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Synchronization is the process of achieving identical dynamics among coupled identical units. If the

units are different from each other, their dynamics cannot become identical; yet, after transients,

there may emerge a functional relationship between them—a phenomenon termed “generalized

synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for

synchronizing identical units, also supports generalized synchronization among nonidentical chaotic

units. Generalized synchronization can be achieved by transient uncoupling even when it is

impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes

synchronization in the presence of common noise. Transient uncoupling works best if the units stay

uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus,

to select a favorable uncoupling region, we propose an intuitive method that measures the local

divergence at the phase points of the driven unit’s trajectory by linearizing the flow and subsequently

suppresses the divergence by uncoupling. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4959141]

About two decades ago, researchers discovered that two

coupled identical chaotic systems may synchronize and

achieve identical dynamics. Earlier, this seemed counterin-

tuitive, because chaotic systems exhibit sensitive depen-

dence on initial conditions. This concept of synchronization

was further generalized to include coupled nonidentical

chaotic oscillators. Recently, another seemingly surprising

result highlighted how occasional uncoupling of two identi-

cal chaotic units during their simultaneous time evolution

induces synchronization. This phenomenon was named

transient uncoupling.1 Here, we demonstrate how transient

uncoupling effects generalized synchronization between

nonidentical chaotic systems. Transient uncoupling may

also suppress noise induced desynchronization in such cou-

pled systems. Additionally, we explain why the counterin-

tuitive effects of transient uncoupling are actually not

unexpected.

I. INTRODUCTION

Synchronization, the coordination of individual systems

to achieve identical dynamics, is a ubiquitous phenomenon

realized in coupled dynamical systems. The study of syn-

chronization goes back to the seventeenth century when

Huygens reported the synchronization of two pendulum

clocks suspended from a single horizontal beam. Since then

synchronization and related phenomena have been found in

diverse contexts—biological and ecological (fireflies, cricket

chirps, networks of neurons, pacemaker cells, etc.);2–5 physi-

cal and engineering;6–9 and sociological (crowd clapping

together, crowd marching, etc.).10 In the last two decades,

the theories on synchronization in chaotic systems have

attracted a lot of attention.11,12

The phenomenon of synchronization has been systemati-

cally classified into many types, viz., complete or identical

synchronization,13,14 phase synchronization,15,16 imperfect

phase synchronization, burst synchronization,17,18 lag syn-

chronization,19 intermittent lag synchronization,19,20 general-

ized synchronization (either weak or strong),21–24 and so

on. Researchers have tried to invent a unified definition to

encompass these different types and also have contemplated

extending the definition to infinite dimensional systems

described by partial differential equations and/or systems

where noise is present.25

One may recall that two identical subsystems are said to

be in complete synchrony when, irrespective of the initial

conditions, their variables are exactly identical in the limit:

time t!1. We then say, that the coupled “system” is in a

stable synchronized state. However, given a collection of

subsystems, it is a priori not at all obvious which type of

synchronization may result for different types of coupling.

Moreover, a pair of chaotic subsystems is typically only syn-

chronizable for a particular range of parameter values.

Therefore, a practical and general methodology that induces

synchronization among coupled subsystems is desirable. The

recently proposed method of transient uncoupling1 is one

such interesting method. It has been reported to induce

a)Electronic mail: adityat@iitk.ac.in
b)Electronic mail: malte@nld.ds.mpg.de
c)Electronic mail: mmanu@iitk.ac.in
d)Electronic mail: timme@nld.ds.mpg.de
e)Electronic mail: sagarc@iitk.ac.in

1054-1500/2016/26(9)/094817/8/$30.00 Published by AIP Publishing.26, 094817-1

CHAOS 26, 094817 (2016)

http://dx.doi.org/10.1063/1.4959141
http://dx.doi.org/10.1063/1.4959141
mailto:adityat@iitk.ac.in
mailto:malte@nld.ds.mpg.de
mailto:mmanu@iitk.ac.in
mailto:timme@nld.ds.mpg.de
mailto:sagarc@iitk.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4959141&domain=pdf&date_stamp=2016-08-04


complete synchronization in a pair of identical chaotic sub-

systems that are otherwise unsynchronized for the same cou-

pling strength.

In more commonly found pairs of nonidentical subsys-

tems, complete synchronization cannot take place, but gener-

alized synchronization, i.e., functional dependence between

the asymptotic states of the subsystems, can potentially be

observed: Consider two identical or nonidentical chaotic sub-

systems, X and Y, described by

_x ¼ FðxÞ and _y ¼ GðyÞ; (1)

respectively, where xðtÞ; yðtÞ 2 RN are the states of the two

subsystems at time t. Let the subsystem Y be unidirectionally

and diffusively coupled to the subsystem X as follows:

_y ¼ GðyÞ þ eC � ðx� yÞ; (2)

where C 2 RN�N is a constant, time-independent, coupling

matrix and e is the coupling strength parameter.26 A general-

ized synchronization state is said to exist when there is a

map U taking the trajectories from the driver X onto the tra-

jectories of the driven unit Y, i.e., yðtÞ ¼ UðxðtÞÞ. In this arti-

cle, we ask whether transient uncoupling supports and may

actually induce generalized synchronization among noniden-

tical chaotic oscillators.

Furthermore, natural systems are not only usually noniden-

tical but are also invariably affected by noise. The role noise

plays in synchronization has been a source of debate.27–36

Studying synchronization in settings where the systems are

additionally driven by the same random forcing is important in

the context of neuroscience17,37 and ecology.38 It has been

observed that common noise when supplied to nonidentical

systems either enhances or destroys generalized synchroniza-

tion depending on the system details.36 We show here that tran-

sient uncoupling stabilizes the synchronized states even in the

presence of common noise.

II. TRANSIENT UNCOUPLING AND GENERALIZED
SYNCHRONIZATION

Transient uncoupling1 is defined as the switching off of

diffusive coupling between the two identical subsystems

(i.e., when F ¼ G in Eq. (1)) when the phase trajectory

enters a particular subset of the driven subsystem. In other

words, we multiply the coupling strength parameter in

Eq. (2) by a factor �vðyÞ given by

�vðyÞ ¼ 0 for y 2 U;
1 for y 62 U;

�
(3)

where U � RN (the phase space of the driven unit). In prin-

ciple, for identical subsystems, defining U as a subset of the

driver unit also works. The new dynamics of the driven unit

Y is described by

_y ¼ GðyÞ þ e�vðyÞC � ðx� yÞ; (4)

whereas the dynamics of the driver unit X remains unchanged.

Transient uncoupling has been shown to completely synchro-

nize identical subsystems in a far wider range of coupling

strengths. This paper looks to establish the possible effective-

ness of this scheme on nonidentical subsystems. However, for

nonidentical subsystems aiming for generalized synchroniza-

tion is more appropriate.

With a view to quantitatively characterize generalized

synchronization, although there are other methods,14,39 we

have chosen to work with arguably the easiest one: the auxil-

iary system method.40 For the convenience of the readers,

we briefly summarize it below. If a generalized synchroniza-

tion state exists between X and Y, yðtÞ is functionally deter-

mined by xðtÞ in the asymptotic limit. We consider an exact

replica of Y, Y0 (say), that is identically coupled to X

_y0 ¼ Gðy0Þ þ eC � ðx� y0Þ: (5)

Now, the crucial argument is that in order to argue for gener-

alized synchrony between X and Y (i.e., existence of U),

one has to establish that Y and Y0 are in complete syn-

chrony.24 It is known that the linear stability of the manifold

y0ðtÞ ¼ yðtÞ is equivalent to the linear stability of the mani-

fold of the generalized synchronized motions in the total

phase space X � Y.40 Identical synchronization in Y � Y0 is

quantified by the maximal Lyapunov exponent of the trans-

verse system y? ¼: y� y0 described by

_y? ¼ GðyÞ �Gðy0Þ � eC � ðy� y0Þ;
� ½JðysðtÞÞ � eC�y?; (6)

where JðyÞ is the matrix @G=@y and ysðtÞ is the synchronous

state. For the state ysðtÞ to be stable, the maximal transverse

Lyapunov exponent

k?max ¼ lim
t!1

1

t
ln
ky? tð Þk
ky? 0ð Þk (7)

must be negative.11

In order to fully appreciate our results, we analytically

discuss generalized synchronization in two coupled identical

logistic maps

xnþ1 ¼ QðxnÞ; (8a)

ynþ1 ¼ QðynÞ þ e½QðxnÞ � QðynÞ� : (8b)

Here, QðxÞ ¼ 4xð1� xÞ. The auxiliary map, thus, is

y0nþ1 ¼ Qðy0nÞ þ e½QðxnÞ � Qðy0nÞ� : (9)

If a relation of the form yn ¼ UðxnÞ exists asymptotically,

then the two logistic subsystems are definitionally in syn-

chrony. Evidently, here U is a scalar function. One classi-

fies this synchronization as strong or weak depending on

whether U is differentiable or not. It is easy to show24 that

as e is increased weak synchronization (nondifferentiable

U) precedes strong synchronization (differentiable U): first

there is synchronization between y and y0, then x and y syn-

chronize at a higher coupling strength. Now, let us weigh

the effect of transient uncoupling. Since the driven and the

driver subsystems are identical, we define U as the subset

½c1; c2� � ½0; 1� of the phase space of the driver. Here,

c1; c2 2 ½0; 1� and c1 � c2. Using the invariant probability
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density qinvðxÞ ¼ 1=½p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
� of the logistic map, it is

straightforward to calculate the transverse Lyapunov expo-

nent (k?yy0 , conditioned on xn) of the invariant manifold

y ¼ y0 and also the transverse Lyapunov exponent (k?xy)

of the invariant manifold x¼ y. These are, respectively,

given by

k?yy0 ¼ hln 1� eð Þ þ lim
n!1

1

n

Xn

i¼1

lnjQ0 ynð Þj; and (10)

k?xy ¼ h lnð1� eÞ þ ln 2; (11)

where h ¼:
Ð c1

0
qinvðxÞdxþ

Ð 1

c2
qinvðxÞdx � 1. For weak syn-

chronization, only k?yy0 < 0, whereas for strong synchronization

k?xy < 0 as well. The latter’s threshold coupling parameter is

thus given by e ¼ 1� 1=21=h at which k?xy ¼ 0. Hence, one

notes that as h decreases (meaning more uncoupling),

e increases. In other words, the subsystems can now synchro-

nize only at higher values of e. This seems very natural as one

would expect uncoupling to disrupt synchronization. A similar

conclusion holds for weak synchronization as well. An imme-

diate question then would be: How and why, if at all, should
transient uncoupling be effective in inducing generalized
synchronization?

III. TRANSIENT UNCOUPLING IN COUPLED
NONIDENTICAL OSCILLATORS

Let us conduct numerical experiments on the effect of

transient uncoupling on systems that are known to exhibit

generalized synchronization. To this end, we choose a sys-

tem consisting of the Lorenz subsystem41 and the dynamo

subsystem.42 For this system, noise has been shown to

improve or destroy the stability of the generalized synchroni-

zation state depending on the direction of coupling.36 This

interplay between noise and generalized synchronization has

been exploited later in this paper, and this is our primary

motivation for choosing this particular synchronizable sys-

tem. In principle, our study on this system is quite general

and could be done using any two coupled nonidentical

subsystems.

If such nonidentical oscillators are coupled continuously

at all times (no uncoupling), they exhibit generalized syn-

chronization.36 This means that, by definition, there is a

functional relationship between the driver and the driven var-

iables for the orbits on the overall chaotic attractor. Such a

function, however, is neither known a priori nor is it easy to

find it a posteriori. Thus, in order to understand the action of

transient uncoupling on the synchrony of coupled subsys-

tems, we prepare two nonidentical subsystems such that the

form of the function relating the drive and the driven varia-

bles are known beforehand. In what follows, we start with

such a system and subsequently explore the other one, viz.,

the dynamo–Lorenz system.

A. The R€ossler and transformed R€ossler system

Refer back to Eqs. (1) and (2), and let F ¼ G. Consider

the identical oscillators to be coupled R€ossler oscillators

defined by FðxÞ ¼ ð�ðx2 þ x3Þ; x1 þ ax2; bþ x3ðx1 � cÞÞT
(Ref. 43) and C 2 R3�3, where Cij¼ 1 for i ¼ j ¼ 1 and

Cij¼ 0 otherwise. In addition, we choose a ¼ b ¼ 0:2,

c¼ 5.7, and we notationally define x ¼: ðx1; x2; x3Þ>. It has

been comprehensively shown1 that transient uncoupling

remarkably enhances the range of coupling parameter e for

which the aforementioned system is synchronized.

Let us perform a nonlinear transformation of driven

variables21

z1 ¼ y1; z2 ¼ y2 þ 0:4y3 � 0:008y2
3; z3 ¼ y3; (12)

and consequently, the driven subsystem explicitly becomes

_z1 ¼ �½z2 þ 0:6z3 þ 0:008z2
3� � eðz1 � x1Þ; (13a)

_z2 ¼ z1 þ aðz2 � 0:4z3 þ 0:008z2
3Þ

þð0:4� 0:016z3Þ½bþ z3ðz1 � cÞ�; (13b)

_z3 ¼ bþ z3ðz1 � cÞ; (13c)

which we call the transformed R€ossler equations. If the cou-

pled R€ossler oscillators are synchronized, then so should

the driver R€ossler subsystem and the driven transformed

R€ossler equations. Technically speaking, these two subsys-

tems, being nonidentical, cannot exhibit complete synchroni-

zation. However, what is important to note is that, by

definition, they should be in generalized synchrony when-

ever the coupled identical R€ossler subsystems are in com-

plete synchrony; and therefore, because transient uncoupling

is effective on the latter, it is expected to be effective in

inducing synchrony in the former system as well.

However, before embarking on the numerical results,

we highlight a caveat worth paying attention to. When the

diffusive coupling parameter of the two identical R€ossler

subsystems is varied from zero to infinity, complete synchro-

nization is seen for a small range of values of coupling

parameter e 2 ðec1; ec2Þ, where 0 < ec1 < ec2 <1. For the

system parameter values we are working with, ec1 and ec2 are

approximately 0.2 and 4.3, respectively.1 At these two

parameter values, the transverse Lyapunov exponent is zero,

and for e 2 ðec1; ec2Þ; the exponent is negative. Our point of

interest is that the two subsystems, for e > ec2, are not only

not in complete synchrony but also the driven system shows

unstable response and becomes unbounded. It has been

analytically concluded26 that if e is very large, the diffusively

coupled R€ossler subsystems can be thought of as having a

driven subsystem (y2, y3), which is being driven by the

x1-signal that replaces y1 (complete replacement). This

driven system has one positive conditional Lyapunov expo-

nent making the response unstable. In effect, there is no

well-behaved driven attractor. Note that one is still able do a

numerical calculation of the transverse Lyapunov exponents

as the equations for the transverse perturbations do not

involve any variables from the driven subsystem.

Now, if one attempts to find generalized synchronization

between the R€ossler oscillator and the transformed R€ossler

oscillator for e > ec2, then one never succeeds as there is no

overall chaotic attractor on which a functional relationship

between x and z exists. Consequently, as seen in Fig. 1(a),
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the graph of the transverse Lyapunov exponent vs. coupling

parameter has not been extended beyond ec2.

While many choices of uncoupling region are possible, let

us observe what happens for a specific one: U ¼ fðz1; z2; z3Þ
2 R3 j z1 62 ½�4:0;þ6:4�g. A close inspection of Fig. 1(a)

reveals that transient uncoupling increases the range of cou-

pling parameter values for which the subsystems are in gener-

alized synchrony with each other. Generalized synchronization

is preserved even beyond �c2 � 4:3 for arbitrarily high values

of coupling strengths. In this context, it is worth noting that the

abscissa of the figure is in log -scale.

In passing, it may be mentioned that the above discus-

sion has nothing to do with the noninvertibility of transfor-

mation (12). Even a linear (hence invertible) transformation

would not have necessarily resulted in generalized synchro-

nization because mere equivalence between the drive and the

driven does not guarantee it.22

B. The dynamo–Lorenz system

The preceding example has demonstrated how the idea

that transient uncoupling improves complete synchronization

naturally carries over to the improvement of generalized syn-

chronization due to transient uncoupling. Now we focus on

the dynamo–Lorenz system in which we have no a priori
knowledge of the functional relationship existing between

the two subsystems. Thus, only numerical experiments reveal

whether transient uncoupling is of any help in inducing syn-

chrony in this system of nonidentical chaotic subsystems.

The dynamo subsystem is described by

_x1 ¼ x2x3 � lx1; (14a)

_x2 ¼ ðx3 � cÞx1 � lx2; (14b)

_x3 ¼ 1� x1x2 ; (14c)

and the Lorenz subsystem by

_y1 ¼ rðy2 � y1Þ; (15a)

_y2 ¼ qy1 � y2 � y1y3; (15b)

_y3 ¼ y1y2 � by3 : (15c)

We set l ¼ 1:7, c ¼ 0:5, r¼ 10, q¼ 35, and b ¼ 8=3.

The Lorenz subsystem (driven) is coupled to the

dynamo subsystem (driver) unidirectionally by the 3� 3

coupling matrix C with Cij¼ 1 for i ¼ j ¼ 1 and Cij¼ 0

otherwise. This corresponds to adding a term eðx1 � y1Þ to

Eq. (15a). At e ¼ 0, the two subsystems are not in syn-

chrony. However, as e is increased beyond e � 3:7, the

driven Lorenz unit enters into a generalized synchronization

state with respect to the driving dynamo unit.

Among many choices of the uncoupling region U, we

find that the region defined by y3 < 33 in the phase space of

the driven unit [vide Fig. 1(b)] serves as a favorable uncou-

pling region: the transient uncoupling brings about general-

ized synchronization at smaller values of e. Specifically, now

generalized synchronization states are observed for e � 3:4.

The studies described above have showcased the possibil-

ity that in arbitrary systems, consisting of coupled nonidenti-

cal units in a generalized synchronization state, transient

uncoupling augments the range of coupling parameter over

which the generalized synchronization states are stable. In

fact, further investigations show that similar conclusions hold

for networks of nonidentical oscillators which we shall report

elsewhere. However, an important aspect, or rather limitation,

of transient uncoupling is that it is not known beforehand

which uncoupling regions induce generalized synchroniza-

tion. On the basis of the numerical experiments performed on

the two representative systems, it may appear that choosing a

U that assists in realizing generalized synchronization is prac-

tically a matter of trial-and-error.

IV. WHY DOES UNCOUPLING WORK?

Note that unlike the investigation of synchronization

among identical subsystems, we are now dealing with three

subsystems, viz., X (driven), Y (driver), and Y0 (auxiliary of

driven). Therefore, it is a practical question to ask which of the

three subsystems should be used for defining the uncoupling

region U in Eq. (3). More importantly, as pointed out earlier, it

is not a priori clear which particular choice of U is favorable

as far as supporting a synchronized state is concerned.

In order to address these issues, we return to Eq. (6) and

define ~Jðys; eÞ ¼: JðysÞ � eC. The linear stability of the syn-

chronous state ysðtÞ is dictated by the largest eigenvalue of

the matrix ~Jðys; eÞ, which is a function of the variables of the

driven subsystem ys. Therefore, it makes sense to utilize the

phase space of driven subsystem Y to pick the uncoupling

region. In fact, in the aforementioned numerical experiment,

this is exactly what has been done.

Now coming to the central issue, it is desirable to devise

an algorithm for picking a favorable uncoupling region so

that synchrony is realized for the widest possible range of

coupling strengths. It would be even better if the algorithm

is applicable independent of system under consideration.

Although such a universal algorithm is not available to us

presently, we present an intuitive strategy that explains

what kind of uncoupling region may effect generalized syn-

chronization: Let the eigenvalues of ~Jðys; eÞ be given by

k1; k2;…; kN such that Reðk1Þ 	 Reðk2Þ 	 � � � 	 ReðkNÞ.
Suppose there exist regions in the phase space of Y such that

Reðk1Þ > 0. The points of the synchronous trajectory in

these regions are linearly unstable. In order to get rid of such

regions having obvious destabilizing effect, we propose to

FIG. 1. Transient uncoupling induces generalized synchronization. Here, we

plot the maximum transverse Lyapunov exponent k?max as a function of the

coupling strength e for (a) the R€ossler and transformed R€ossler system and

(b) the dynamo–Lorenz system, without (dashed line) and with transient

uncoupling (solid line). Evidently, for both the systems with transient uncou-

pling employed, generalized synchronization states have been induced for

the coupling parameters at which they are not realizable otherwise.
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uncouple the subsystems when the phase orbits are in these

regions. In place of this convenient usage of eigenvalues of
~Jðys; eÞ, one could also have used qualitatively equivalent

quantities like local Lyapunov exponents44,45 or eigenvalues

of the symmetrized ~Jðys; eÞ
46 in order to locate an optimum

uncoupling region. However, our choice is sufficient for the

problem in hand. In fact, Johnson and collaborators47 have

also preferred the same choice to the others for exploring

synchronization and imposed bifurcations in the presence of

large parameter mismatch between the drive and the driven

subsystems.

To explain the mechanism behind this strategy, we

remark that, in general, the dynamics is locally contracting

or locally diverging, depending on the state ðxðtÞ; yðtÞÞ
2 ðX; YÞ along its trajectory determined by Eq. (1). By defi-

nition, the driven original dynamics yðtÞ and auxiliary

dynamics y0ðtÞ desynchronize when the maximum trans-

verse Lyapunov exponent is positive and synchronize when

the exponent is negative. But these two subsystems Y and Y0

are identical and uncoupled by construction, and both are

forced by X. Consequently, for y?ð0Þ ! 0, the maximum

transverse Lyapunov exponent is determined in the trans-

verse manifold of Y�Y0, exactly as if one is calculating nor-

mal maximum Lyapunov exponent (conditioned on xðtÞ) of

the corresponding orbit yðtÞ in the phase space of Y. Now,

the maximum transverse Lyapunov exponent represents the

cumulative effect of all possible local contractions and

divergences along this trajectory. So, by uncoupling the two

subsystems at a certain point y, if the local linear instability

(divergence) due to the presence of an unstable eigenspace

is suppressed, then the maximum transverse Lyapunov

exponent becomes smaller. Thus, a set of such points y

where coupling is turned off constitutes an uncoupling

region that makes the exponent negative, resulting in gener-

alized synchronization.

Equipped with this method of selecting the uncoupling

region, we now revisit the dynamo–Lorenz system and dem-

onstrate why transient uncoupling is effective in enhancing

generalized synchronization therein. To this end, Fig. 2 is

self-explanatory: one notes that picking an uncoupling

region U such that Reðk1Þ > 0 for most of the phase points

in the region induces synchronization. We also see that on

choosing U such that Reðk1Þ < 0 for a majority of its points,

transient uncoupling desynchronizes the coupled system that

is otherwise in generalized synchrony.

Although the aforementioned method of selecting U has

worked remarkably well for the dynamo–Lorenz system, it is

too elementary to work for every possible system. When

transient uncoupling is employed, one effectively replaces

the matrix ~Jðys; eÞ having eigenvalues k1; k2;…; kN with the

matrix ~Jðys; 0Þ having eigenvalues k0
1; k

0
2;…; k0

N (say).

Therefore, if at some point of the driven phase space

Reðk0
1Þ < Reðk1Þ, then the stability of the synchronization

state improves locally. Nevertheless, even though we may,

by design, choose the uncoupling region so that Reðk1Þ is a

large positive number, it is entirely possible that transient

uncoupling will fail to work. This is simply because it may

happen that Reðk0
1Þ > Reðk1Þ for a majority of points in the

uncoupling region. Additionally, this methodology is not

accounting for the effects of ki’s (1 < i < N) as well.

V. UNCOUPLING OVERCOMES NOISE

Up until now we have dealt with transient uncoupling in

idealized systems in the absence of any noise. However, in

realistic systems, noise is always expected to be present in

some form or the other. Furthermore, low-dimensional deter-

ministic models of natural systems do not fully describe all

the external and internal fluctuations the system components

are subjected to. A common way of accounting for some of

the effects of such stochastic variabilities is to add external

additive noise sources into the system’s evolution equations.

Interestingly, noise modeled in this fashion is known to play

a crucial role in either disrupting or, more surprisingly, help-

ing to achieve synchronized states. An elaborate discussion

regarding the debates on noise induced synchronization can

be found in the review article by Boccaletti et al.48

In view of the above, exploring the interplay between

transient uncoupling and noise is a natural next step of our

investigation. After all, both transient uncoupling and noise

are observed to modify the critical value of coupling strength

at which transition from synchronous to non-synchronous

state occurs. For the dynamo-Lorenz system, the direction of

FIG. 2. Choosing uncoupling region to induce generalized synchronization. Subplot (a) depicts the projected phase portrait of the Lorenz subsystem’s attractor

when driven by the dynamo subsystem. The color bar encodes Reðk1Þ (vide text) of the corresponding transverse systems. The green and the red shaded areas

showcase the chosen uncoupling regions—U ¼ fðy1; y2; y3Þ 2 R3 j 40 < y3 < 45g and U ¼ fðy1; y2; y3Þ 2 R3 j y3 < 33g, respectively—used to test the

effect of transient uncoupling. Subplot (b) shows the variation of the maximal transverse Lyapunov exponents k?max as a function of the coupling strength e.
The dotted red and the solid green curves, respectively, correspond to the red and the green uncoupling regions (as illustrated in the left panel). Their compari-

son with the case where transient uncoupling is not active (dashed black curve) shows how an educated choice of uncoupling region enhances generalized syn-

chronization. Fig. 1(b) exhibits the enlarged version of the subplot near e ¼ 3:4.
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coupling determines the role the additive noise plays in

either enhancing or destroying generalized synchroniza-

tion:36 specifically, when the Lorenz subsystem is driven by

the dynamo subsystem, strong enough common noise

destroys generalized synchronization. In what follows, we

discover that the desynchronization induced by noise might

be removed by transient uncoupling.

Let the Lorenz subsystem be coupled to the dynamo uni-

directionally the way explained in Sec. III B with the cou-

pling strength set to e ¼ 5:2. At this coupling strength, the

system exhibits generalized synchrony in the absence of

noise as shown in Fig. 3. Now suppose a common noise term

DgðtÞ is added to Eqs. (14b) and (15b). Here, D is the noise

amplitude and gðtÞ is a Gaussian white noise signal of unit

variance. As the noise strength D is increased from zero, the

maximal transverse Lyapunov exponent increases, and at

D � 1:4 and beyond, the two subsystems are no longer in

synchrony (Fig. 3). However, on transiently uncoupling the

subsystems, we immediately witness an increase in the

threshold of maximum noise below which the generalized

synchronized state is stable.

As depicted in Fig. 3, by choosing the green uncoupling

region U (z< 33) illustrated in Fig. 1(a), it is possible to

keep the generalized synchronization state stable up to a

maximum noise amplitude of D � 2:5. It should be noted

that this noise amplitude is greater than the aforementioned

threshold value of D � 1:4 in the absence of transient uncou-

pling. This clearly highlights the definite increase in the

robustness of the generalized synchronization state against

the disruptive effects of the noise.

That transient uncoupling in fact acts subtly but notice-

ably on the synchronized states of coupled noisy subsystems

is not hard to envisage. Transient uncoupling effectively

decouples the driven subsystem for a finite period of time

and consequently suppresses the effect of noise from enter-

ing into it via the variables of the driver. Also, it is well

known49 that noise essentially changes the system parame-

ters to new renormalized values. These renormalized param-

eters are, in principle, subject to further modification on

uncoupling the subsystems and the final modified parameter

values may be such that for those values the subsystems are

known to synchronize.

VI. DISCUSSION AND CONCLUSIONS

Summarizing, we have shown that by transiently switch-

ing off coupling between two unidirectionally coupled non-

identical unsynchronized subsystems, it is possible to induce

generalized synchronization between them. A working meth-

odology, based on the eigenvalues of the Jacobian of the

transverse system, for selecting favorable uncoupling regions

in phase space has been proven to be effective in synchroniz-

ing the dynamo–Lorenz system. Moreover, we have shown

that transient uncoupling is a robust scheme for synchroniza-

tion in realistic settings. It counters the noise that disrupts

synchrony between two chaotic oscillators. Although with a

view to avoiding repetition of qualitatively similar results we

have not explicitly reported the effectiveness of transient

uncoupling in synchronizing extended systems, it may be

naturally and correctly guessed that transient uncoupling

should also be able to synchronize bidirectionally coupled

subsystems and networks of coupled chaotic nonidentical

subsystems. It could also be of help in secure communication

schemes based on chaotic synchronization.50,51 In transient

uncoupling induced chaotic synchronization, the drive varia-

bles (which now could also include a signal to be masked

and transmitted) are required only partially for synchronizing

the receiver subsystem. Thus, it might be difficult for an

eavesdropper to decrypt the signal as the information trans-

mitted per unit time is small.

Our specific study with the R€ossler and transformed

R€ossler system makes it clear that apart from making an

existing generalized synchronization state more stable and

robust, transient uncoupling can bring an overall attractor

into being for the parameter values at which it is nonexistent.

This is crucial because the definition of generalized synchro-

nization requires a functional (differentiable or nondifferen-

tiable) relationship between the drive and the driven

trajectories of such an attractor. Thus, generalized synchroni-

zation is not even defined in the absence of such an attractor.

Transient uncoupling and the methodology of choosing

favorable uncoupling regions may be compared with some

of the other known schemes for synchronization, e.g., finite

time step method,52 dynamic coupling,53 on-off coupling,54

etc. Although similar in spirit, the method of transient uncou-

pling is fundamentally different from such synchronization

techniques, and, moreover, the main results of this paper

concern generalized synchronization that has not been

addressed at all in the context of those schemes. Also, the

robustness of such schemes against the disruptive effect of

noise on generalized synchronization is equally unexplored.

The emphasis of the article has been on how transient

uncoupling may induce synchronization, but there is another

obvious aspect of transient uncoupling. It might also be used

to affect desynchronization. For this purpose, rather than

choosing an uncoupling region that induces synchronization,

one needs to choose an uncoupling region such that an

already synchronized system becomes desynchronized. We

have already seen such an example in Fig. 2(b) where the

uncoupling region specified by 40 < y3 < 45 (see also

Fig. 1(a) near ec1) leads to desynchronization. It is well

known that desynchronization,55 an important phenomenon

FIG. 3. Transient uncoupling removes noise induced desynchronization.

Here, we plot the maximum transverse Lyapunov exponent k?max as a func-

tion of the noise strength D for the dynamo–Lorenz system without (dashed

black) and with transient uncoupling (solid green). The uncoupling region

used is the one highlighted with green in Fig. 2(a). Generalized synchroniza-

tion is seen to be maintained for larger noise strengths only when the tran-

sient uncoupling is in action.
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observed in, e.g., neuroscience and medicine, is sometimes

desirable; it favorably disrupts the strong synchrony among

neurons known to severely impair brain function causing,

e.g., Parkinson’s disease, epilepsy, etc. However, whether

there are any natural or biological systems where transient

uncoupling is in action remains an open experimental

question.
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