destination pairs (see
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FIG. 3. Topological universality of ride-sharing efficiency.
(a) The ride-sharing efficiency E [Eq. (2), evaluated at
x =7.5] measured by the deviation from the optimal scaling
(C) = x of the number of scheduled passengers in qualitatively
different model networks (compare Fig. 2). The quantitative value
of the efficiency varies strongly across the different topologies
while the qualitative behavior is similar. In smaller networks with
overlapping shortest paths the maximum efficiency E =1,
denoting optimal service, is easier to reach. (b) The ride-sharing
efficiency collapses to a universal efficiency function f(B/B; ;)
[Eq. (5)] across all model networks. (Insets) We find the same
qualitative behavior and topological universality across qualita-
tively different empirical street networks (cities, islands, rural
areas): The ride-sharing efficiency collapses to a universal scaling
function f(B/Bj ;) for large B. Here, the ride-sharing efficiency
E was evaluated at lower x = 2.5 and with a dispatcher that
allows some delay of already scheduled requests to enable short
detours in the heterogeneous street networks. We remark that the
scaling functions for the model networks (main panels) and the
empirical street networks, although they have similar shape, are
slightly different because of two different dispatchers serving the
requests, see Supplemental Material [22] for more details.

Supplemental Material [22]). Thus, this topological uni-
versality captures the influence of the topology of the street
network and demand distribution in a single scaling
parameter B;/, explaining most of the variability of the
efficiency. Moreover, the scaling function f(-) changes
across dispatchers, such that the rescaled efficiency func-
tion offers an objective and transferrable measure to
compare the efficiency of ride-sharing dispatchers.

How does the scaling function f(-) relate to the observ-
ables of the ride-sharing dynamics? The number of
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scheduled passengers (C), averaged in a stationary operat-
ing state, is directly related to the average waiting time
(At,,) until pickup and the average driving time (At,)
between pickup and dropoff of an individual passenger.
During the average service time of a passenger between
request and dropoff at the destination, (A7) = (Ar,) +
(At,), the bus is assigned new requests at an average rate
A/ B, thus on average scheduling a total of A(Az,)/B new
requests. On average, at the time that passenger leaves the
bus, only those new requests are still to be served while the
older ones have been delivered before. The average number
of scheduled passengers (C) is therefore equal to the
average number of requests scheduled during the service
time,

(€)= (M) £ == (A1) + (An,).  (6)

| >

Here, we denote the natural timescale in the system as
7 = (l)/v, describing the average direct travel time that
would arise by an instantly available taxi ride. Similarly, we
can estimate the average occupancy related to the driving
time as (O) = (x/7)(At,).

We derive the scaling of the efficiency curve from that of
(C) asymptotically for large fleet size B — oo [compare
Fig. 2(c)] and for large x > 1, i.e., close to the perfect
service limit as in the definition of ride-sharing efficiency,
Eq. (2). For suitable asymptotically efficient ride-sharing
dispatchers, the delay due to detours disappears as B — oo,
such that

(Aty) ~7 x B® (7)

to leading order in B.

For ideal service efficiency, the waiting time is deter-
mined by the number of buses going directly from the
origin to the destination of a request. When there are
sufficiently many buses in the network, multiple buses
drive along each shortest path in the network.
Consequently, the waiting time decays to zero inversely
proportional to the number of buses, as B! for large B.
A proportionality factor y reflects the characteristic number
of buses at which the average waiting time matches the
system-intrinsic timescale . We thus obtain

(At,) ~y7B”! (8)

asymptotically as B — oo. Substituting Egs. (8) and (7) into
Eq. (6) yields

() x(r+yrB—1)—x<1+1), 9)

~ —
T

and therefore

1
1+z7!

E~f(z) = (10)

as z — oo. We directly identify z = B/y and thus y = B, ),
as the number of buses required to reach half efficiency
(comparing well to simulation results, see Supplemental
Material [22], Fig. S2). We remark that the above derivation
of Eq. (10) includes the effect of the request distribution on
the scaling factor by calculating the characteristic trip
length (/) as a weighted average with respect to the request
distribution.

The scaling factor B/, reflects the difficulty of ride
sharing for the given network topology and given request
distribution. In networks with many overlapping shortest
paths between different pairs of nodes (e.g., the cycle
graph), rides can be shared easily without additional
detours and B/, is small. In networks with many distinct,
nonoverlapping shortest paths (e.g., trees), sharing rides
more likely requires detours, making it less efficient.
Consequently, By, is large for these networks.

The above derivation together with additional numerical
results (see Supplemental Material [22]) demonstrate the
degree of robustness of the observed scaling law. The
topological universality extends to nonuniform demand
distributions via its dependence on the average trip length
(1) and a slightly modified scaling factor B ,, reflecting the
modified distribution of buses on the network. Similarly,
different dispatcher algorithms or additional constraints
such as a limited vehicle capacity do not qualitatively
change the scaling law, provided the system is operating in
the high efficiency regime where the asymptotic scaling in
the above derivation holds [compare Fig. 3(b), see also
Supplemental Material [22] ].

Yet, by its very nature, the universality across topologies
cannot hold across arbitrary services and conditions. For
instance, if the ride-sharing fleet itself generates the
majority of the traffic in a city, congestion and thereby
the characteristic driving velocity » will explicitly depend
on the request rate A and the number of vehicles B.
Moreover, our derivation of the scaling assumes an asymp-
totically constant driving time and a waiting time scaling as
B~! for large B. This states a simple dimensional scaling
expected for a range of suitable dispatchers, including
optimization algorithms currently employed in ride-sharing
services. However, this scaling may be different in systems
that are operating close to their capacity limit or with
strongly heterogeneous parameters. Understanding how,
why, and under which conditions the topological univer-
sality breaks down may provide insights toward enabling
the design of more robust or optimized ride-sharing
systems capable of operating efficiently across these differ-
ent settings.

Previous work by Tachet et al. [19] found universal
scaling of the potential shareability of pairs of empirical
ride requests in different cities with increasing request rate
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without explicit reference to positions or dispatching of
vehicles. In contrast, we observe universal scaling of ride-
sharing efficiency as a function of the fleet size in a
dynamic model with direct simulation of vehicle routes.
The existence of universal scaling in both cases may
suggest a more fundamental universality across shared
mobility processes on networks, for example mediated by
the overlap of (shortest) paths that enable sharing rides
without detours. Understanding this deeper connection may
help to further improve our theoretical insights into the
complex dynamics of ride sharing.

The system-intrinsic efficiency measure as well as its
topological universality presented here may provide valu-
able insights into the nonlinear collective dynamics of
ride-sharing fleets on topologically distinct street net-
works and offer a complementary approach to conven-
tional efficiency measures. The universality supports the
consistent evaluation of ride-sharing efficiency and fea-
sibility under a broad variety of conditions across cities
and rural areas of different sizes, densities, and with
qualitatively different street networks and demand dis-
tributions [17,19]. This may help to identify network
and demand structures as well as service conditions that
promote efficient ride sharing as well as enable the
topological optimization of stop locations or the predic-
tion of required fleet sizes in previously unserviced areas.
Moreover, variations of the scaling across dispatcher
algorithms may help compare dispatchers for given con-
ditions. The results may thus not only enable improved
planning of ride-sharing fleets under untested conditions,
but also the use of data-driven automated methods to
select suitable dispatcher algorithms and service param-
eters by making data from different settings comparable,
cf. [24]. Overall, the results underline the potential of
analyses of the collective dynamics of modern, networked
forms of mobility.

We thank Debsankha Manik, Jan Nagler, Nils Beyer,
Stephan Herminghaus, Jani-Pekka Jokinen, and Verena
Krall for helpful comments and fruitful discussions. We
thank Robin Zech for help with additional simulations.
This research was supported by the German Research
Foundation (Deutsche Forschungsgemeinschaft, DFG)
through the Center for Advancing Electronics Dresden
(cfaed) and the European Fund for Regional Development
(ERDF/EFRE) through the state of Lower Saxony, and the
Max Planck Society.

[1] D. Helbing, I.J. Farkas, and T. Vicsek, Freezing by Heating
in a Driven Mesoscopic System, Phys. Rev. Lett. 84, 1240
(2000).

[2] I. Karamouzas, B. Skinner, and S.J. Guy, Universal Power
Law Governing Pedestrian Interactions, Phys. Rev. Lett.
113, 238701 (2014).

[3] A. Loder, L. Ambiihl, M. Menendez, and K. W. Axhausen,
Understanding traffic capacity of urban networks, Sci. Rep.
9, 16283 (2019).

[4] D. Li, B. Fu, Y. Wang, G. Lu, Y. Berezin, H. E. Stanley,
and S. Havlin, Percolation transition in dynamical traffic
network with evolving critical bottlenecks, Proc. Natl.
Acad. Sci. U.S.A. 112, 669 (2015).

[5] G.Zeng, D.Li, S. Guo, L. Gao, Z. Gao, H. E. Stanley, and S.
Havlin, Switch between critical percolation modes in city
traffic dynamics, Proc. Natl. Acad. Sci. U.S.A. 116, 23
(2019).

[6] A. Gautreau, A. Barrat, and M. Barthélemy, Arrival time
statistics in global disease spread, J. Stat. Mech. (2007)
L09001.

[7] D. Brockmann and D. Helbing, The hidden geometry of
complex, network-driven contagion phenomena, Science
342, 1337 (2013).

[8] D. Chowdhury, L. Santen, and A. Schadschneider, Statis-
tical physics of vehicular traffic and some related systems,
Phys. Rep. 329, 199 (2000).

[9] D. Brockmann, L. Hufnagel, and T. Geisel, The scaling laws
of human travel, Nature (London) 439, 462 (2006).

[10] M. Saberi, H.S. Mahmassani, D. Brockmann, and A.
Hosseini, A complex network perspective for characterizing
urban travel demand patterns: Graph theoretical analysis of
large-scale origin—destination demand networks, Transpor-
tation 44, 1383 (2017).

[11] S.M. Krause, L. Habel, T. Guhr, and M. Schreckenberg,
The importance of antipersistence for traffic jams,
Europhys. Lett. 118, 38005 (2017).

[12] W. Staffeldt and A. K. Hartmann, Rare-event properties of
the Nagel-Schreckenberg model, Phys. Rev. E 100, 062301
(2019).

[13] M. Furuhata, M. Dessouky, F. Ordéiez, M.-E. Brunet, X.
Wang, and S. Koenig, Ridesharing: The state-of-the-art and
future directions, Transp. Res. B 57, 28 (2013).

[14] A. Sorge, Towards a statistical physics of collective mobility
and demand-driven transport, Ph.D. thesis, Georg-August-
Universitit Gottingen, 2017.

[15] A. Sorge, D. Manik, S. Herminghaus, and M. Timme,
Towards a unifying framework for demand-driven directed
transport (D3T), in Proceedings of the 2015 Winter Sim-
ulation Conference (IEEE Press, New York, 2015),
pp- 2800-2811.

[16] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli,
and D. Rus, On-demand high-capacity ride-sharing via
dynamic trip-vehicle assignment, Proc. Natl. Acad. Sci.
U.S.A. 114, 462 (2017).

[17] P. Santi, G. Resta, M. Szell, S. Sobolevsky, S. H. Strogatz,
and C. Ratti, Quantifying the benefits of vehicle pooling
with shareability networks, Proc. Natl. Acad. Sci. U.S.A.
111, 13290 (2014).

[18] J.-P. Jokinen, On the welfare optimal policies in demand
responsive transportation and shared taxi services, J. Transp.
Econ. Policy 50, 39 (2016), https://www.ingentaconnect
.com/content/lse/jtep/2016/00000050/00000001/art00004.

[19] R. Tachet, O. Sagarra, P. Santi, G. Resta, M. Szell, S. H.
Strogatz, and C. Ratti, Scaling law of urban ride sharing,
Sci. Rep. 7, 42868 (2017).

248302-5


https://doi.org/10.1103/PhysRevLett.84.1240
https://doi.org/10.1103/PhysRevLett.84.1240
https://doi.org/10.1103/PhysRevLett.113.238701
https://doi.org/10.1103/PhysRevLett.113.238701
https://doi.org/10.1038/s41598-019-51539-5
https://doi.org/10.1038/s41598-019-51539-5
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1419185112
https://doi.org/10.1073/pnas.1801545116
https://doi.org/10.1073/pnas.1801545116
https://doi.org/10.1088/1742-5468/2007/09/L09001
https://doi.org/10.1088/1742-5468/2007/09/L09001
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1038/nature04292
https://doi.org/10.1007/s11116-016-9706-6
https://doi.org/10.1007/s11116-016-9706-6
https://doi.org/10.1209/0295-5075/118/38005
https://doi.org/10.1103/PhysRevE.100.062301
https://doi.org/10.1103/PhysRevE.100.062301
https://doi.org/10.1016/j.trb.2013.08.012
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1403657111
https://doi.org/10.1073/pnas.1403657111
https://www.ingentaconnect.com/content/lse/jtep/2016/00000050/00000001/art00004
https://www.ingentaconnect.com/content/lse/jtep/2016/00000050/00000001/art00004
https://www.ingentaconnect.com/content/lse/jtep/2016/00000050/00000001/art00004
https://doi.org/10.1038/srep42868

PHYSICAL REVIEW LETTERS 125, 248302 (2020)

[20] M. M. Vazifeh, P. Santi, G. Resta, S. H. Strogatz, and C. [23] D. Manik, M. Rohden, H. Ronellenfitsch, X. Zhang,

Ratti, Addressing the minimum fleet problem in on-demand S. Hallerberg, D. Witthaut, and M. Timme, Network

urban mobility, Nature (London) 557, 534 (2018). susceptibilities: Theory and applications, Phys. Rev. E
[21] S. Herminghaus, Mean field theory of demand responsive 95, 012319 (2017).

ride pooling systems, Transp. Res. A 119, 15 (2019). [24] A.P. Riascos and J.L. Mateos, Networks and long-range
[22] See  Supplemental ~Material at  http://link.aps.org/ mobility in cities: A study of more than one billion taxi trips

supplemental/10.1103/PhysRevLett.125.248302 for addi- in New York City, Sci. Rep. 10, 4022 (2020).

tional details on analytics and data.

248302-6


https://doi.org/10.1038/s41586-018-0095-1
https://doi.org/10.1016/j.tra.2018.10.028
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.248302
https://doi.org/10.1103/PhysRevE.95.012319
https://doi.org/10.1103/PhysRevE.95.012319
https://doi.org/10.1038/s41598-020-60875-w

