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We present the finite-size Kuramoto model analytically continued from real to complex variables and
analyze its collective dynamics. For strong coupling, synchrony appears through locked states that
constitute attractors, as for the real-variable system. However, synchrony persists in the form of complex
locked states for coupling strengths K below the transition KðplÞ to classical phase locking. Stable complex
locked states indicate a locked subpopulation of zero mean frequency in the real-variable model and their
imaginary parts help identifying which units comprise that subpopulation. We uncover a second transition
at K0 < KðplÞ below which complex locked states become linearly unstable yet still exist for arbitrarily
small coupling strengths.
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Synchronization, the temporal coordination of two or
more state variables, is firmly established as one of the most
ubiquitous and most prevalent collective dynamics that
emerges across natural and human made networks of
interacting units [1–4]. In its simplest realization, the
variables of all units become identical over time. Other
forms of synchrony such as frequency synchronization and
phase locking (see below) may equally prominently emerge
[2]. Emergent synchronization is often essential for system
function. For instance, the synchronized dynamics of heart
muscle cells enables effective blood circulation [5] and thus
life; the phase-locked dynamics among alternating current
(ac) phases at different nodes in power grids are necessary
for the reliable transfer of electric energy on different scales
[6–8].
The Kuramoto model constitutes a paradigmatic model

for collective synchronization phenomena, describing a
broad class of weakly coupled strongly attracting limit
cycle oscillators [9–14]. Its dynamics is given by
ðdxn=dtÞ ¼ ωn þ ðK=NÞPN

m¼1 sinðxm − xnÞ for units n ∈
f1;…; Ng with phaselike state variables xn ∈ R, intrinsic
frequencies ωn ∈ R and coupling strength K ∈ R. The
degree of synchronization among the units is quantified by
the mean field order parameter rðtÞ ∈ ½0; 1�, where rðtÞ ¼ 1
marks identical synchronization of all units, x1ðtÞ ¼
x2ðtÞ ¼ … ¼ xNðtÞ in the limit K → ∞. The order param-
eter rðtÞ is defined via

rðtÞe{ΨðtÞ ¼ 1

N

XN

n¼1

e{xnðtÞ; ð1Þ

with imaginary unit {. For large coupling strengths,
K > KðplÞ, synchronization emerges in terms of phase-
locked states with xnðtÞ − xmðtÞ ¼ const for all pairs of
units. Decreasing K reduces the alignment of the phases,
decreasing the order parameter up to a point K ¼ KðplÞ

below which the phase locked state no longer exists. If the
coupling strength decreases further, long-time averages of
the order parameter hrit ¼ limT→∞ð1=TÞ

R
T
0 rðtÞdt gradu-

ally decrease toOðN−1=2Þ as K → 0, see also Fig. 1(a). Yet,
despite almost half a century of research on this simple-
looking model [10–12], several fundamental questions
remain open. For instance, essential aspects about the
stability of the incoherent and the partially locked states
are still unresolved, in particular for finite-size systems
[10,11,15–17]. Even asking well-posed questions remains a
challenge for finite-N systems [18]. In this Letter, we take a
novel perspective and analytically continue the Kuramoto
model to complex variables. We uncover complex locked
states that make finite-size ordering phenomena analyti-
cally accessible, with implications also for the original,
real-variable system.
Analytic continuation of real-valued problems to com-

plex variables has repeatedly shown great success in more
profoundly understanding various nonlinear problems.
For instance, complexifying the real iterated map fðxÞ ¼
x2 þ c yielded the famous Mandelbrot fractal as the set of
complex c ∈ C for which the iterated map zðtþ 1Þ ¼
f½zðtÞ� does not converge to any invariant set. Moreover,
such complexification has catalyzed the identification of
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radii of convergence for Taylor series of real functions [19],
conceptually advanced the theory of phase transitions in
statistical physics [20–22] and initiated the research field of
PT -symmetric quantum mechanics [23,24].
Following this line of insight and innovation, we obtain

dzn
dt

¼ ωn þ
K
N

XN

m¼1

sinðzm − znÞ; ð2Þ

for the Kuramoto model, where zn ¼ xn þ {yn ∈ C. We
observe the dynamical variables zn in a comoving reference
frame, such that hωnin ≔ N−1PN

n¼1 ωn ¼ 0. Because of
the nature of analytic continuation, the state space of the
original, real-valued Kuramoto model constitutes an invari-
ant manifold [at ynðtÞ≡ 0] embedded into the full complex
state space of (2). We keep the definition (1) of the order
parameter rðtÞ to study relations of locking phenomena in
the complex vs the original system.
In contrast to the real-valued Kuramoto model, we find

that locked states continue to exist for weak coupling, with
macroscopic order parameter r ¼ Oð1Þ, indicating a high
degree of synchrony among the original real variables xn
[Fig. 1(a)]. Interestingly, below the coupling strength KðplÞ

above which real phase locked states exist in the original
model, the complex fixed points z� ¼ ðz�1;…; z�NÞT of the
system Eq. (2) persist and exhibit nonzero imaginary parts
y�n ≠ 0 [Fig. 1(b)]. All y�n simultaneously become zero at
K ¼ KðplÞ and stay zero for stronger coupling. The z�

represent complex locked states with all state differences
znðtÞ − zmðtÞ complex constants independent of time. Our
numerical simulations indicate that the fixed points remain
attractive in an interval of coupling strengths K below KðplÞ.
As t → ∞, they are approached from initial conditions with
small nonzero imaginary parts. Crossing a second critical
coupling strength K0 < KðplÞ, these locked states continue
to exist, yet lose their linear stability (Fig. 1). Intriguingly,
as we explain below also by analytical arguments, these
locked states persist for weak coupling and exhibit an order
parameter hrðtÞit ≥ 1=

ffiffiffi
2

p ¼ OðN0Þ also for K < KðplÞ for
large N and thus cause strong synchrony of the real parts xn
of the system’s state variables, the relevant variables of the
original model. This persistence of the locked state stands
in stark contrast to the small hrðtÞit ¼ OðN−1=2Þ, nonexist-
ence of locked states, and apparent loss of synchrony in the
purely real-valued model as N → ∞.
How does complex synchrony emerge for weak cou-

pling? To address this question, let us first analyze
the simplest nontrivial system of N ¼ 2 complexified
Kuramoto units, which effectively reduces Eq. (2) to the
one-dimensional complex differential equation of the state
difference

dΔz
dt

¼ Δω − K sinðΔzÞ; ð3Þ

and thus two coupled real differential equations

dΔx
dt

¼ Δω − K sinðΔxÞ coshðΔyÞ; ð4aÞ

dΔy
dt

¼ −K cosðΔxÞ sinhðΔyÞ; ð4bÞ

where Δz ¼ z2 − z1 ¼ Δxþ {Δy and Δω ¼ ω2 − ω1.
For the original real-valued model, i.e., ΔyðtÞ≡ 0 for all

t, phase-locked states with fixed points Δx� exist only for
large coupling strengths K > KðplÞ ¼ jΔωj, disappearing
via a saddle-node bifurcation onceK decreases below KðplÞ.
The complexified model enables fixed points Δz� for all
K > 0 (Fig. 2). For K > jΔωj, one stable and globally
attractive fixed point coexists with one unstable fixed point
on the real axis, as for the real-valued model. These two
fixed points bifurcate to a pair of neutrally stable fixed
points Δz� with imaginary parts Δy� ≠ 0 once K drops
below KðplÞ ¼ jΔωj. Indeed, the complex sine function in
Eq. (3) is an uneven entire function and thus assumes all
values inC, such that the fixed point equation ð∂Δz=∂tÞ¼ 0
[Eq. (3)] has solutions for all K ≠ 0. In particular, complex

(a)

(b)

FIG. 1. Synchrony in the weak coupling regime. (a) Average
order parameters hrit of a system of N ¼ 128 complexified
Kuramoto units as a function of K. The order parameter drops
off for K < KðplÞ for initial conditions zð0Þ ¼ xð0Þ ∈ RN and
thus dynamics restricted to the real phase space (light purple).
Still, complex locked states z� ∈ CN persist for complex initial
conditions (dark purple), stable for all K ∈ ðK0; KðplÞÞ and
unstable for K < K0. The dynamics initialized with imagi-
nary parts randomly drawn i.i.d. from a Gaussian distri-

bution, Im½zð0Þ�¼d Gð0; 10−5Þ yields the order parameter hrit to
stay large above K0 (orange). The inset (b) shows the imaginary
parts y�n ¼ Imðz�nÞ at the fixed point against the coupling strength
K, for four selected units (solid lines), all becoming zero
simultaneously at KðplÞ. Asymptotic theoretical approximations
(dotted), derived below, smoothly approach these curves. For
K ≥ KðplÞ, all y�n are identically zero. Frequency parameters are
independent identically distributed (i.i.d.) random variables from

a normalized Gaussian, ωn¼d Gð0; 1Þ.

PHYSICAL REVIEW LETTERS 130, 187201 (2023)

187201-2



locked states exist even for arbitrarily small K. An exact
analysis detailed in the Supplemental Material [25] reveals
an energy function

EðΔx;ΔyÞ ¼ Δω
K

coshðΔyÞ
sinhðΔyÞ −

sinðΔxÞ
sinhðΔyÞ ; ð5Þ

that is conserved, dE=dt ¼ 0, along trajectories for
K < KðplÞ, establishing that both of the two fixed points
at K < KðplÞ are indeed neutrally stable nodes [Fig. 2(c)].
Moreover, the analysis uncovers two qualitatively different
types of trajectories: low-energy trajectories where the
energy lies below a separatrix value, E < Es ¼ Δω=K,
exhibit bounded ΔxðtÞ and encircle the nodes; along
high-energy trajectories, ΔxðtÞ increases without bound
[Figs. 2(c) and 2(d)]. Next, we demonstrate that synchrony,
i.e., macroscopic order, exists for large N with r ¼ OðN0Þ
also for K < KðplÞ. We do not expect the existence of a
conserved quantity such as E in Eq. (5) for larger N, also
because numerical simulations indicate convergence to
defined states (as illustrated in Fig. 1) such that phase
space volume contracts under the flow. We thus transfer the

usage of the fact that the sine functions are entire as above,
without invoking a conserved quantity. Specifically, we
rewrite the N complex fixed point conditions dzn=dt ¼ 0
in the full complexified system Eq. (2) in terms of an ≔
sinðz�nÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2n

p
¼ cosðz�nÞ. Numerically, we observe

that the population splits into two groups N and P, with
N ¼ fn ∈ Njωn < 0g and P ¼ fn ∈ Njωn > 0g. Further
we show analytically, by substituting

an ∼
fnffiffiffiffi
K

p for n ∈ P and an ∼ {
fnffiffiffiffi
K

p for n ∈N ; ð6Þ

with real fn and thus jy�nj ∼ j ln½K=ð2fnÞ�j=2 asymptoti-
cally as K → 0 and analogously approximating

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2n

p

asymptotically as K → 0, into the fixed point conditions
dzn=dt ¼ 0 yields a consistent asymptotic scaling, indicat-
ing that Eq. (6) is asymptotically exact [26] to lowest order
(see Ref. [25] for a detailed step-by-step derivation).
To retrieve the order parameter in the limit of K → 0, we

first disentangle

an ¼ sinðz�nÞ ¼ sinðx�nÞ coshðy�nÞ þ { cosðx�nÞ sinhðy�nÞ ð7Þ

separately for n ∈ N and n ∈ P employing the asymp-
totics (6). For n ∈ P, we asymptotically obtain the con-
dition ImðanÞ¼ cosðx�nÞsinhðy�nÞ→ 0. Noting that jy�nj > 0,
and that indeed jy�nj increases with decreasing K < KðplÞ,
the condition becomes cosðx�nÞ → 0 such that x�n → π=2
and thus e{x

�
n ¼ { [27]. Analogously, for n ∈ N , we

asymptotically require ReðanÞ ¼ sinðx�nÞ coshðy�nÞ → 0 and
obtain x�n → 0 and thus e{x

�
n ¼ 1 [27]. Now, as the popu-

lation splits into one subpopulation of αN units in N and
one of ð1 − αÞN units in P as K → 0, we find

r ¼
����
1

N

XN

n¼1

e{x
�
n

���� ∼ jαþ ð1 − αÞ{j ð8aÞ

¼ ðα2 þ ð1 − αÞ2Þ12 ¼ OðN0Þ; ð8bÞ

for arbitrarily large N, see Fig. 3(a). As a consequence, the
Kuramoto order parameter r ¼ OðN0Þ indicates macro-
scopic order not only for large K > KðplÞ but also asymp-
totically as K → 0. It ranges between r ¼ 1=

ffiffiffi
2

p
at α ¼ 1=2

(population evenly split between P and N ) and r ¼ 1 at
α ¼ 0 and α ¼ 1 (almost all units in one subpopulation
as N → ∞).
Logically, the order parameter could scale differently and

decrease in the thermodynamic limit as N → ∞ in some
intermediate regime K ∈ ðK1; K2Þ, where K1 > 0 and
K2 < KðplÞ where the system could cease to show macro-
scopic order. However, there is no theoretical indication for
such a drop and numerical evidence against it for finite
systems (see Figs. 1 and 3). So by Occam’s razor,
we conjecture that generically r ¼ OðN0Þ, implying

(a)

(d)

(b) (c)

FIG. 2. Complex locked states for N ¼ 2. (a)–(c) State space
vector fields (gray arrows) for (a) strong coupling K > KðplÞ ¼
Δω, (b) K ¼ KðplÞ, and (c) weak coupling in the N ¼ 2 com-
plexified Kuramoto model. Purple solid disks mark stable, purple
open circles unstable or neutrally stable fixed points; purple lines
are guides to the eye indicating how fixed points move asK varies
(solid: stable, dotted: neutrally stable); red and orange lines show
individual sample trajectories, with the dashed line in (c) indicat-
ing the separatrix between bound and unbound states. States, with
real parts Δx of state differences locked, exist for all K ∈ ð0;∞Þ.
For weak coupling (c), oscillations emerge around locked
states at a constant level of E, Eq. (5). (d) Conserved quantity
E determining bounded low energy (red) and unbounded high
energy (orange) trajectories. A separatrix (dashed red line)
separates low and high-energy regimes at energy Etrans ¼
jΔωj=K. Further parameters: Δω ¼ 1.0; in (a): K ¼ 1.2Δω; in
(c) and (d): K ¼ 0.8Δω.
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macroscopically ordered collective dynamics emerging as
strong synchrony in the form of complex locked states, also
for K ∈ ðK0; KðplÞÞ, see Fig. 3(b).
What do complex locked states atK < KðplÞ reveal about

the dynamics of the original, real-variable Kuramoto
model? For general dynamical systems, the stability proper-
ties of fixed points considerably influence the local dynam-
ics in their neighborhood. Thus complex locked states
z� close to the real invariant manifold, i.e., with small
imaginary parts jy�nj, impact the dynamics of the real-
variable Kuramoto model. For example, stable complex
locked states indicate a locked subpopulation at zero mean
frequency in the real-variable model and their imaginary
parts help quantifying the size N0 ≔ jfnjhdxn=dtit ¼ 0gj
of that subpopulation (Fig. 4).
In summary, we have demonstrated that the Kuramoto

model analytically continued to complex state space dis-
plays strong forms of synchrony with macroscopic order
also for K → 0þ and as N → ∞.
More specifically, the system exhibits three different

regimes and thus two transitions as the coupling strength
decreases. For strong coupling, K > KðplÞ, real phase-
locked states are attractors, as for the original real-variable
system. However, below KðplÞ, traditionally marking the
transition away from full phase locking in the real system,
synchrony persists, now in the novel form of complex
locked states with all stationary state variables starting to
exhibit nonzero imaginary parts simultaneously. The
Kuramoto order parameter stays macroscopic for large

N, although it does not account for complex variables z�n
but only for their real parts x�n, see Eq. (1). Below a second
transition at K0 < KðplÞ, the complex locked states loose
their linear stability, yet continue to persist. In particular,
they exist as ordered states with macroscopic r ¼ OðN0Þ,
even asymptotically as K → 0.
Prior studies have extended the Kuramoto model to

systems with multivariable units yet not find the unusual
ordering phenomena reported above [14,28–34]. A main
reason is that these models are all mathematically distinct
from the analytic continuation we investigated, because
they are topologically distinct, with variables on the
D-dimensional sphere [28–30], algebraically distinct,
exhibiting non-Abelian variables (non-commuting matri-
ces) [14,31,32], or analytically distinct, considering the
original phaselike variables xn as arguments of complex
variables zn ¼ expð{xnÞ of the units [33,34].

(a) (b)

FIG. 3. Persistent complex synchrony at increasingN. (a) Order
parameter rðz�Þ vs the fraction α of units in population N ,
asymptotically as K → 0, as theoretically derived in Eq. (8). Nine
open disks indicate all potential values of r for a small system of
N ¼ 10 units. In the limitN → ∞, the function r½z�ðαÞ� (solid line)
covers a continuous interval ½ð1= ffiffiffi

2
p Þ; 1Þ of r values (gray

shading). (b) Disorder vs macroscopic order: scaling of r at K0
with increasing N for real-variable systems [light purple: hrðtÞit
evaluated from direct numerical simulations, error bars indicate
standard deviation obtained from 20 different realizations of all
ωn, drawn as above] and for the complexified system [dark purple:
rðz�Þ from the analytical condition dz=dt ¼ 0, error bars smaller
than symbol size]. Gray shading transferred from (a) indicates that
r stays macroscopic and larger than 1=

ffiffiffi
2

p
, also at K0.

(a) (b)

(c) (d)

(e)

FIG. 4. Stability of complex locked states indicate real
phase locking. (a),(b), measured mean velocities of N ¼ 128
real-valued units for two coupling strengths initialized at
ynð0Þ ¼ 0. Whereas at K ¼ 2.0 > K0, panel (b), some units lock
with zero mean velocity, at K ¼ 1.4 < K0, panel (a), they do not.
(c),(d), imaginary parts of complex locked states obtained from
analytical constraint equations (2). At K ¼ 2.0, panel (d), the
state is linearly stable (solid line), indicating the existence of
locked units in the real-variable model, (b). The points of largest
absolute curvature in panel (d) mark the slowest and fastest
locked unit, resp. AtK ¼ 1.4, the complex locked state is linearly
unstable, dashed line, panel (d), coinciding with no zero-velocity
locking in the real-variable model, (a). (e) The fraction of units in
the locked population N0 varies with coupling strength, once
measured from simulations (orange) and once as indicated by the
complex locked states for K > K0 (purple). The measured
averaged order parameter hrit (gray line) fails to indicate the

emergence of real locking. Parameters: ωn¼d Gð0; 1Þ, symmetrized
(a mild condition widely applied also in the infinite case [10]); see
Ref. [25] for additional details.
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The complex locked states uncovered above arise from
complexification by analytic continuation. They offer a
promising alternative perspective for gaining further
insights into the order transitions in the real model for
finite N and possibly also in the thermodynamic limit
N → ∞ because collective states become traceable through
known and exact defining equations for the complex fixed
points representing them. The weak coupling regime
K ∈ ð0; KðplÞÞ of the analytically continued model is of
particular interest for large N and demands further explan-
ation, for instance, about why and where the second
transition at K0 occurs as a function of system size N
and realizations of parameters ωn, compare also [10,18].
The results reported above specifically suggest that further
studying the links between the complex locked states and
the locked subpopulations in the original Kuramoto model
may be of particular interest, especially as parameters vary.
We have studied the Kuramoto model by analytically

continuing the state variables and thus coupling functions,
without continuing any of their parameters to become
complex. In general, further parameters and models may
be complexified to yield a range of new insights for
complexified coupled dynamical systems [35,36], for
instance, by extending ωn or K to be complex and by
considering other systems of nonlinearly coupled units
such as in the Kuramoto-Sakaguchi model [37] or (delayed)
pulse coupled oscillators [38]. Such endeavors may also
conceptually expand our perspective on the nonlinear
dynamics of coupled dynamical systems and intricately
wired networks [12,39,40] and thereby initiate research on
complexified network dynamics in general.
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