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Abstract
The “eld of bio-inspired computing has established a new Frontier for conceptualizing information
processing, aggregating knowledge from disciplines as different as neuroscience, physics, computer
science and dynamical systems theory. The study of the animal brain has shown that no single
neuron or neural circuit motif is responsible for intelligence or other higher-order capabilities.
Instead, complex functions are created through a broad variety of circuits, each exhibiting an
equally varied repertoire of emergent dynamics. How collective dynamics may contribute to
computations still is not fully understood to date, even on the most elementary level. Here we
provide a concise introduction to bio-inspired computing via nonlineardynamical systems. We
“rst provide a coarse overview of how the study of biological systems has catalyzed the
development of arti“cial systems in severalbroad directions. Second, we discuss how
understanding the collective dynamics of spikingneural circuits and model classes thereof, may
contribute to and inspire new forms of •bio-inspired• computational paradigms. Finally, as a
speci“c set of examples, we analyze in more detail bio-inspired approaches to computing discrete
decisions based on multi-dimensional analogue input signals, viak-winners-take-all functions.
This article may thus serve as a brief introduction to the qualitative variety and richness of
dynamical bio-inspired computing models, starting broadly and focusing on a general example of
computation from current research. We believe that understanding basic aspects of the variety of
bio-inspired approaches to computation on the coarse level of “rst principles (instead of details
about speci“c simulation models) and how they relate to each other, may provide an important
step toward catalyzing novel approaches to autonomous and computing machines in general.

1. Introduction

Biological information processing systems are multi-scale, ranging from systems of a few molecules and sin-
gle cells to large neural networks (NNs). Complex NNs, such as in the animal brain, can perform a broad
range of information processing tasks [1]. By integrating multi-dimensional sensory signals with memory,
they generate complex self-organized behaviors, often also integrating past experiences in seemingly unrelated
“elds. Even though these natural dynamical systems operate in continuous-time, often in continuous-state
(analog) and in intrinsically noisy environments, they are capable of performing robust parallel computations.
Understanding neuronal networks and basic mechanisms underlying their dynamics thus provide a formidable
opportunity to unveil new architectures for arti“cial computing machines.

Over the past decades, an increasing number of studieson arti“cial systems attempting to remodel or out-
perform related biological systems has been developed across subjects, from mathematics and physics [1…4] to
computer science and engineering [5…7]. Some already drive the latest information revolution via a paradigm
of machine learning (ML) [8]. ML approaches provide ways to explore large data sets for classi“cation or
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regression, and, more interestingly, to “nd solutions to computational tasks in an unsupervised manner (with-
out human intervention) by exploiting various correlations of provided data, even if they are not apparent to
a trained human. Another example is dedicated arti“cialintelligence, where machines extract probabilities of
future events based on innumerable examples, culminating on computers beating the best humans in games
with incredible numbers of con“gurations as chess [9] and, later, the GO games [10].

Even though powerful, broadly used ML approaches only exploit a few features of biological systems, such
as parallel and distributed computation, mostly on feed-forward architectures. In contrast, biological NNs
exhibit a wide variety of neurons, neural and communication features and network architectures [11…13],
exploiting an equally large variety of emergent dynamics to compute. Their study has already unveiled a vari-
ety of new bio-inspired approaches to computation, such as long-term memory models [14], computation
via precise spike timings [15] or complex trajectories in state space [16…20], signal processing via nonlinear
recurrent interactions [21] and neural plasticity driven approaches to robotics [22] and computer vision [23].
Even though these are not broadly developed or adopted, core aspects of them may in time prove essential, as
for ML after the advent of large unlabeled data sets. Some of the most intriguing approaches exploit dynam-
ical systems to compute and take advantage of dynamics of pulse-coupled systems that communicate only at
discrete instances in time, to ef“ciently exploit the time domain.

In this article, we focus on the value of studying the dynamics of biological neural systems and basic mod-
els of them to characterize fundamental computing features with potential applications in arti“cial systems.
We “rst provide a short overview on novel and prominent bio-inspired approaches to computation such as
layered NNs [8], pattern generators [24] and reservoir computing (RC) [21] to emphasize their complemen-
tarity and show that basic theoretical work on “eldslike biology and cognition may yield applications and
implementations with high impact; second, we discuss the role of spiking neurons [25, 26] and their poten-
tial for unveiling and implementing novel computational paradigms; “nally, we present in more detail the
main dynamical systems• approaches to discrete decisionmaking for the speci“c instance of winner-takes-all
(WTA) computations [27]. In particular, we consider in depth two collective dynamics underlying computing,
one based on heteroclinic dynamics [20, 28] and one on state-dependent inhibitory coupling [29], opening up
a pathway toward arbitrarily complex information processing via WTA computation.

2. Bio-inspired perspectives on computation

Bio-inspired computation is a much older “eld than the latest wave of ML may suggest. Differently from the
problem-solving direction of recent research, its “rststeps were more concerned with understanding the under-
lying mechanisms of neural systems [30, 31], such as the fundamentals of neuronal activity [32] and memory
formation [33], and attempted, with different levels of success, to provide an understanding of cognition
involving language and memory [34]. The “eld now known as connectionism [35] provided an alternative
to more traditional symbolic approaches to model and study cognition [31], offering a functional approach
instead. The basic idea is: if we can create arti“cial NNs with a certain level of detail, modeling a given neural
circuit, we could in principle observe the emergence of discrete patterns of activity which match the behavior
or measured neuronal activity in biological systems, thusproviding insights on their underlying mechanisms.
A seminal result related to computation has been achieved early from analyzing simple threshold neurons and
networks of such units, now known as perceptron networks [36]. Such units exhibit binary outputs de“ned
via a simple threshold. If the input signal is strong enough, the output is one; if not, it is zero. Due to their
mathematical tractability, perceptrons and systems of threshold units received broad interdisciplinary interest,
from biology and cognitive science to exact sciences.

The original perceptron consists of a two-layer network, one input layer and one output layer. Informa-
tion is encoded in the strength (or weights) of the connections between both layers. The generalization of
the perceptron architecture, known as multi-layeredperceptrons includes hidden layers between the input
and output layers and allow, in principle, for the encoding of any function [30]. These layered networks are
the precursors of modern ML approaches, as they differ from modern systems mostly regarding the larger
number of layers and the learning rules employed rather than the fundamental architecture: simple nodes dis-
tributed in layers with multiple interconnections in a forward direction, see “gure1(b). Later, the introduction
of the back-propagation algorithms [37] provided the mathematical foundations for teaching desired associa-
tions in deeper networks (many layers), what was not possible, in general, before. Among the many variations
and improvements on this combination of architecturean learning rules, a foundational example is the back-
propagation through time algorithm [38], which provides a way to codify time varying information in certain
recurrent networks, with a similar approach as to layered networks.

In complementary architectures with recurrent connectivity, dynamical systems theory combined with
insights from neuroscience has been used for classi“cation or function approximation. For example, two
equivalent dynamical systems approaches were proposed independently by Maass and Jaeger, termed liquid
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Figure 1. Examples of network architectures underlying various computing paradigms. (a) Schematic generic architecture
underlying a computation. Inputs are processed by a network that generates or updates an output state. (b) In layered networks,
forming the basis of standard perceptrons as well as deep learning paradigms. There are only forward connections from any layer
to the next. (c) In a recurrent network, signals are sent also backwards via feedback connections, such that various collective
dynamics may emerge. (d) RC (random) networks are coupled to an output layer, the readout weights, yet not the internal
weights, are adapted during a training phase. (e) A pattern generator transforms a low-dimensional input to a higher-dimensional
one (possibly also exploiting the time domain). (f) In a conceptor network not only a standard input is used to activate a pattern,
but inputs from (lateral) conceptor nodes that adapt recurrent connection strengths (dashed lines).

state computing [39] and echo state machines [40, 41], respectively. Both paradigms combined the intrinsic
memory of recurrent networks with the well established learning algorithms for layered networks. Today, the
uni“ed theory is called RC [21]. In this computing paradigm, a recurrent network (“gure1(c)) with random
connectivity is inserted between the inputs and a (typically) shallow output network (few layers), see “gure
1(d). The reasoning is that the recurrent network provides memory to the system and due to the many, typ-
ically nonlinear internal interactions, the system calculates random features of the original signal, therefore,
enriching it (similarly to kernel machines). The classi“cation or regression process is then performed over
this enriched signal with learning occurring only at the shallow, often single-layer, output network. RC, thus,
not only provides a natural way of applying standard ML algorithms to time-varying inputs, but also requires
learning only relatively few parameters of the shallow network, thus reducing learning resources, in particular
learning times. Overall today, RC is a maturing “eld that has already been implemented in customized hard-
ware, including electronics [42] and the combinations of electronics and optical system [42…44], potentially
on pair with state-of-the-art digital realizations, e.g. in speech recognition [45].

Early research on recurrent networks also laid the foundations to long term memory models [14]. Such
early research demonstrated on the network level (nodes and connections) how reinforcement learning [33],
as envisioned in animal models, can create memories represented as (stable) attractors of a dynamical system.
The seminal works of Hop“eld [14] and Hebb [33] provided the fundamental ideas on how a neural system
can learn via examples by reinforcing connections between neurons that are often concurrently active. These
works had a large impact on a variety of “eld, from biology to applied computer science, with many spinoffs
and variations on the topic. Attractor networks have a downside, though. As the relevant states are stable,
switching between two states becomes non-trivial from a dynamical systems perspective. In short, one must
either strongly move the state of the system in state space or directly reset it, both radical interventions likely
far from a biological systems approach.

Conceptors [46] constitute a recently developed dynamical approach to control the activity of NNs origi-
nally exhibiting stable attractors. Consider a NN encoding a given stable attractor. To encode the attractor, a
learning algorithm must have made some connections in the network stronger and some weaker. A conceptor
neuron associated to this attractor is simply an external neuron that, when active, would amplify such effect,
making the same connections either stronger or weaker, thus highlighting the speci“c attractor, see “gure1(f).
If a set of attractors is encoded in the same network with an associated set of conceptors, it may be possible to
seemingly turn on and off any given attractor, as desired and controlled by the conceptor neuron(s). Moreover,
by controlling the intensity with which a set of conceptor neurons in”uences the dynamics concurrently, it is
possible to •interpolate• attractors, to generate smooth transitions between network states, as one conceptor is
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slowly turned off while another is slowly activated. Conceptors, thus, serve as a bio-inspired control systems
for dynamical NNs with potential applications, for instance in controlling locomotion modes for robotics, or
more generally switching between states in abstract NNs.

Another interesting subject in bio-inspired computing is periodic activity created by pattern generator sys-
tems, with applications to locomotion systems. In biology, central pattern generators play a fundamental role
executing complex high-dimensional activity patterns in response to more abstract lower dimensional signals
from the motor cortex [47]. They encode high-level decisions, for example •move forward•. The moving order
may be represented in neural activity as simple as the activation of a single neuron, while the movement itself
may require a complex pattern that centrally, i.e. from one network, coordinates the movement of multiple
muscles in multiple limbs. Works on dynamical arti“cial pattern generators have shown how small recurrent
NN (“gure 1(e)), exhibiting either emergent synchronization patterns [24, 48] or controllable chaos [49], can
be exploited to generate complex motions adequate undera variety of conditions, e.g. slow or fast gates, walk-
ing or swimming patterns or even self-untrapping. Arti“cial central pattern generators, thus, may become, in
time, essential contributors in robotic applicationsas autonomous agents, because demand for automation
and the complexity of automated tasks are ever increasing.

The small sample of computing paradigms above already shows how bio-inspired paradigms can be
remarkably complementary. While ML networks are trained to identify features in their raw input signals,
resembling (in broad strokes) the cortex, recurrent networks model memory storage and recall via stable
attractors and pattern generators can provide a rich variety of locomotion modes with simple dedicated NNs.

In the next sections, we will “rst discuss how spiking neurons may help to unveil new computing paradigms
by exploiting the time domain and later, in more depth, the speci“c topic of discrete decision-making modeled
as a WTA computation performed by spiking NNs.

3. Spiking neurons and spiking NNs

A prominent mark of bio-inspired computing is theuse of NNs, with a strong emphasis on the coupling
network. The neuronal models broadly used are simple functions, similar to the original McCulloch and Pitts
model [32]. The resemblance to a neuron is relegated to the summation of inputs from (potentially) many
nodes, in contrast to its single-variable output state. Spiking neurons [25], even though less prominent, may
have a much larger potential for computation, because they can encode information concurrently in space and
on the time domain, yielding a variety of possible encoding schemes, includingprecise spike-timings [50…52]
and synchronization [20, 28, 53, 54].

The biological neuron is the fundamental building block in the animal nervous system. Its function has
been shown to be wildly varied, from simple information transmission, e.g. for muscle contraction, to the
direct computation of chemical concentration by receptor neurons. More complex computing processes in
the brain arise from emergent dynamics in networks of neurons rather than from single neurons alone. NNs
are complex systems in the sense that their global dynamical and thus computational characteristics cannot
be explained exclusively from the dynamics of their composing neurons. Nevertheless, different individual
neuronal properties play an essential role in the resulting network dynamics.

Neurons are varied in size, their functionality and even their chemistry. Broadly speaking, neurons are
subdivided into two main parts, the dendrites and body acting as the input sites and the axon transmitting the
output, see “gure1(a). The former is tasked, from a functional perspective, with receiving inputs from other
neurons and for initiating short-lasting electrical pulses called action potentials or spikes (“gure1(c)), the axon
delivers such pulses to other neurons. The physical connection between neurons called synapses, where axon
terminals contact dendrite or body of other neurons, come in two main variations: electrical and (electro-)
chemical. Electric connections act like a resistor and enable electrical currents to ”ow between two neurons
continuously in time, while electro-chemical ones, forexample in the human cortex, transmit electricity via
discrete discharges (spikes) of neural transmitter that change the conformation of proteins in the cell wall and
enable (or disable) the through”ux of ions triggered by action potentials. In these synapses, transmitter vesicles
in the presynaptic terminal face neural transmitter receptors in the post-synaptic neuron, maximizing their
effectiveness. The ”ow of ionic charges either further polarize the cell membrane potential (a characteristic of
an inhibitory connection) or depolarize it and the connection is called excitatory.

Mathematical neural models at different levels of detail play a fundamental role not only in applied “elds
but also for our understating of the basic functioning ofbiological systems. Even though highly detailed neural
models, e.g. compartment models, may provide insights on the functionality of small networks or of the neuron
itself, their effectiveness on understanding the broader functionality of large or intricately connected networks
is limited, mainly due to the large number of parametersand variables to considersimultaneously. Simpli-
“ed models, such as integrate-and-“re (IF) neuronal models drastically reduce the number of parameters
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Figure 2. Idealized and arti“cial neuron and their dynamics. (a) Main subdivisions of an idealized neuron: dendrites, body, axon
and terminals (•synapses•). (b) Schematic of an arti“cial neuron resembling a biological neuron. Multiple inputs and a single
output targeting several other neurons. (c) Sketch of the dynamics of a biological neuron. Inputs drive the voltage from the resting
potentialVrest until a threshold. At that point, an action potential is elicited, largely independent of future input. (d) Sketch of the
dynamics of an arti“cial neuron, for which the action potentialdynamics is replaced by a simple rule of spike emission and reset
upon threshold crossing.

describing a network. A generic IF network is de“ned as

dVi(t)
dt

= f (Vi) + Iext(t) + Inet(t), (1)

whereVi is a voltage-like variable,f(·) de“nes the internal dynamics of the neuron (typically a concave down
function), Iext(t) is an external driving current andInet(t) is the pulse interaction at timet. Moreover, a thresh-
old condition atVtr is set, such that ifVi(t) crosses the threshold from below, it is reset according toVi(t) := 0,
see “gures2(b)…(d). This reduced number of parameters may help to unveil fundamental features underlying
a given collective phenomenon, for example synchronization, balanced dynamics or more complex emergent
dynamics such as chaos and chimera states. The level of detail needed to study a given observed phenomenon,
thus, is a non-trivial matter and gradually removing details is an established approach to de“ne the suf“-
cient conditions for the model. In turn, understanding computation on biological systems may lead to new
paradigms and models for arti“cial computing. For example, IF neural models are often suf“cient to under-
stand many aspects of synchronization modes in arti“cial and biological systems. In the example above, one
main simpli“cation concerns the spike generation. Instead of modeling the fast rise in voltage follow by a fast
drop (the action potential), the spike generation is substituted by a simple rule: if a threshold is reached, a
pulse is sent and the voltage is reset to its base value. This simpli“cation drastically reduces computing time in
software and, due to the reduced model complexity, also simpli“es potential hardware implementations.

As paradigms of arti“cial computation (the focusof this work), spiking NNs follow the same Occam•s
razor principle •as simple as possible, but not simpler•, used to understand emergent dynamics, in order to
reduce architectural complexity while increasing functionality transparency. To date, a variety of computing
paradigms have been unveiled which rely on the pulsatile (spiking) nature of the dynamics of coupling yet not
on any precise form or model of spiking dynamics. From a single neuron perspective, spiking neurons may
either encode information in their precise spike times [15, 50], such that the information is only bounded
by the noise level and the precision of parameters, or in their average spike rate (rate models), expressing,
for example, chemical concentrations. Moreover, network-level phenomena support a variety of computing
paradigms involving emergent dynamics, including synchronicity modes, chaos and local spike rate variability,
some already mentioned in the previous section.

Arti“cial spiking neurons, thus, may provide an interesting substrate for new bio-inspired computing
paradigms, potentially combining simplicity with fundamental computing properties, as the signal integration
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Figure 3. A schematic representation of ak-WTA computing system. Analogue input signals� i are sorted into two groups, thek
strongest, represented by spikes (discrete pulses), and another ofN Š k weakest, represented by no spikes.k is selected or designed
via global parameters of the underlying spiking NN.

and discrete interactions. In the subsequent parts of this article, we review in some depth two implementations
of decision making viak-WTA emerging from two different collective dynamics emerging in spiking NNs.

4. Decision making via dynamical WTA computation

Biological systems are capable of performing high leveldiscrete decisions, e.g. •turn right•, •go ”y•, •eat
now•, or •rest•, based on high-dimensional analogue input signals that are integrated in real time. This high-
dimensionality is due, in great part, to the rich, multi-modal nature of the biological sensory systems. How
can (arti“cial) NNs or in general, coupled dynamical systems encode such functionality?

Promising options are systems implementing a mathematical operation called WTA, because they not only
exhibit discrete outputs given analogue inputs but also naturally emerge in a variety of dynamical systems.
Furthermore, independently of the system type, the number of discrete outputs increases combinatorially with
the number of units composing the underlying physical system, thus providing a large number of output
options (decisions) in rather small systems. WTA or, more generally,k-WTA overN real valued inputs is an
operation that calculates the partial rank order of inputs, sorting them into two sets, thekstrongest, andN Š k
weakest inputs, wherek � N is a system property (at given parameters), see “gure3. Thek-WTA function
is interesting, because it may serve as the basic building block for realizing or approximating any function
[27, 55].

In this section, we discuss and compare two different dynamical systems paradigms to implement this
function, namely heteroclinic computing [20] and dynamical inhibition [29], stressing their singular features
where appropriate. In both approaches, we will consider networks composed of IF neurons, because, even
though simple, they capture the two essential (and potentially advantageous) features of biological neurons,
namely, interaction via exchange of spikes (or pulses) and a nonlinear summation over incoming spike trains.
We remark that the essential mechanisms worked out below do not depend on these simpli“cations as we will
see.

Speci“cally, in both paradigms, we analyze networks ofoscillatory leaky-IF neurons with all-to-all connec-
tions (no self-coupling and thus loops). Each neural uniti � { 1,. . . ,N} exhibits a voltage-like state variable
xi satisfying the differential equations

dxi

dt
= I Š � xi + � i (t) +

N�

j= 1
j�= i

�

tj,� � Pj

� (xi)� (t Š tj,� Š � ), (2)

for xi � [0,x� ) wherex� is a spiking threshold. The parameterI represents a constant current,� is a dissipation
parameter, and� i an external signal serving as input, possibly including noise. Whenever a threshold is reached,
xi(tŠ ) � x� , the state variable is reset toxi(t) = 0 and a pulse (spike) is sent to all other neurons, mathematically
re”ected in the timet = tj,� of the� th threshold crossing,� � Z, by the neuronj. Without loss of generality we
“xed x� = 1. The sum in (2) is the contribution of all spikes arriving from the otherN Š 1 neuronsj to i at
time t, wherePj is the set of all timestj,� of spikes sent by neuronj. Moreover,� � 0 is the “xed coupling delay
between neurons and� (xi) quanti“es the coupling strength as a function of the neuroni•s state variablexi.

4.1. Heteroclinic computing
Heteroclinic computing is a framework that exploits heteroclinic networks [56] or, more generally, networks
of unstable states to compute [57, 58]. In suchnetworks in state space, each node is a saddle periodic orbit,
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Figure 4. A network of neuron-like units and the resulting network ofunstable states in state space. (a) A graph representing a
NN in real space, composed ofN = 5 identical neurons connected all-to-all (I = 1.04,� = 1.59,� = 0.025). Nodes represent
neurons, links represent physical connections. (b) A graph representation of the network of states emerging from the system in
(a). Nodes represent saddle periodic orbits and directed links represent heteroclinic orbits. (c) A three-dimensional
representation of the vicinity of a saddle orbit in state space, sampled atx5 = 0, showing one saddle point (sampled form the
orbit) surrounded by the basins of attraction of two other saddles,x1 > x2 andx1 < x2, where 1 and 2 stands for the indices of the
neurons in the unstable cluster. The set of state space points wherex1 = x2 de“nes the stable manifold.

i.e. a periodic orbit with both stable and unstable directions. Each connection between two such nodes is a
heteroclinic orbit, that is, a directed connection between the stable manifold of a saddle with the unstable
manifold of a second saddle, see “gure4. Networks of unstable states naturally emerge in symmetrical systems
of identical phase- or pulse-coupled oscillators [59, 60], reducing the number of parameters of the model
to the number of parameters de“ning one (oscillator) neuron and one single connection, independently of
the system sizeN > 2. These properties, thus, facilitate remarkably the search and design of complex or large
symmetrical networks of states exhibiting heteroclinic-like dynamics.

Computations are performed if external input signals� i(t) break the system symmetry and thereby break
the heteroclinic connection. Suf“ciently small signals typically induce long •complex• periodic orbits that pass
near a sequence of several •simple• saddle periodic orbits, that we termperiodic sequences of unstable states.
It was shown in [20, 28] that such orbits can robustly encodek-WTA functions in phase-coupled as well as
in pulse-coupled oscillator networks. In this section we “rst explain in detail how this encoding takes place
and later show how such states can be decoded for further processing. We specify our model for heteroclinic
dynamics by de“ning

� (xi) = � , (3)

in equation (2), i.e., as a simple positive constant.

4.1.1. Saddle periodic orbits
It has been shown that networks of neural oscillators with excitatory couplings (� > 0) and connection delays
(� > 0) evolving according to (1) exhibit a form of synchronization with “xed inter-spike times [61] and two
or more groups of identically synchronized neurons. The mechanism behind such dynamics is twofold. First,
spikes from a given neuron may trigger simultaneous threshold crossings and thereby resets in more than one
(other) neuron, synchronizing their states exactly and simultaneously. Second, due to the delay, the neuron
eliciting a spike will always reset a time� before the neurons that are reset by the spike it sent, leading to the
formation of subgroups of synchronized neurons or simply •clusters•. If the frequencies of the neural oscillators
composing the network are similar enough, this sequence of resets via supra-threshold incoming pulses may
become cyclic, leading to a periodic orbit (in the absence of noise). A third option is that a pulse sent by a
given neuron is received by a group of non-synchronous neurons at smallxi values, implying that these will
not cross threshold, and thereby, further desynchronize causing an instability.

If all resets during one orbit•s period are triggered by incoming pulses (supra-threshold events), the orbit is
stable, because any small variation in the voltages of synchronized neurons is reduced to zero within one cycle
(see “gure5(a)). The orbit is indeed superstable because the distance of the perturbed orbit to the unperturbed
one does not decay exponentially but instantaneously. If one or more resets are not triggered by incoming
spikes, small asynchronicities among neurons originally in one synchronized group will grow larger during
each cycle due to the desynchronization mechanism described above. Incoming pulses will have different con-
tribution to each neuron due to nonlinear (concave down) voltage curves [57], and the orbit (linearly) unstable
(see “gure5(b)). If a periodic orbit exhibits stable and unstable manifolds, it is a saddle periodic orbit. During
this work we call any •short• saddle periodic orbit (onepulse per neuron until the sequence repeats) simply as

7



J.Phys.Complex.2 (2021) 045019 (19pp) F S Neves and M Timme

Figure 5. Dynamical response to an instantaneous perturbation. All panels: small system ofN = 3 neurons, each line
(black solid, blue dashed, black dotted) represents the voltage of one neuron. After the system converged to a periodic orbit
(gray background), the system is perturbed by adding a small random vector. (a) A stable periodic orbit in which there is one
cluster with two synchronized neurons and one singleton. The state variablesxi of all neurons cross threshold and are reset by
incoming spikes, thus the perturbation is erased after one cycle (one spike emission per neuron); parameters areI = 1.05,� = 1,
� = 0.1. (b) A saddle periodic orbit in which there is one cluster and one singleton. After the perturbation, the cluster
desynchronizes and the system leaves the original orbit; parameters as above with� = 0.63. (c) The arrow indicates the moment
two neurons in (a) resynchronize after a spike arrive. (d) The arrow indicates the moment two neurons in (b) fail to resynchronize
after a spike arrive. The spike promotes further desynchronization.

a •saddle state• and the •long• orbits resembling sequences of such saddle states as a •complex (periodic) orbit•
[20, 59, 62, 63]. We discuss features of the latter in the following subsection.

4.1.2. Switching dynamics and complex periodic orbits
In the previous section we introducedthe concept of saddle periodic orbits. Here we will characterize networks
of such saddle states in state space and how they promote encoding of inputs as complex periodic orbits. For
illustration, we “rst consider a small network withN = 3 neurons. For parameters� = 0.64,c= 0.11 and
I = 1.05, this system exhibits saddle states in which there is one cluster with two synchronized neurons with
identical states, e.g.x1(t) = x2(t) for all timest, and one singleton consisting only of one neuron with state
variable componentx3. Such states are also polysynchronous states in the sense of Izhikevich, see reference
[64], with permutation symmetryS2 × S1. That is, for the example above, their are3!

2!1! = 3 saddle states that
differ only in their neuron labels but are otherwise identical, in particular tracing out (up to permutation)
the same trajectory in state space and exhibiting the same stability properties. For a simple representation, we
denote each saddle as a cluster vector

(c1, c2, c3) = Sc1c2c3 with ci � { a,b} , (4)

where each vector componenti indicates if neuroni is part of a cluster, labeled as •a•, or is a singleton, label as
•b•. Therefore, for this speci“c system, the emerging three saddle states are denotedSaab, Saba, andSbaa.

Direct numerical simulations show that these three saddle states form a robust heteroclinic network, i.e.
the dynamics will not leave the network after suf“ciently small perturbations, but rather switch between states
in it. As shown in “gure6, the stability of these saddle states is such that, given a one-time perturbation
� = (� 1, � 2, � 3) to the phases of all neurons in a initial saddle stateSaab, without loss of generality, either
triggers the switch

Saab
(� 1> � 2,� 3)

ŠŠŠŠŠŠŠŠ � Sbaa or Saab
(� 1< � 2,� 3)

ŠŠŠŠŠŠŠŠ � Saba, (5)

independently of the perturbation component� 3 in the singleton direction. Equation (5), thus, de“nes a basic
transition rule between saddleSaaband the other two saddle states. We remark that consistently permuting the
indices in equation (5) yields the transition rules starting from any of the two other saddles in this network of

states,Saba
(� 1> � 3)

ŠŠŠŠŠŠ� Sbaa, Saba
(� 1< � 3)

ŠŠŠŠŠŠ� Saab, Sbaa
(� 2> � 3)

ŠŠŠŠŠŠ� SabaandSbaa
(� 2< � 3)

ŠŠŠŠŠŠ� Saab. Together, these saddle
states with the six possible heteroclinic connections form a (fully connected) network of states, see “gure7,
i.e. all states can be reached after one state-switch. In general, i.e. for largerN and other parameter settings,
heteroclinic networks are typically not fully connected. Rather, only a small subset of other saddle states is
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