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Random operators constitute fundamental building blocks of models of complex systems yet are far from fully
understood. Here, we explain an asymmetry emerging upon repeating identical isotropic (uniformly random)
operations. Specifically, in two dimensions, repeating an isotropic rotation twice maps a given point on the
two-dimensional unit sphere (the unit circle) uniformly at random to any point on the unit sphere, reflecting
a statistical symmetry as expected. In contrast, in three and higher dimensions, a point is mapped more often
closer to the original point than a uniform distribution predicts. Curiously, in the limit of the dimension d → ∞,
a symmetric distribution is approached again. We intuitively explain the emergence of this asymmetry and why
it disappears in higher dimensions by disentangling isotropic rotations into a sequence of partial actions. The
asymmetry emerges in two qualitatively different forms and for a wide range of general random operations
relevant in complex systems modeling, including repeated continuous and discrete rotations, roto-reflections and
general orthogonal transformations.
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I. INTRODUCTION

Random operations ubiquitously appear in complex system
models where they often reflect a statistical or approximate
symmetry of the real system [1–10]. Such operations play a
special role in physics and are the basic objects of random ma-
trix theory [9,11]. Random matrix theory asserts that spectral
and statistical properties of complex physical systems are well
described by those of random operators given (statistically)
the same symmetry. Applications started with Wigner explain-
ing the spacing statistics of energy levels in atomic nuclei [1]
and today cover fields as diverse as quantum chaos [3], traffic
dynamics [8], economics [10], and neurophysics [4,12,13] as
well as generic complex systems [5–7].

Orthogonal transformations, and in particular rotations, are
a special class of these operations with fundamental impor-
tance across physics, where they reflect rotational invariance
resulting from rotational symmetry (isotropy) of the system
under consideration. Examples range from a gravitational
potential forcing a planet to revolve around a star and the
classical dynamics of the spinning top to the dynamics of
isotropic fluids, exactly rotationally invariant spin systems,
and nearly isotropic superconductors. Furthermore, rotational
invariance enters various fundamental theories in physics, for
instance, the cosmological principle, essentially assuming an
isotropic universe, and Noether’s theorem, relating rotational
invariance to conservation of angular momentum.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Mathematically, rotations are described by orthogonal ma-
trices Q ∈ Rd×d satisfying Q−1 = QT and det Q = 1. Each
given Q maps one orientation of the unit sphere Sd−1 in
d dimensions to one other orientation, and each point on
the sphere to another point on the sphere. Random isotropic
rotations appear particularly simple and are characterized
by rotation matrices drawn uniformly from the space of all
such matrices Q ∈ Rd×d defined above. While the theoretical
foundations and mathematical descriptions of rotations and
related random operations are well established, some para-
doxical properties of random rotations still lack an intuitive
descriptive explanation. In this article, we give an intuitive
explanation of an asymmetry emerging from the repeated
action of isotropic (uniformly random) rotations in the context
of signal transmission and encoding [14] and quantitatively
analyzed using measure theory [15]. By decomposing the
isotropic rotation into two sequential elementary rotations,
we illustrate the geometric basis for the emergence of this
asymmetry for isotropic rotations in particular and orthogonal
transformations in general.

II. ASYMMETRY FROM REPEATED
ISOTROPIC ROTATIONS

Consider a rotation R in d = 2 dimensions. It maps a point
on a circle at angle φ to an angle φ′ = φ + α. For a rotation
R drawn uniformly at random, α is distributed uniformly in
[0, 2π ). Consequently, after the rotation the point φ′ = φ +
α mod 2π is distributed uniformly on the circle,

Rφ ∼ uniform[0, 2π ) (1)

[see Figs. 1(a) and 1(b)]. Applying the identical rotation
R again maps the point to an angle RRφ = R2φ = φ +
2α mod 2π . Also after this second rotation the image is
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FIG. 1. Asymmetry from repeated isotropic rotations. (a), (c),
(e), and (g) Realizations of the image of the north pole ex under
isotropic rotations R and double rotations R2 in two and three
dimensions. (b), (d), (f), and (h) Distribution of the angle θ of
the images with respect to ex . Images on the northern hemisphere
are shaded dark red. The distribution is nonuniform for repeated
isotropic rotations in three dimensions. (i) Probability pnorth of find-
ing the image R2ex on the northern hemisphere (compare [15]). The
asymmetry appears first in three dimensions and disappears again as
the dimension approaches d → ∞.

uniformly distributed on the circle,

R2φ ∼ uniform[0, 2π ) (2)

[see Figs. 1(c) and 1(d)].
In dimensions d � 3, however, the result is qualitatively

different. Applying a uniformly random (isotropic) rotation
R (now denoting a rotation matrix) maps the north pole
ex = (1, 0, 0)T ∈ R3 to a random point Rex. By definition, the
image is uniformly distributed on the unit sphere [Figs. 1(e)
and 1(f)]. Applying the same rotation again results in the
image R2ex on the sphere. However, unlike in two dimensions,
the image after the second rotation is not uniformly distributed
on the sphere. Instead, the image is more likely located on
the northern hemisphere, defined as those points x where
eT

x x > 0. This means that the probability pnorth of finding the
image on the northern hemisphere is pnorth = Prob(eT

x R2ex >

0) > 1/2 [Figs. 1(g) and 1(h)]. Note that the same holds for
any point x and the probability Prob(xTR2x) > 1/2.

This asymmetry is strongest in three dimensions and de-
cays again as the dimensionality increases [Fig. 1(i) and
Table I]. This phenomenon, termed the north pole prob-
lem [15], was initially discussed in the context of signal
transmission and encoding [14] and mathematically analyzed
using measure theory [15]. Can we intuitively understand the

TABLE I. Asymmetry from repeated isotropic rotations. Prob-
ability pnorth(R2) = Prob(eT

x R2ex > 0) of finding the image R2ex of
the north pole ex on the northern hemisphere after applying the same
random isotropic rotation R twice in different dimensions d . Decimal
values are rounded to two significant digits (compare [15]).

d 2 3 4 5 10 20 50 100 500 ∞
pnorth

1
2 0.71 0.68 0.66 0.62 0.59 0.56 0.54 0.52 1

2

mechanism behind it? In the following we explicitly construct
the repeated isotropic rotation in terms of elementary actions
and thereby explain first why the asymmetry appears in d = 3
dimensions and second why it decays as d → ∞.

III. DISENTANGLING REPEATED
ISOTROPIC ROTATIONS

The isotropy of a rotation R is defined by the rotational
invariance of its distribution, i.e., the fact that applying any
given rotation before or after does not change its distribution,
L(R) = L(Q ◦ R) = L(R ◦ Q′), where Q and Q′ are arbitrary
rotations and L(·) denotes the distribution (probability den-
sity) of its argument. It follows that the same holds for the
distribution of the images Rx when the rotation is applied
to any vector x ∈ Sd−1. Since L(Rx) = L(R ◦ Q′x) and Q′
can be any arbitrary rotation, the resulting distribution can-
not depend in any way on the original point. Therefore, as
intuitively expected, L(Rx) must be the distribution reflecting
the uniform Lebesgue measure on Sd−1, as illustrated in
Figs. 1(a), 1(b), 1(e), and 1(f). As the action of isotropic
rotations is independent of the specific initial point x, we
consider, without loss of generality, the north pole, i.e., the
unit vector of the first Cartesian coordinate ex = (1, 0, . . .)T ∈
Rd , as our original point.

The first question is now why applying the same random
rotation twice results in an asymmetric distribution of images
L(R2x) in d � 3 dimensions [Figs. 1(g) and 1(h)]?

To understand the action of an isotropic rotation, we ex-
plicitly construct it. Specifically, in three dimensions with
Cartesian coordinates x, y, and z, we use the following idea:
An isotropic rotation must reorient the three coordinate axes
uniformly to any orientation. Notably, the direction of the z
axis is defined by the direction of the other two axes and the
right-handedness of the coordinate system. In order to orient
the remaining x and y axes, we first fix the new direction of the
x axis by uniformly choosing a point v on the unit sphere and
applying the rotation Rex→v(θv) that maps ex to v in the most
direct way, i.e., the rotation with the smallest possible angle
θv = arccos(eT

x v) in the plane spanned by ex and v. The y axis
can then be oriented by choosing a direction perpendicular
to the (new) x axis uniformly at random. Equivalently, we
can apply an isotropic rotation in two dimensions around the
(new) x axis, i.e., around v. This rotation will map the y axis
to a uniformly distributed random direction perpendicular to
v. As we saw above, this is simply a rotation around v (in
the subspace R3

⊥v orthogonal to v) by an angle α chosen
uniformly in [0, 2π ), which we denote by R�v(α). Together,
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(a) (c)(b)

FIG. 2. Repeated isotropic rotation in three dimensions. Using
the explicit construction of an isotropic rotation R [Eq. (3)], we
illustrate the action of the repeated rotation R2 on the north pole
ex step by step [compare Eq. (4)]. (a) The first application of R =
R�v(α) ◦ Rex→v(θv ) maps ex to a random point v = Rex→v(θv )ex (red)
uniformly distributed on S2, rotating it by an angle θv. The rotation
R�v(α) around v leaves it unchanged. (b) The second application first
rotates v again by the same angle θv to the point w = Rex→v(θv )2ex

(blue). (c) The final rotation around v by an angle α ∈ [0, 2π )
leaves the angle θv between w and v constant, mapping w to a
point uniformly distributed on the circle through w and ex through
v (green). For almost all points v on the sphere, this resulting
image R2ex is more likely on the northern hemisphere. Only if v is
exactly on the equator, defined by eT

x v = 0, are the images distributed
equally between the northern and southern hemispheres.

this defines an isotropic rotation of S2 ⊂ R3 as

R = R�v(α) ◦ Rex→v(θv), (3)

orienting first the x axis and then the y axis to a uniformly
chosen orientation of the sphere. We can visualize the action
of the above construction on a globe in three-dimensional
space: We first position the globe such that the north pole
is pointing in a uniformly random direction and then turn
the globe around its north-south axis by a random angle α

drawn from a uniform distribution on [0, 2π ). The entire
construction selects one orientation of the globe and thus one
rotation uniformly from all possible rotations. Importantly,
this construction is independent of the explicit choice of ex

as our north pole. Moreover, the same idea can be used
recursively in higher dimensions and is, in a more general
setting, known from the subgroup algorithm for generating
uniform random variables [16].

Armed with this construction, we explain the emergence of
asymmetry by explicitly following how each step of

R2 = R�v(α) ◦ Rex→v(θv) ◦ R�v(α) ◦ Rex→v(θv)

affects the north pole ex. (i) The first elementary rotation (the
rightmost part) moves the north pole ex to its first image
v by the rotation with angle θv [Fig. 2(a)]. (ii) The second
rotation then rotates around v, leaving the image v of the north
pole unchanged. Applying the same rotation again, (iii) v is
first mapped to a new position w = Rex→v(θv)2ex, effectively
rotating ex by an angle 2θv [Fig. 2(b)]. (iv) The last rotation of
w around v yields the final second-iterate image R2ex of the
north pole. This final image is a point at angle θv to v, i.e., a
random point uniformly distributed on the circle centered at v
through w. We note that both ex and w form the same angle θv
with v, thus both points lie on this circle [Fig. 2(c)]. Overall,

we find

R2ex = R�v(α) ◦ Rex→v(θv)︸ ︷︷ ︸
R

◦ R�v(α) ◦ Rex→v(θv)︸ ︷︷ ︸
R

ex

= R�v(α) ◦ Rex→v(θv)v

= R�v(α) ◦ w

= R�v(α′) ◦ ex, (4)

where α′ = α + π mod2π . Since the rotation R�v(α) around
v is isotropic, we can equivalently rotate ex by an angle α′
drawn from the uniform distribution on [0, 2π ) around the
random axis v and obtain the same distribution L(R2ex ) =
L(R�v(α′)ex ).

The final image is thus uniformly distributed on a circle
on the sphere through ex centered at v. Since all these circles
cross at the point ex independent of v, the image of the
north pole is more likely to be close to the original direction
ex on the northern hemisphere than away from it, close to
−ex on the southern hemisphere. Only if v is perpendicular
to ex, i.e., if v lies on the equator, ex is rotated along a
great circle of the sphere and the image is located on the
northern or southern hemispheres with equal probabilities.
This step-by-step construction (4) explains the emergence of
the probabilistic asymmetry in d = 3 dimensions.

IV. DECAY OF ASYMMETRY WITH
INCREASING DIMENSION

It remains to answer the second open question: Why does
the asymmetry become less pronounced as the dimension
increases? An explicit construction similar to the above ex-
plicates isotropic random rotations in arbitrary dimensions
d � 3. As for d = 3, a point on the sphere Sd−1 is selected
uniformly at random as the first image v = Rex of the north
pole ex ∈ Sd−1 ⊂ Rd . As the second step, an isotropic rotation
of ex “around” v (in the subspace Rd

⊥v transverse to v)
is applied. The main difference now is that for d > 3 the
second rotation R�v is itself an isotropic rotation of Sd−2 in
d − 1 > 2 dimensions and thus cannot be parametrized by a
single angle α. Repeating the argument given above, we find
an analogous result: We obtain the same distribution when
applying R2 as when simply applying an isotropic rotation
in d − 1 dimensions around v. The resulting image of ex is
distributed on the northern or southern hemisphere with equal
probabilities only if v lies on the equator of the unit sphere
Sd−1 ⊂ Rd , i.e., if vTex = 0. Otherwise, more weight is given
to the northern hemisphere.

Now, similar to the fact that an increasing fraction of the
volume of a sphere in d dimensions is located arbitrarily close
to its surface as d increases, an increasing fraction of points
on the surface is located arbitrarily close to the equator of
that sphere as d increases. Consider a random vector x =
(x1, x2, . . . , xd )T on the unit sphere Sd−1 in d dimensions.
It has a squared length x2

1 + x2
2 + · · · + x2

d = 1. On average,
each 〈x2

i 〉 = 1/d and, for large d , the individual coordinates xi

are distributed approximately following a normal distribution
with mean 0 and variance 1/d [17,18] [see Fig. 3(a)]. In
particular, this holds for the first coordinate x1. Consequently,
as the dimension increases, the random vector x is more and
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(a) (b)

FIG. 3. Probability pnorth decays with dimension. (a) Probability
distribution of the first component x1 of a uniformly random point
on a sphere in d = 3, 10 and 100 dimensions. In higher dimensions,
the point is more and more likely to be close to the equator, x1 = 0,
and the distribution converges to a normal distribution with mean
0 and standard deviation

√
d (solid lines). (b) Scaling of pnorth,

the probability that the image R2ex of the north pole after repeated
isotropic rotation is on the northern hemisphere. For large dimen-
sions d → ∞ the probability pnorth decays to 1/2 as pnorth − 1/2 ∼

1√
2πd

[Eq. (A5)].

more likely to be close to the equator, x2
1 ∼ 1/d → 0. Thus,

in high dimensions, a uniformly chosen direction v is very
likely (almost) perpendicular to ex and the final image R2ex

of a repeated isotropic rotation is (almost) equally distributed
between the northern and southern hemispheres.

The explicit construction explained above suggests a ge-
ometric way to exactly calculate the probability pnorth for
any dimension d by evaluating the fraction of images of the
(d − 1)-dimensional isotropic rotation above the equator. The
detailed integrals of such a geometric construction yield a
scaling with dimension of the form

pnorth − 1/2 ∼ 1√
2πd

(5)

as d → ∞ [Fig. 3(b)], quantitatively explaining the slow
decay observed in Fig. 2(i). Details of the calculations are
presented in the Appendix.

V. DISCUSSION

In summary, we have explicated and intuitively explained
the mechanism underlying an asymmetry in repeated random
rotations that emerges in d = 3 dimensions and disappears
again with higher dimensions. Intriguingly, the naively ex-
pected 50:50 split of the image of an original point occurs
both in dimension d = 2 and again in the limit d → ∞, but
not in any other dimension.

Such asymmetries emerge not only for continuous rota-
tions. Repeating other random operations, for instance, rota-
tions of objects with discrete symmetries such as (hyper)cubic
symmetry, will qualitatively face the same breaking of the
symmetry. For such discrete random operations, a combinato-
rial analysis along the arguments detailed above will yield the
respective fractions quantifying the asymmetry. Interestingly,
the type of breaking of symmetry observed above arises in
two qualitatively different versions. First, the 50:50 fraction
between hemispheres of images of a single random operation
is not preserved by repeating the identical rotation (as for
the rotations studied above). Second, even if the image is

FIG. 4. Repeated random orthogonal transformations. Repeating
other random operations results in different types of asymmetry.
(a) and (b) Repeating the same isotropic orthogonal transformation
O, i.e., rotation or rotoreflection, twice results in the same dis-
tribution of the image as repeating an isotropic rotation R as the
reflection inverts itself. (c) and (d) Repeating O three times results
in a 50:50 split between the two hemispheres, but with a nonuniform
distribution of the images.

distributed on the northern and southern hemispheres with a
50:50 split, the distribution of images may not be uniform.
This happens, for example, when applying the same random
orthogonal transformation O (rotation and/or reflection) three
times in d = 3 dimensions (Fig. 4). In general, such (poten-
tial) distinctions might be more easily disentangled in systems
exhibiting discrete symmetry. We hope that this article helps
to build a better intuition about how basic and ubiquitous
symmetry operations act in the physical world around us and
about why the three dimensions we live in might be especially
interesting.
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APPENDIX: GEOMETRIC CALCULATION OF pnorth

The construction explained above suggests a geometric
way to exactly calculate the probability pnorth(d ) for any
dimension d by evaluating the fraction of images of the
(d − 1)-dimensional isotropic rotation above the equator.
These correspond to fractions of the surface of (d − 2)-
dimensional spheres. For example, in d = 3 dimensions we
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(a) (b)

FIG. 5. Geometric calculation of pnorth. Following the argument
in the text, we calculate pnorth by integrating over all possible direc-
tions v with the corresponding fraction of images on the northern
hemisphere. (a) If v forms an angle θv < π/4 with ex (that means if
v is located on the red part of the sphere), the image R2ex (green) is
always on the northern hemisphere [Eqs. (A1) and (A2)]. (b) Other-
wise, if π/4 < θv < π/2 (red), only a fraction of the final image R2ex

lies on the northern hemisphere (green). A fraction corresponding
to a (d − 2)-dimensional spherical cap with height h2 is mapped to
the southern hemisphere [Eqs. (A3) and (A4)]. Both arguments are
symmetric with respect to v on the southern hemisphere.

need to calculate the fraction of a 1-dimensional sphere (a cir-
cle) that is located above the equator [compare the green circle
in Fig. 2(c)]. We then integrate this fraction over all possible
directions v to obtain the final probability. We distinguish two
mutually exclusive cases.

(i) If v forms an angle θv < π/4 with ex, all the images
of double rotations R2 lie on the northern hemisphere. This
set of vectors v forms the cap S(d−1)(θmax) of the (d − 1)-
dimensional unit sphere and is defined by its opening angle
θv < θmax = π/4 or its height h1 = 1 − cos(θmax) [illustrated
in Fig. 5(a)]. The cap has an area [19]

A(d−1)
1 =

∫
S(d−1) (π/4)

dA

= πd/2

�
(

d
2

) I1/2

(
d − 1

2
,

1

2

)
, (A1)

where �(x) denotes the Gamma function and Ix(a, b) de-
notes the regularized incomplete Beta function. Since v is
distributed uniformly on the unit sphere Sd−1 ⊂ Rd , we have
to weight the area of the cap relative to the total area of the
unit sphere

A(d−1)
tot = 2πd/2

�
(

d
2

) . (A2)

Due to symmetry, the same is true if v is on the southern hemi-
sphere, θv ∈ ( 3π

4 , π ], giving a factor 2 in the final evaluation.
(ii) If π/4 � θv < π/2, only a fraction of the images will

be on the northern hemisphere. This fraction corresponds
to the surface of a (d − 2)-dimensional sphere with a cap
missing. We describe it as one minus the fraction of points

on the southern hemisphere, where the points on the southern
hemisphere belong to a cap with height h2 = 2 sin(θv) −

1
sin(θv ) of a sphere with radius r = sin(θv) in d − 2 dimensions
[illustrated in Fig. 5(b)]. This cap has an area [19]

A(d−2)
2 (r, h2) = π (d−1)/2

�
(

d−1
2

) rd−2I(2rh2−h2
2 )/r2

(
d − 2

2
,

1

2

)
(A3)

and we calculate the fraction relative to the total area of the
sphere

A(d−2)
tot (r) = 2π (d−1)/2

�
(

d−1
2

) rd−2. (A4)

We again weight each possible v with respect to the total area
of the unit sphere Sd−1 ⊂ Rd [Eq. (A2)]. As the first case, this
argument is also symmetric with respect to the rotation axis v
on the southern hemisphere, θv ∈ [π

2 , 3π
4 ).

We calculate the total probability by integrating the corre-
sponding fraction over all directions v, where v is distributed
uniformly on the (d − 1)-dimensional sphere. The probability
of finding the image of R2 on the northern hemisphere is then
given by

pnorth(d )

= 2
A(d−1)

1

A(d−1)
tot︸ ︷︷ ︸

case (i)

+ 2
1

A(d−1)
tot

∫
θv∈[π/4,π/2)

1 − A(d−2)
2 (r, h2)

A(d−2)
tot (r)

dA

︸ ︷︷ ︸
case (ii)

= 2I1/2

(
d − 1

2
,

1

2

)
+ 2

A(d−1)
tot

∫ π/2

π/4
1

− 1

2
I(2rh2−h2

2 )/r2

(
d − 2

2
,

1

2

)
dA(θv )

= 1 − 2

A(d−1)
tot

∫ π/2

π/4

1

2
I(2rh2−h2

2 )/r2

(
d − 2

2
,

1

2

)
dA(θv )

= 1 − �
(

d
2

)
√

π�
(

d−1
2

)
∫ π/2

π/4
I[2 sin2(θ )−1]/ sin4(θ )

(
d − 2

2
,

1

2

)

× sind−2(θ )dθ

≈ 1

2
+ 1√

2πd
, (A5)

where the surface element dA(θv ) = 2π (d−1)/2

�( d−1
2 )

sin(θv)d−2dθv

describes the area of the (d − 2)-dimensional sphere at an-
gle θv. For example, in d = 3 dimensions this describes
the circumference of a circle of latitude with radius sin(θv)
multiplied by dθv. The last step describes the scaling for large
dimensions d → ∞ obtained via numerical evaluation of the
integral. Evaluating this expression gives the results presented
in Table I and shown in Figs. 1(i) and 3(b) (compare also [15]).
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