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Complex networks of dynamically connected saddle states persistently emerge in a broad range of high-

dimensional systems and may reliably encode inputs as specific switching trajectories. Their computa-

tional capabilities, however, are far from being understood. Here, we analyze how symmetry-breaking

inhomogeneities naturally induce predictable persistent switching dynamics across such networks. We

show that such systems are capable of computing arbitrary logic operations by entering into switching

sequences in a controlled way. This dynamics thus offers a highly flexible new kind of computation based

on switching along complex networks of states.
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Can complex networks of states of a nonlinear dynami-
cal system be used to solve computational tasks? If so,
which systems are appropriate and how can computations
be performed? A broad range of systems exhibit saddle
states that are dynamically linked via heteroclinic connec-
tions to form complex networks [1–16]. These may be
promising candidates for such computations because the
dynamics close to heteroclinic networks is intrinsically
robust, easily controllable, and provides a large number
of state-changing options already for small systems
[8,9,12,16]. A heteroclinic connection in a dynamical sys-
tem is a distinguished trajectory that links two saddles in
state space. It occurs if unstable directions of one saddle
are contained in the stable manifold of a second. A se-
quence of such connections linking several saddles cycli-
cally is called a heteroclinic cycle. If the dynamical system
considered exhibits a certain symmetry, complex hetero-
clinic networks consisting of interconnected heteroclinic
cycles emerge in a robust way.

Heteroclinic networks are of high current mathematical
interest [1–5,15]. Simultaneously, their specific dynamical
features—supporting repetitive switching close to the sad-
dles—pose a promising challenge for the study of informa-
tion encoding and computation, in particular, in artificial
neural systems [6–14,16]. For instance, it becomesmore and
more clear how information may be encoded by systems
with heteroclinic cycles [8,10,11,14,16]. Recent studies
even provide insights about how external perturbations
may be processed [12,15,16] and hints on how such systems
may actually compute using switching among saddles [12].
Nevertheless, it is still far from understood whether and how
nonlinear dynamical systems may perform generic compu-
tations exploiting their complex networks of states.

In this Letter, we introduce the concept of computation
via dynamics close to complex networks of states. We
show how symmetry-breaking external signals naturally
induce cyclic switching dynamics close to what has been
a heteroclinic cycle in a symmetric system (Fig. 1), and

how to exploit such dynamics to execute generic logic
operations. We exemplify our results by analyzing net-
works of neuronlike elements. Already a small system of
only N ¼ 5 units may realize any (out of two) unary, any

FIG. 1 (color online). Selecting cyclic switching dynamics in
complex networks of saddle states [29]. (a)–(d) Black: complex
networks of states in the absence of inputs. Colors: trajectories in
state space induced by specific symmetry-breaking currents,
� ¼ ð4; 3; 2; 1; 0Þ � 10�4 in (a),(b) and � ¼ ð1; 4; 3; 2; 0Þ �
10�4 in (c),(d). (a),(c) State space representation. Whenever
oscillator i ¼ 1 is reset, the potentials of oscillators i 2
f2; 3; 4g are plotted as a three-dimensional trajectory; the poten-
tial of oscillator i ¼ 5 is given by a color gradient from zero
(light color) to one (dark color). Small black dots represent all
possible switching trajectories (generated by low-noise-induced
switchings). Gray spheres represent the vicinity of approached
saddle states. (b),(d) Abstract representation of the same network
of 30 saddles. Colored lines indicate the specific cyclic sequence
of saddles approached by the trajectories shown in (a) and (b).
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(out of 16) binary, and any (out of 256) ternary function.
The underlying mechanism is rooted in a sequential sorting
process performed at each saddle state. We discuss the
advantageous scaling of computational capabilities with
network size and illustrate it by an example of a system
of N ¼ 100 units. In addition, the signal-induced switch-
ing (i) appears as a generic feature of symmetry breaking in
systems with heteroclinic connections, (ii) yields intrinsic
self-corrections due to cyclic repetitions, and (iii) is robust
to distractions and simultaneously sensitive to distinct
external signals. Given these features, this computational
paradigm provides a natural and flexible approach for
performing logic operations in a variety of systems
[1–16].

Consider a system of N oscillators interacting via ex-
changing delayed pulses [7,9,17]. The potential variable
ViðtÞ of each oscillator i 2 f1; 2; . . . ; Ng at time t changes
according to

dVi

dt
¼ fðViÞ þWiðtÞ þ �i; (1)

where fðViÞ is a monotonic concave-down differentiable
function, �i is a symmetry-breaking current, and

WiðtÞ ¼
XN
j¼1
j�i

X
m2Z

��ðt� �� tj;mÞ (2)

are the pulse interactions received by oscillator i from
others j. Here, � is the homogeneous coupling strength
and �ð:Þ represents the delta distribution. At times tj;m,

oscillator j reaches its threshold value at unity for the
mth time, and Vjðt�j;mÞ � 1 is reset to Vjðtj;mÞ :¼ 0 and

emits a pulse that is received by all other oscillators after a
delay � > 0 [9].

For homogeneous currents, �i � �j for all i, j, such

systems robustly exhibit a closed network of saddle states.
Typically, such a saddle is a cluster state with several
groups of synchronized units (clusters). These states are
related by permutation symmetry and specifically linked
via heteroclinic connections. For instance, for an analyti-
cally tractable system of N ¼ 5 oscillators, the units syn-
chronize into a three-cluster configuration with symmetry
S2 � S2 � S1, where Sn is the permutation group of n
elements. Each of these 5!=ð2!2!1!Þ ¼ 30 states are saddles
with identical stability properties. Upon small perturba-
tions, each cluster may either dissolve or resynchronize
[16]. For the system considered, the dynamics is unstable
to perturbations desynchronizing one specific two-unit
cluster, but stable to perturbations to the other two-unit
cluster or the single-unit cluster (S1). In order to simplify
the notation, we substitute the real values fVig by cluster
labels Vi 2 fa; b; cg such that a saddle state, e.g., V� ¼
ða; a; b; b; cÞ, is unstable against perturbations that de-
synchronize the units labeled a but stable against all other
perturbations.

A small instantaneous perturbation signal applied to the
system residing in such a saddle induces a transition to one
specific other saddle [16]. For instance, given initial state
V�, an arbitrary small perturbation � with �1 > �2 yields
the transition

ða; a; b; b; cÞ þ ð�1; �2; �3; �4; �5Þ ! ðc; b; a; a; bÞ; (3)

which is independent of �3, �4, and �5 because there is
only one unstable direction (in which the a cluster de-
synchronizes). Therefore, if the a cluster is desynchron-
ized, the system switches to another saddle; if a
perturbation does not desynchronize the a cluster, the
system stays at the same saddle. Thus, any perturbation
desynchronizing the a cluster has the same effect as a
single-unit perturbation, e.g.,

ða; a; b; b; cÞ þ ð�; 0; 0; 0; 0Þ ! ðc; b; a; a; bÞ (4)

for � ¼ �1 � �2 > 0. For � < 0, the transition is ðaþ
�; a; b; b; cÞ ! ðb; c; a; a; bÞ. Due to the permutation sym-
metry of the cluster states, the same single-unit transitions

aþ � ! c; aþ 0 ! b;

both b ! a and c ! b
(5)

are induced from any of the 30 initial configurations if one
unit of the a cluster is driven more strongly, aþ �, than the
other, aþ 0.
The permutations of Eq. (4) thus yield the complete set

of possible transitions and define a complex network of 30
dynamically connected states [Figs. 1(a)–1(d), network
indicated in black]. This network is closed in the sense
that a sufficiently small instantaneous generic perturbation
to the system anywhere on the cycle induces switching but
keeps the trajectory inside the network. Here, the detailed
form of the external symmetry-breaking perturbation is not
relevant because any quantity added to the right-hand side
of Eq. (1) cannot be distinguished from others after tem-
poral integration. Throughout this work, we take a tempo-
rally constant symmetry-breaking vector specified by
nonidentical external currents �.
To understand the emergence of switching cycles in

more detail, we characterize each cycle through the se-
quence of saddles it approaches. Given an initial state
ðc; b; a; a; bÞ and an external current, �, with

�1 >�2 > . . .> �5; (6)

yields the cyclic sequence of saddles

according to Eqs. (3)–(6). This cyclic switching process
thus consists of a sequential comparison of the two
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potential values in the a cluster generating a specific cyclic
sequence [Fig. 1 (colored trajectories)]. The transients
prior to such cycles given any initial condition in the basin
of attraction of the heteroclinic network are typically short
(see Supplemental Material [18]).

According to the state sequence in Eq. (7), the values V1,
V2, and V3 are never compared among themselves.
Moreover, V4 is never compared to V5. Therefore, the
switching dynamics reveals no information about the rela-
tive magnitude of asymmetries within these two groups,
but distinguishes the three strongest from the two weakest
inputs.

How can these features be exploited computationally?
Near each saddle, the switching dynamics amounts to
comparing the effective frequencies of the two oscillators
in the a cluster. The dynamics along one switching cycle of
six saddles thus provides a dynamical classification of five-
dimensional real-valued vector inputs into ð53Þ ¼ 10 dis-

crete classes. In other words, the real-valued asymmetry is
internally perceived (classified) as a discrete binary vector
r ¼ ðr1; r2; r3; r4; r5Þ, where ri 2 f0; 1g andPiri ¼ 3. This
input classification provides basic forms of computation.
First, it relates input signals to discrete internal represen-
tations independent of the 30 possible initial saddle states;
and second, all classes, and thus the computation, are
predictable by simple transitions rules, (4) and (5).

To demonstrate the computational capabilities of this
complex network of 30 saddle states, we exploit the sys-
tematic switching dynamics to implement a logic com-
puter. It has three contributions. First, the input, coded by
an N-bit binary vector R that selects both the logic opera-
tion (last m bits) and defines the operand bits (first N �m
bits). Second, inputsR and a base current� combine to an
effective asymmetry vector

�eff ¼ �þ! �R; (8)

where ! is a weight vector and � means element-wise
multiplication (see Supplemental Material for more details
[18]). This induces a specific cyclic pattern (sequence of
saddles) characterized by a vector r. Third, the cyclic
pattern is interpreted as a binary output (two states) accord-
ing to the operation implemented to visualize the result in a
binary representation.

For interpretation, we explicitly read out the cyclic
pattern by detecting simultaneous events using a delay
plasticity principle [19]. Here, the delays between the
oscillator network and the readout are such that the pulses
are perceived as simultaneous events by the readout when
close to a given saddle. In principle, any device that is
capable of detecting synchronized spikes may be used as a
readout [20]. Our approach uses integrate-and-fire neurons
and thus the same units as the oscillator network. Such a
unified setting, using the same unit types for the oscillatory
system and its readout, may be advantageous when

implementing the computational paradigm in a hardware
device (see below).
The system of N ¼ 5 units exemplified above consti-

tutes the smallest system exhibiting a robust heteroclinic
network [16]. Already here, all unary, binary, or ternary
logic operations can be straightforwardly implemented
because the 10 classes always enable a one-to-one map-
ping from class to desired output. It can therefore realize
both unary operations, i.e., the identity and the NOT opera-
tion on a single bit, by fixingm ¼ 4 inputs; any one (out of

2ð22Þ ¼ 16) binary function by fixing m ¼ 3 inputs and
leaving the system with two inputs to be varied; and any

arbitrary (out of 2ð23Þ ¼ 256) ternary function by fixing
m ¼ 2 inputs, leaving the system with three inputs to be
varied. Figure 2 illustrates an XOR binary logic gate, ex-
plicitly showing that the temporally distributed processing,
in particular, enables computations that are not linearly
separable. All other abovementioned functions equally
work (see Supplemental Material [18]).
Furthermore, it is possible to simultaneously realize

more than one function in the same network (at fixed
network parameters and fixed base asymmetry). Here, the
fact that different operations often exhibit the same output
(e.g., zero) for a given input lowers the number of cyclic
sequences required. For example, with a careful choice of
parameters (�, R), three binary functions, such as AND,
OR, and XOR, may be realized simultaneously (see

Supplemental Material for details [18]).
The sorting processes described emerge independent of

the exact realization of unit dynamics, form of coupling, or
network size, because they rely only on the existence of
robust heteroclinic networks of saddles. Qualitatively, the
same computations can thus be performed by a wide
variety of systems, not restricted to neuronlike systems
[2,5,6,8,9,12]. We illustrate this in a system of N ¼ 100
units with modified intrinsic dynamics [7,9] that equally

FIG. 2 (color online). XOR binary logic gate via cyclic switch-
ing dynamics across networks of states. In (a)–(c), white back-
ground represents 0 (nonactivity) and gray 1 (activity). (a) Fixing
the three inputs R3;4;5 ¼ ð0; 0; 0Þ leaves two inputs to vary R1;2 2
fð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 1Þg. Each of the four input combinations
yields (b) a specific limit cycle. The potentials of all oscillators
are plotted whenever oscillator i ¼ 1 is reset. (c) A single output
unit decodes the limit cycles by spiking or not spiking, thereby
providing a binary output.
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exhibits a heteroclinic network, but now with cluster sym-
metry S21 � S21 � S21 � S21 � S16 (Fig. 3). A small
asymmetric current generalizing Eq. (6) induces a specific
limit cycle across a certain part of the complex network of
100!=ð½21!�416!Þ � 6:5� 1065 saddles in 100-dimensional
space. Again, sorting sequentially occurs at each saddle
visited such that the sorting process now separates the units
receiving the largest 20 inputs from the remaining 80
(Fig. 3). The real-valued asymmetry is internally perceived
as a binary vector r ¼ ðr1; . . . ; r100Þ where ri 2 f0; 1g andP

iri ¼ 20, thus yielding ð10020 Þ � 5:4� 1020 discrete

classes. Therefore, the system of N ¼ 100 units realizes
a complex 20-winner-take-all computation in the sense that
exactly those units that receive the 20 largest inputs re-
peatedly leave clusters.

For generalN 	 1, where the typical number of clusters
is between two and about 10 [7] and the typical number of
distinguishable switching elements K ¼ �N is roughly
20% to 50% of N, the number of classesMC ¼ ð N

�NÞ grows
much faster than linearly with system size. For instance, if
� ¼ 1=2, we have

MC ¼ N

N=2

 !
� 2Nþ1=2ffiffiffiffiffiffiffiffi

�N
p (9)

for large N using the Stirling approximation.
In summary, we have demonstrated that switching across

complex networks of states that are robustly linked via
heteroclinic connections offers a natural way to solve com-
putational tasks by dynamical systems. In previous works
on coding and dynamic response properties of oscillatory
circuits [8,12], individual saddles serve as conceptual cod-
ing elements. Such works also addressed the dynamics of
biological neural circuits via modeling [8], and there are
interesting experimental hints about functionally useful
switching dynamics [21]. In the concept of the computation
introduced above, we now represent inputs as cyclic
sequences among saddle states [14] and exploit the

advantages coming from this reinterpretation, e.g., the
insensitivity of the dynamical coding to the choice of the
initial (saddle) state or cycle and to transient distractors.
Computations exploiting complex networks of states

join many interesting features present in other approaches
of neural computation. For instance, echo and liquid state
approaches [22,23] also exploit the high-dimensional dy-
namics and their intrinsic instabilities to provide a fixed
representation system with flexible readout options; stable
attractor dynamics in recurrent neural networks [24,25]
intrinsically provide features such as controllability and
predictability; and certain dynamics of formal spiking
neurons [26] use neuronlike features to provide natural
(but not robust) 1-winner-takes-all dynamics. The concept
introduced in this Letter now exhibits several of the ad-
vantageous properties simultaneously and comes with the
additional feature of self-correction via cyclic repetition. It
exploits instabilities in high-dimensional dynamics, yet is
predictable (via simple transition rules) and thus control-
lable; it is intrinsically robust, yet provides a huge number
of internal representations; and finally, it offers robust
execution of a general k-winner-take-all computation.
In practical applications, such dynamics can be imple-

mented as networks of different oscillator types [8,9,12]
because only the feature of appropriate sorting at the saddle
is required. One promising option that seems in direct
experimental reach may be systems of coupled lasers
[27,28].
Taken together, we introduced the concept of computa-

tion exploiting complex networks of states that emerge in a
wide range of systems. The combinatorial scaling of the
number of possible computations with system size and the
independence from the specific system makes this ap-
proach accessible for future theoretical studies and experi-
mental implementations. Switching across heteroclinic
networks of saddles thus provides a promising way to
perform generic computations by complex networks of

FIG. 3 (color online). One 20-winner-take-all computation via switching dynamics for N ¼ 100; cluster symmetry S21 � S21 �
S21 � S21 � S16 [30]. The phase of all oscillators is plotted when oscillator i ¼ 1 is reset. The phase is a monotonic function of the
potential given by �i ¼ ðebVi � 1Þ=ðeb � 1Þ. Asymmetric external currents � ¼ ð�1; . . . ;�100Þ induce specific limit cycles that serve
as internal representations of the computational outcome. The initial condition is such that all 20 largest inputs are delivered to
elements in the same cluster. Close to every saddle, the units in one specific, desynchronizing cluster that are subject to the five largest
inputs leave that cluster. The resulting dynamics is such that four groups of five units that in total form the 20 largest inputs repeatedly
leave their clusters when close to the saddle where it is unstable.
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states. Understanding the computational capabilities of
such persistent switching dynamics in more detail will
help to efficiently design more complex computations;
for example, the cyclic spatiotemporal pattern itself (in-
stead of a binary output) could serve as an input to a
downstream device.
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