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The Paris Conference in 2015 set a path to limit climate change 
“well below 2 °C”1. To reach this goal, integrating renewable 
and sustainable energy sources into the electrical power grid 

is essential2. Wind and solar power are the most promising con-
tributors to reach a sustainable energy supply3,4, but their integra-
tion into the existing electric power system remains an enormous 
challenge5–7. In particular, their power generation varies on all tim-
escales from several days8 to less than a second9, displaying highly 
non-Gaussian fluctuations10. This variability must be balanced by 
storage facilities and back-up plants, requiring precise control of the 
electric power grid.

The central observable in power grid monitoring, operation and 
control is the grid frequency f (ref. 11). In the case of excess demand, 
kinetic energy of large synchronous generators is converted to elec-
tric energy, thereby decreasing the frequency. Dedicated power 
plants measure this decrease and increase their generation to sta-
bilize the grid frequency within seconds to minutes (primary con-
trol)11,12. On longer timescales, additional power plants are activated 
to restore the nominal grid frequency (secondary control). The 
increase of renewable generation challenges this central control 
paradigm, as generation becomes more volatile and the spinning 
reserve decreases13. How to provide additional effective/virtual 
inertia is under intensive development14,15. In addition, fluctuating 
demand16 and fixed trading intervals17 already contribute to fre-
quency deviations.

A detailed understanding of the fluctuations of power grid  
frequency essentially underlies the design of effective control 
strategies for future grids. Many studies for simplicity assume 
Gaussian noise16,18–21, while non-Gaussian effects are only rarely 
studied22–25. Gaussian approaches neglect the possibility of heavy 
tails in the frequency distributions and thus strong deviations 

from the reference frequency, posing serious contingencies 
particularly relevant for security assessment. Even in studies 
considering non-Gaussian effects, the connection to real data 
is missing22, realistic but isolated wind and solar data are only 
numerically evaluated24,25 or the focus is on static power dis-
patch16,21,23 as opposed to real-time dynamics.

It is crucial to understand how collective grid dynamics are driven 
by the fluctuations originating from varying power demands, fluctu-
ating input generation and trading. While realistic models describing 
the actual noise input of wind and solar power exist24,25, the impact of 
fluctuations on grid dynamics has been studied for selected specific 
scenarios, regions or technologies only26,27. Furthermore, a system-
atic quantitative comparison of different sized synchronous regions 
based on their frequency fluctuations is needed. It is important to 
forecast fluctuation statistics in grids of any size, especially when 
setting up small isolated systems, for example on islands or discon-
nected microgrids28.

In this Article, we analyse the frequency fluctuations observed 
in several electric power grids from three continents. We deter-
mine and characterize the non-Gaussian nature of these fluctua-
tions existing across grids in both the 60 Hz and 50 Hz operation 
regimes. Furthermore, we propose an analytically accessible model 
that successfully describes these data in one consistent framework 
by systematically incorporating the non-Gaussian nature of fluctua-
tions, and verify its predictions. The analysis yields trading as a key 
factor for non-Gaussianity. Extracting the effective damping for dif-
ferent synchronous regions via autocorrelation measures, our work 
highlights that the effective grid damping as well as the size of the 
grid itself serve as controlling factors to make grid dynamics more 
robust. Finally, we demonstrate how superstatistics explains heavy 
tails and skewness using superimposed Gaussian distributions.

Non-Gaussian power grid frequency fluctuations 
characterized by Lévy-stable laws and 
superstatistics
Benjamin Schäfer   1,2*, Christian Beck3, Kazuyuki Aihara   4, Dirk Witthaut   5,6 and Marc Timme1,2

Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. 
Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of 
renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctua-
tions. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find 
a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse frame-
work to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that sys-
tematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today’s 
frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with 
enhanced effects for small power grids.

NATure eNerGy | www.nature.com/natureenergy

https://doi.org/10.1038/s41560-017-0058-z
mailto:benjamin.schaefer@ds.mpg.de
http://orcid.org/0000-0003-1607-9748
http://orcid.org/0000-0002-4602-9816
http://orcid.org/0000-0002-3623-5341
http://www.nature.com/natureenergy


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Articles NAturE ENErGy

Observing the statistics of frequency fluctuations. The bulk fre-
quency of a power grid fluctuates around its nominal frequency of 
60 Hz (most parts of America, western Japan, Korea, Philippines) 
or 50 Hz (eastern Japan and other countries). To understand and 
quantify these fluctuations, we analyse datasets for the power 
grid frequency of the European Network of Transmission System 
Operators for Electricity (ENTSO-E) Continental European (CE)29,30,  
Nordic31, Mallorcan32 and Great Britain (GB)33 grids, the 50 Hz and 
60 Hz regions of Japan34 and the Eastern Interconnection (EI) in  
North America35, see Supplementary Note 1 for more detailed data 
breakdown. The data consist of power grid frequency measure-
ments at one location in the given region (two for CE) at a sampling 
rate between ten measurements per second and one measurement 
per five minutes.

At first glance, a typical recording of the grid frequency (Fig. 1) 
reveals that it coincides extremely well with the nominal grid ref-
erence frequency, highlighting the efficiency of today’s frequency  
control. Only rarely do we observe large deviations from the nomi-
nal frequency. These large disturbances often occur when a new 
power dispatch has been settled on by trading (every 15 min),  
introducing jumps and fluctuations of the frequency. The total  
variance of the frequency fluctuations in a given region thereby 
depends on the size of the grid—larger grids are more inertial and 
thus tend to have a smaller variance.

All distributions deviate from Gaussian distributions, which 
becomes evident when observing their tails (Fig.  2). For the CE, 
Nordic, Mallorcan and Japanese grids large deviations from the 
nominal frequency are more frequent than for a Gaussian distri-
bution of given variance, leading to heavy tails, as quantified, for 
instance, by an excess kurtosis; see Methods. The grids of GB and the 
EI, however, are substantially skewed; that is, they are asymmetric 
around the reference frequency such that deviations are more likely 
towards lower frequencies than towards higher ones.

Lévy-stable36 and q-Gaussian distributions37 are the best fitting 
distributions among all distributions tested, as identified by a maxi-
mum likelihood analysis; see Fig. 2 and Supplementary Note 1. Both 
distributions generalize a Gaussian distribution to include heavy 
tails and point to two different microscopic mechanisms under-
lying the frequency dynamics: q-Gaussians arise when the power 
fluctuations are Gaussian on short timescales, but with a variance  
or mean changing on longer timescales. In contrast, Lévy-stable  
distributions arise when the underlying power fluctuations are 
heavy tailed or skewed themselves. We investigate both settings in 
more detail below.

In addition to the aggregated data, we investigate the autocorre-
lation of the recorded trajectories, extracting important events and 
the characteristic timescales during which the system decorrelates. 
Analysing the autocorrelation for the CE grid reveals pronounced 
correlation peaks every 15 min and especially every 30 and 60 min; 
see Fig.  3. These regular correlation peaks appear in many grids 
(CE, GB, Nordic) and are explained by the trading intervals in most 
electricity markets17, which are often 30 or 15 min. Furthermore, 
this is also in line with the observation of large deviations in the fre-
quency trajectories (see Fig. 1), so trading has an important impact 
on frequency stability. At the beginning of a new trading interval, 
the production changes nearly instantaneously and the complex 
dynamical power grid system needs some time to relax to its new 
operational state.
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Fig. 1 | Fluctuations in frequency around the reference frequency of 50 Hz. a, Box plot of the 2015 data by Réseau de Transport d’Electricité (RTE)29 
describing the CE power grid. b, Zoom-in on the first 70 min of the frequency measurements, exposing substantial changes in average and variance of 
frequencies at 15 min trading intervals (indicated by the dashed lines). Each box contains data of one year for the same time instance (averaged per minute 
in a). The yellow bars contain the 25% and 75% quartiles; the grey bars are the whiskers giving the maximum and minimum values and the white line is 
the median value.
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Fig. 2 | Non-Gaussian nature of the frequency distribution. The 2015 
dataset by 50Hertz describing the CE power grid, where fitted normal, 
stable and q-Gaussian distributions are compared with the histogram data 
using a log scale for the probability density function (PDF). Deviations 
from a normal distribution become evident in the tails, which are more 
pronounced than expected for a normal distribution. The stability 
parameter of the stable distribution is αS =  1.898 ±  0.002 and the 
deformation parameter of the q-Gaussian distribution is q =  1.20 ±  0.01, 
whereas αS

Gauss =  2 and qGauss =  1 for Gaussian distributions. The  
Lévy-stable distribution uses four fitting parameters, while the q-Gaussian 
uses three and the normal distribution uses two parameters.
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The decay of the autocorrelation provides further information 
about the underlying stochastic process. For the first minutes of each 
trajectory, we observe an exponential decay of the autocorrelation 
c as a function of the time lag Δ t:

τΔ ~ −Δ ∕c t t( ) exp( ), (1)

with a typical correlation time τ, as expected for elementary sto-
chastic processes without memory such as the Ornstein–Uhlenbeck 
process38.

We extract the inverse correlation time τ−1 for each available 
dataset and obtain values within the same order of magnitude across 
all grids; see Fig.  4. The Japanese dataset only has measurements 
every 5 min, hence we refrain from estimating an autocorrelation.  

The inverse correlation time can be seen as the effective damping γ 
in a synchronous region with γ :=  τ−1, see below. With this in mind, 
it is not surprising that all grids return values for γ of the same order 
of magnitude because the synchronous machines in these regions do 
not differ substantially. This damping consists of mechanical damp-
ing, damper windings and primary control.

Stochastic model of power fluctuations. The variations of the 
grid frequency are driven by fluctuations of power generation and 
demand. To link the evolution of the grid frequency with the power 
injections, we make use of the well established swing equation11,12,39–44. 
Aggregating over the grid, we obtain a Fokker–Planck equation that 
models the observed frequency fluctuations and allows an analytical 
description of power grid frequency fluctuations.

We analyse frequency dynamics of a power grid on coarse scales. 
Every node in the grid corresponds to a large generator (power 
plant) or a coherent subgroup and is characterized by the phase θi 
and the angular velocity ωi =  2π (fi −  fR). Here fi denotes the frequency 
of the nodes i =  1, … , N and fR =  50 Hz or fR =  60 Hz is the reference 
frequency at the grid. The equations of motion of the phase and 
velocity are then given by
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where we have at each node i inertia Mi, voltage phase angle 
θi, mechanical power Pi, random noise ξi with noise amplitude ϵi, 
damping Di and the coupling matrix Kij, which is determined by the 
transmission grid topology. The operating state of a power grid is 
characterized by a stable fixed point of the swing equation (2). The 
fixed point fulfills ω = 0*i , which is equivalent to all machines work-
ing at fR =  50 Hz or fR =  60 Hz. At the stable operation point the fre-
quencies at all nodes are equal: ̄ω ω=i . Deviations are only observed 
during system-wide failures or transiently after serious contingen-
cies or major topology changes11,12. To obtain the effective equation 
of motion of the bulk angular velocity ̄ω , we assume a homogeneous 
ratio of damping and inertia throughout the network45, γ =  Di/Mi, as 
well as symmetric coupling Kij =  Kji, and assume that the power is 
balanced ∑ == P 0i

N
i1  on average43. Setting = ∑M M: i i, the dynamics  

of ̄ω ω= ∑ ∕= M M: i
N

i i1  is governed by the aggregated swing equation 
(see also ref. 13)

̄ ̄ ̄̄ω γω ξ= − + ϵ .
t

td
d

( ) (3)

This aggregated swing equation no longer requires precise knowl-
edge of the parameters of a given region, but depends on γ, the aggre-
gated noise amplitude ̄ϵ  and the statistics of the random noise ̄ξ ,  
all characterizing the overall frequency dynamics; see Methods and 
Supplementary Note 2 for details. We note that γ integrates contri-
butions from damper windings and primary control actions alike. 
Finally, both γ and ̄ϵ  could easily change over time, for example due 
to connection of certain grids or day–night differences. We cover 
this scenario in the section on superstatistics.

̄ω  (and thereby the grid frequency) is not following a determin-
istic evolution but is influenced by stochastic effects, given by the 
aggregated power fluctuations ̄ξ . Hence, we characterize a given 
grid by the probability distribution function of the bulk angular 
velocity ̄ωp( ), similar to the frequency distribution plotted in Fig. 2. 
A wide distribution, that is, one with high standard deviation, or one 
with heavy tails, that is, high kurtosis, displays large deviations more 
often and is thereby less stable than a narrower distribution.
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Fig. 3 | Decay of the autocorrelation of the frequency dynamics. 
Autocorrelation measures as a function of time lag Δ t for the 50Hertz 
dataset for CE of 2015, the GB grid of 2015, the EI data for one day of 2015, 
the Nordic grid data of 2015 and Mallorcan data of 2015. After an initial 
decay of the autocorrelation, peaks emerge every 15 min due to trading 
intervals; this is especially pronounced for the GB and CE grids, consistent 
with Fig. 1. Using a log plot in the inset allows extraction of the damping 
of the grid based on the assumption of exponential decay, equation (1). 
Note that the CE, GB and EI grids all display similar decays during the 
initial 5 min. In contrast, the Nordic grid displays a fast decay and then a 
slower one. The plot uses one full year of frequency data with 1 s resolution 
for each region to generate the autocorrelation plots. The trading peaks 
in particular are typically not visible when only 24 h of recordings are 
considered (as for the EI grid).
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Fig. 4 | Inverse correlation time of different regions. The box plots 
display the estimate of τ−1 based on the autocorrelation decay fitted by an 
exponential function; see equation (1). The data are obtained by evaluating 
individual days of all years available and splitting the one day of EI into 
10 min trajectories. The box covers the 25% and 75% quartiles, with the 
white line being the median, while the whiskers give the maximum and 
minimum values.
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The central decision when modelling stochastic dynamics 
is how to describe ξ, which is generated from some probability 
distribution. Explicit choices of noise distributions are covered 
here and in Supplementary Notes 2 and 3 for Gaussian and non-
Gaussian noise, respectively, and extended to noise drawn from 
a Gamma distribution46,47 in Supplementary Note  4. Given the 
distribution of ξ, we then formulate and solve a Fokker–Planck 
equation38 to obtain an analytical description of the distribution 
of ̄ω .

The simplest noise model assumes ξi as independent Gaussian 
noise based on the often used central limit theorem. It states that the 
sum of independent random numbers drawn from any fixed distri-
bution with finite variance approaches a Gaussian distribution if the 
sample is sufficiently large38. In our setting, the sum consists of all 
contributions to the noise by consumers, renewables, trading and 
so on. The Fokker–Planck equation describing the time-dependent 
probability density function ̄ωp t( , ) follows then as
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ω
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= ∂
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which is the well known Ornstein–Uhlenbeck process38. The sta-
tionary distribution
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of equation (4) characterizes the steady state of the grid as math-
ematically defined by ∂ p/∂ t =  0; see ref. 38 as well as Methods and 
Supplementary Notes 2 and 6 for details.

Crucially, equation (5) is again a Gaussian distribution of 
̄ωp( ); that is, a Gaussian distribution for the power feed-in fluc-

tuations results in a Gaussian frequency distribution. Assuming 
that we know γ, ϵi and the total inertia M, we are able to compute 
the expected frequency distribution analytically. Furthermore, 
the Ornstein–Uhlenbeck autocorrelation exactly follows an 
exponential decay with characteristic time determined by the 
damping τ =  1/γ.

Under which conditions do we need to include non-Gaussian 
effects in the stochastic modelling? When applying the central 
limit theorem, one explicitly assumes finite variance. However, 
solar and wind fluctuations are known to display heavy tails9,24 
and contribute to the fluctuations in the power grid. Hence, to 
describe deviations from normal distributions, including heavy 
tails and skewed distributions, we need to base the input noise ξ 
on a non-Gaussian noise-generating process48. This requires gen-
eralized Fokker–Planck equations; see Supplementary Note  3.  
These generalized equations characterize fluctuations based on 
noise input distributed according to, for example, a Lévy-stable  
law. These Lévy-stable distributions include heavy tails and 
skewed distributions, as often observed in nature10, and are a 
reasonable fit for the frequency data; see Fig. 2. Stable distribu-
tions are characterized by a stability parameter αS ∈  (0, 2], which 
determines the heavy tails, a skewness parameter βS and a scale 
parameter σS, which is similar to the standard deviation for 
Gaussian distributions36.

Inputting power fluctuations ξ drawn from a stable distribu-
tion into the stochastic equation (3) also results in grid frequency 
fluctuations characterized by a stable distribution, considered as 
the ‘output’ of equation (3). Between input and output distribu-
tions, only the scale parameter is modified, whereas βS (asym-
metry) and αS (heavy-tail-ness) are preserved. In particular, the 
scale parameter σS

in of the input distribution changes to that of 

the output distribution σS
out following the map (Supplementary 

Notes 3 and 6)
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We emphasize this remarkable and unique property of stable 
distributions36 for linear models: if the input power fluctuations are 
distributed according to a stable distribution, the output frequency 
fluctuations are distributed according to the same family of distri-
butions, with only one parameter transformed. This property holds 
for any linear stochastic process, including the aggregated swing 
equation (3). The same happens for Gaussian distributions since 
they constitute a subclass of stable distributions in the limit αS →  2. 
These properties are in stark contrast to those of non-stable distri-
butions; see Supplementary Notes 3 and 4.

What are the consequences of relation (6)? Making the output 
frequency distribution narrower, that is, reducing risks of extreme 
events, requires σS

out to be as small as possible. However, increasing 
the share of renewables by rebuilding the energy system is expected 
to increase ϵi. In addition, trading impacts the frequency fluctua-
tions and thereby also contributes to the noise amplitudes (Fig. 1). 
However, fluctuations are efficiently reduced by increasing γ or M; 
see equation (6).

With the previous results, we are able to quantify the intuitive 
statement that larger regions have more inertia and hence nar-
rower distributions by explicitly comparing the scale parameters  
(proportional to standard deviations in the case of αS =  2) of two dif-
ferent regions as follows:

σ σ
γ
γ

=
α

α

α−

−

∕









m
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N
N

, (7)S2
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S1
out 1

2

1 1
1

2 2
1

1
S
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S

assuming identical αS and average inertia mμ =  Mμ/Nμ, μ ∈  {1, 2}.  
Equation (7) shows that a smaller region (N2 <  N1) needs larger 
damping than a larger region (γ2 ≥  γ1) or has a broader distribu-
tion with σ σ>S2

out
S1
out, that is, a higher risk of large deviations from 

the stable operational range. The scaling is given by σ ~ α α− ∕NS
( 1)S S,  

where the simple square-root law is recovered only in the case of 
Gaussian distributions (αs =  2). Also, it reveals that decreasing iner-
tia proportionally increases the scale parameter.

Furthermore, we estimate the order of magnitude of the expected 
noise amplitude

σ α γϵ = α α− ∕m N( ) (8)S
out

S
1 1

S S

by computing the scaling from (6) for typical noise contribu-
tions of the order of ϵi =  ϵ. Based on pure frequency measurements, 
every quantity is available for each synchronous region. We estimate 
σS

out and αS from the histogram data. We assume that the number of 
nodes N is directly proportional to the total electricity production 
of a region per year49,50. Since a process driven by stable noise has 
no defined autocorrelation function36, we approximate its autocor-
relation with the Ornstein–Uhlenbeck process and thereby derive 
an estimate for γ. With these estimates and equation (8) we plot 
the noise amplitudes for different regions in Fig. 5. The estimated 
noise amplitude tends to increase with increasing share of inter-
mittent renewable generation (wind and solar) in a given region. 
Nevertheless, this relationship is not very strict, and frequency dis-
turbances at trading intervals (see Fig. 1) demonstrate that, at least 
today, trading and demand fluctuations are contributing substan-
tially to frequency fluctuations.
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Superstatistics. Instead of modelling the underlying stochastic 
process as non-Gaussian, we may interpret the observed statistics 
as a superposition of multiple Gaussians, leading to superstatistics, 
explaining heavy tails and skewness51,52.

For our superstatistical approach we use equation (3) with 
Gaussian noise ̄ξ ,

̄ ̄ ̄̄ω γω ξ= − + ϵ
t

td
d

( ), (9)

which yields a Gaussian distribution; see equation (5).

What changes when γ is no longer constant over time? Both con-
trol actions and physical damping contribute to γ and change over 
time when certain power plants are connected and others are shut 
down. Similarly, the ̄ϵ  of the system depends on which consum-
ers are currently active, whether it is day or night, which renew-
ables are connected and more. Hence, it is appropriate to replace 
our static parameters γ and ̄ϵ  by dynamical parameters that change 
over time with a typical timescale T. When applying superstatistics, 
we assume that T is large compared with the intrinsic timescale of 
the system, which is given by the autocorrelation timescale, namely 

τ γ≫ = ∕T 1 . Then, the stochastic process finds an equilibrium with 
an approximately Gaussian distribution determined by the current 
noise and damping. When these parameters change, the frequency 
distribution becomes a Gaussian distribution with different stan-
dard deviation. In Fig. 6a we demonstrate how just a few Gaussian 
distributions with different standard deviations give rise to an excess 
kurtosis, and in Supplementary Note 5 we show how two Gaussian 
distributions with shifted means result in a skewed distribution.

We extract the long timescale T from the data and compare it 
with the intrinsic short timescale of the system. The short timescale 
τ =  1/γ is based on the exponential decay of the autocorrelation of 
the time series of ̄ω , yielding a range of τ ≈  200–550 s for all grids. T 
is governed by the idea that the superstatistical ensemble has heavier 
tails than a normal distribution, but that for a given typical T an 
equilibrium distribution emerges that is approximately Gaussian. 
Given a time series x(t) with mean ̄x , we compute the local kurtosis 
κ(Δ t) for different time intervals Δ t and choose T by κ(Δ t =  T) =  3 
(ref. 51). Similarly, we compute the time for which the average skew-
ness is zero to extract the long timescale for the GB or EI grids; see 
Methods and Supplementary Note  5 for details and Fig.  6 for an 
example for Japan.

All synchronous regions return large but different T. We deter-
mine the long timescales to be of the order of T ≈  1–5 h with small 
values in Mallorca and the EI and large values in CE and Japan, 
hinting at distinct underlying mechanisms for damping and noise 
change in each region. Compared with the intrinsic τ ~ 200–500 s, T 
is larger by at least one order of magnitude. Hence, the superstatisti-
cal approach is justified; that is, it is valid to interpret the heavy tails 
as a result of superimposing Gaussians.

Finally, we perform another consistency check of the superstatis-
tical approach and extract the distribution of the effective friction 
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Fig. 6 | Superimposed Gaussian distributions leading to heavy tails. a, When the stochastic process follows two different Gaussian distributions  
(orange and green) and the data are aggregated (grey histogram), the result is a heavy-tailed distribution that is not Gaussian. Consequently, Gaussian 
fits (blue curve) tend to underestimate its tails. Assuming such a structure for the real frequency measurements, the frequency recordings are split into 
trajectories of length Δ t each and the kurtosis is computed. b, The average kurtosis of the Japanese 60 Hz dataset is plotted as a function of the length of 
Δ t. For very small Δ t the distribution has lighter tails than a Gaussian, while using the full dataset or large Δ t leads to the earlier observed heavy tails.  
T, during which the distribution changes, is determined as κ(Δ t =  T) =  3.
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γeff (ref. 51); see Methods. Based on general results on superstatis-
tics, we expect the effective friction to follow a χ2, inverse χ2 or log- 
normal distribution53,54, which then leads to an approximate 
q-Gaussian distribution of the frequency; see Supplementary Note 5 
for a derivation. In the case of the Japanese 60 Hz region the distri-
bution of γeff is well described by a log-normal distribution, again 
supporting the superstatistical approach; see Fig. 7.

Discussion
In summary, we have analysed power grid frequency fluctua-
tions by applying analytical stochastic methods to time series 
of different synchronous regions across continents including 
North America, Japan and different European regions. Based on 
bulk frequency measurements, we have identified trading as a 
substantial source of fluctuations (Figs.  1 and 3). Although fre-
quency fluctuations and power uncertainty are often modelled 
as Gaussian distributions16,18–21, we pinned down and quantified 
substantial deviations from a Gaussian form, including heavy tails 
and skewed distributions (Fig. 2).

Obtaining an analytical description of a complex system 
allows deeper insight into it. Hence, condensing the analysis of 
frequency fluctuations in power grids via a second-order nonlin-
ear dynamics, the swing equation, and neglecting spatial correla-
tions, we derived (generalized) Fokker–Planck equations for ̄ω .  
We obtained precise predictions on how power fluctuations impact 
the distribution of fluctuations of the grid frequency. Furthermore, 
our approach identifies, besides grid size, an increasing effec-
tive damping and inertia as a controlling factor for reducing  
fluctuation-induced risks. By incorporating smart grid control 
mechanisms4 or increasing generator droop control11, modifying 
effective damping may therefore reliably reduce the likelihood of 
large fluctuations in power grids55. Finally, our analytical theory 
is able to compare different sized grids, and predict fluctuations 
based on the size and inertia of the grid (equation (7)). Crucially, 
our mathematical framework goes beyond the simple N−1/2 scaling 
of Gaussian noise.

The results offer two approaches to model power grids under 
uncertainty. First, an optimization could include the non-Gaussian 
nature of the distribution by incorporating non-Gaussian noise, for 
example in the form of Lévy-stable noise. Alternatively, we have 
demonstrated that the distributions are also well explained by a 

superstatistics approach, where the non-Gaussian nature of the 
distributions arises by superimposing different Gaussian distribu-
tions. Especially when modelling shorter timescales of 1 h or less, 
a Gaussian approach is supported by our results. Studies aiming to 
cover timescales of full months or years, however, have to account 
for the changing mean and variance of the assumed Gaussian dis-
tribution, or explicitly model non-Gaussian distributions, going 
beyond current Gaussian approaches16,18–21.

The findings reported above have a number of implications for 
the operation and design of current and future energy systems. 
First, as trading induces large frequency fluctuations, designing new 
electricity markets and limiting frequency fluctuations are highly 
interlinked, especially when considering the implementation of 
smart grid concepts4,21. Second, knowing the temporal correlation 
structure of fluctuations helps predict increasing and decreasing 
likelihoods of large-amplitude events, thereby enabling mitigation 
strategies to be applied on timescales that make them most effi-
cient. Finally, deriving the scaling of fluctuations as a function of 
grid parameters, especially the grid size, should be very useful when 
setting up isolated grids, for example microgrids with a specified 
frequency quality, as damping and control needs can easily be esti-
mated by the approach introduced above. This may also be of use 
for larger synchronous regions when facing a decreasing M.

Moreover, applying similar stochastic methods to power grids 
also raises a range of additional questions. How does correlated noise 
impact the frequency statistics? Does the predicted scaling of fluc-
tuations with the grid size hold for a larger collection of independent 
power grids and in particular very small islands or microgrids? Can 
we disentangle damping and primary control to explain the differ-
ences of long timescales among different regions? These questions 
require further careful data analysis in future work, involving sub-
stantially more data on microgrids, work that could inspire further 
collaboration including a range of academic fields as well as public 
institutions and industry.

Methods
Moments of the frequency distributions. Deviations from Gaussian distributions 
as observed in Fig. 2 are quantified in a model-independent way using moments of 
the frequency distribution: given NM measurements of a discrete stochastic variable 
f, for example the grid frequency, as f1, f2, …, fNM

, its nth moment is defined as

∑μ = .
=
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f: 1
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The first moment of a distribution is the mean μ1 ≡  μ. Instead of the second 
moment, the centralized second moment, that is, the variance, is more commonly 
used. It is defined as
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Finally, we use the normalized third and fourth moments, β and κ, respectively, 
which are defined as
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A Gaussian distribution is symmetric and hence β is equal to zero. A non-zero 
skewness implies a distribution that is not symmetric around the mean but is more 
pronounced in one direction. The kurtosis meanwhile quantifies the extremity 
of the tails. A Gaussian distribution has κGauss =  3, while a higher value indicates 
an increased likelihood of large deviations. For instance, the CE grid displays a 
kurtosis of κCE =  4.0 ±  0.1.
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Fig. 7 | Self-consistency test of superstatistics. The histogram of γeff based 
on the Japanese 60 Hz frequency measurements, which is well described 
by a log-normal distribution. Such a distribution of γeff directly leads to  
q-Gaussian distributions of the aggregated data; see Supplementary 
Note 5. Other datasets are also approximated by log-normal distributions; 
see Supplementary Note 5.
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Normally distributed noise. For equation (4) we took the sum over multiple noise 
realizations that follow a normal distribution. Let ξi be random variables following 
a normal distribution, that is,

ξ ~ N(0, 1), (14)i

where N(0, 1) denotes a normal distribution with mean 0 and standard 
deviation 1. Then, the sum of identically and independently distributed random 
variables ξi given as

̄̄ ∑ξ ξϵ = ϵ
=

: (15)
i

N

i i
1

is distributed like a single normal distribution36

̄̄ ∑ξϵ ~ ϵ .
=












N 0, (16)

i

N

i
1

2

Superstatistics. In Figs. 6 and 7 we extract the local kurtosis and effective damping 
from the time series as follows. Let x(t) be a time series of random measurements 
with a mean ̄x . To test whether x(t) is aggregated by drawing from multiple 
distributions, we compute the local kurtosis as

̄
̄
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+Δ
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,0 0

0 . We do so for several values of Δ t and choose T such 
that κ(Δ t =  T) =  3; that is, averaging over T, there is no excess kurtosis and locally 
the variable x is subject to Gaussian noise.

γeff, which is changing over time, is then computed as

γ =
−
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x x
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t T t T
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2
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Following ref. 51 we expect γeff to follow a log-normal or alternatively a χ2 
or inverse χ2 distribution, as these lead to q-Gaussian distributions of x; see 
Supplementary Note 5.

Data availability. Frequency recordings are publicly available at the respective 
references for the CE, GB, Nordic and Japanese regions29–31,33,34. Frequency data  
for Mallorca32 were provided by Eder Batista Tchawou Tchuisseu. Data for the EI 
(ref. 35) were provided by Micah Till. All data that support the results presented in 
the figures of this study are available from the authors upon reasonable request.
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