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Abstract: Most network dynamical systems are out of equilibrium and externally driven
by fluctuations. Linear response theory generically characterizes systems responses to such
fluctuations for small driving amplitudes yet cannot capture response properties that are either
due to strong driving or intrinsically nonlinear. For oscillation-driven systems, we here report
average response offsets that scale quadratically with asymptotically small amplitudes. At some
critical driving amplitude, responses cease to stay close to a given operating point and may
diverge. Standard response theory fails to predict these amplitudes even at arbitrarily high
orders. We propose an integral self-consistency condition that captures the full nonlinear system
dynamics. We illustrate our approach for a minimal one-dimensional model and capture the
nonlinear shift of voltages in the phase, frequency and voltage dynamics of AC power grid
networks. Our approach may help to quantitatively predict intrinsically nonlinear response
dynamics as well as bifurcations emerging at large driving amplitudes in non-autonomous
dynamical systems.
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1. INTRODUCTION

Networked systems abound. Their dynamics and reliable
function fundamentally underlies our daily lives, from the
networks of neurons in the brain that make us think to
metabolic networks that fuel our cells and from water
supply networks to electric power grids. All of these
systems are out of equilibrium and driven by external
inputs or fluctuations. Yet, most standard literature on
dynamical systems’ theory focuses on autonomous systems
that are not externally driven.

A key overarching question is how strongly systems that
reside at given operating points in the absence of driving
respond to a driving signal of given strength. From the
perspective of dynamical systems theory, this translates
to the question of how systems initialized sufficiently close
to a stable fixed point, periodic orbit, or other stable
invariant set, respond dynamically if driven by a signal
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of some strength ε. Specifically, linear response theory
[Bender et al. 1999, Strogatz 2018, Zhang et al. 2019]
provides a general method to predict deviations ∆x(t)
away from a fixed point x∗ ∈ RN in response to sufficiently
weak driving signals, εg(t) where ε is small. However,
stronger, temporally correlated driving signals impinging
on nonlinear systems may cause nonlinear, nonlocal and
so far unpredictable responses.

Here we focus on a basic class of problems where a
nonlinear system initially near a stable fixed point (or
periodic orbit) is driven by strong periodic signals. Despite
the naive intuition that for symmetric sinusoidal driving
the response should be zero on average, we observe that
average responses are generically nonlinearly offset from
the original fixed points. Moreover, if the signal amplitude
grows too large, ε > εcrit, the response may diverge
and never return anywhere close to the original fixed
point. Such nonlocal bifurcations emerging at large εcrit
are impossible to predict via standard series expansions,
even at arbitrarily high order because polynomials in ε of
any order are finite at all ε ∈ R. Extending linear (first
order) response theory, we propose an integral method of
approximation that exploits a self-consistency condition of
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nonlinear system initially near a stable fixed point (or
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the response should be zero on average, we observe that
average responses are generically nonlinearly offset from
the original fixed points. Moreover, if the signal amplitude
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average zero shift of the fluctuating part of the response.
The method demonstrates that local response solution
ceases to exist at some finite εcrit and enables to explicitly
approximate that value. The proposed integral method
thus yields a qualitative and reasonable quantitative pre-
diction of the point at which responses start to diverge. We
illustrate our findings for a simple one-dimensional model.

2. DYNAMICAL SYSTEMS SETTING

Let us consider network dynamical systems consisting of
N units with time evolution given via coupled nonlinear
ordinary differential equations

dx

dt
= f(x) + εg(t) (1)

with the dynamical variables x(t) ∈ RN , a smooth nonlin-
ear function f : RN → RN and external time-dependent
fluctuations g : R → RN with zero long term average. The
strength is tuned by a positive scalar parameter ε ∈ R+

0 .
We further consider that the system has an operating point
as given by a stable fixed point x∗ ∈ RN of the undriven
dynamical system at ε = 0, hence implicitly determined
by

0 = f(x∗). (2)

If the autonomous systems’ Jacobian J = Df |x∗ ∈ RN×N

with matrix elements

Jnm =
∂fn
∂xm

(x∗), (3)

is negative definite, i.e., all eigenvalues λ of J have a
negative real part Re(λ) < 0 , an open neighborhood of
U(x∗) ⊂ RN of x∗ exists such that trajectories started
at initial conditions x(0) ∈ U(x∗) evolve towards the
fixed point x∗ [Strogatz 2018] for ε = 0. We explore the
response dynamics of networked systems and here consider
two main questions. First, how does the response dynamics
of the system change with ε? Second, can we identify a
critical fluctuation strength εcrit above which the systems’
response leaves the neighborhood U(x∗)? While standard
(linear-) response theory [Bender et al. 1999, Zhang et al.
2019] provides insights about the first question under
standard conditions and asymptotically for ε → 0, the
second question is generally hard to answer.

In this article, we restrict ourselves to the simplest of
such fluctuations, periodic and in particular sinusoidal
fluctuations acting on only one dynamical variable k such
that

gn(t) = δn,k cos(ω0t), (4)

with the Kronecker symbol δn,k equal to one for n = k
and zero otherwise. Moreover, we set the initial condition
x(t = 0) = x∗ in all calculations.

This article is structured as follows: we first introduce
a motivating example, a model of power grid dynamics
including voltage dynamics, for which we illustrate the
core dynamical effects of interest to us, the scaling of
the average nonlinear offset with ε and the boundary
of existence of stationary response. Second, we explicate
these phenomena in a one-dimensional simple model, for
which we develop analytic methods to quantify scaling
and critical εcrit beyond which stationary responses break
down. Finally, we apply the developed methods to the one-
dimensional and the original power grid model.

Fig. 1. Dynamic responses in a power grid model.
(a) Model network indicating distributed amplitudes
of voltage responses δE (bottom) across network.
Marked node 1 is driven by a sinusoidal fluctuation
ε sin(t). (b) Response dynamics at nodes i ∈ {10, 63}
to driving node k = 1. Analytically determined linear
response (purple) and actual (numerically integrated)
system dynamics (gray). After a transient, the voltage
responses δEi exhibit a constant average operating
offset not predicted by linear response theory, most
clearly visible for node 10. (Parameters: Bnm = 4 if
a connection between node n and m exists, Bnn =
−
∑

m Bnm and Bnm = 0 otherwise, Pn = 3 for
producers and Pn = −1 for consumers, Xn = 1.0,
Ef = 3, α = 0.02, and ω(0) = 2π.

3. FLUCTUATION-DRIVEN DYNAMICS OF A
POWER GRID MODEL.

Most aspects of our daily life essentially depend on a
reliable supply of electrical power, thereby imposing severe
challenges for stable operation of power grids that con-
sist of many generators (producers of electric power) and
loads (consumers of power) connected with transmission
lines. From a perspective of network dynamical systems
[Witthaut et al. 2022], these challenges translate to requir-
ing steady states that are (asymptotically) stable against
sufficiently small fluctuations. As a consequence, all dy-
namical variables relax back to their steady synchronous
(phase-locked) state. Let us first evaluate the dynamics
of the third order model of power grids that describes
N synchronous machines interconnected with alternating
current (AC) transmission lines [Machowski et al. 2011,
Schmietendorf et al. 2014]. Each synchronous machine
state is described by three dynamical variables: a rotor
angle Θn(t) ∈ R, the rotor frequency ωn(t) ∈ R, and a
voltage amplitude En(t) ∈ R+

0 . The rotor frequency ωn

is proportional to deviations from the nominal grid fre-
quency, i.e. 50 Hz in Europe [Owen 1997], which together
with the voltage amplitudes are crucial to power system
stability [Machowski et al. 2011]. The model [Machowski
et al. 2011, Schmietendorf et al. 2014, Thümler et al. 2022]
is given by
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Θ̇n = ωn

ω̇n = Pn − αωn +

N∑
m=1

BnmEnEm sin(Θm −Θn) + δnkεgn(t)

Ėn =Ef − En +Xn

N∑
m=1

BnmEm cos(Θm −Θn), (5)

where B ∈ RN×N , is the symmetric susceptance matrix
encoding the topology of the power grid and Pn the active
power inserted (Pn > 0) or taken out (Pn < 0) by the
machine n. Moreover, Ef , Xn, α ∈ R+

0 denote positive
system parameters. The frequency of node k is perturbed
periodically with frequency ω(0) and amplitude ε ≥ 0.
Here, we consider the system close to a stable fixed point
(Θ∗,ω∗,E∗) ∈ R3N , as defined in Eq. 2 which represents
a phase-locked state of fixed phase differences and thus
fixed power transmission. As an example, the dynamics of
such a system with N = 80 nodes is displayed in Fig. 1
when perturbed at the node k = 1. The Figure illustrates
patterns of response amplitudes across the network (panel
a), explained previously by [Zhang et al. 2019] for the
second order model (Xn = 0 such that En(t) = Ef for all
n ∈ {1, 2, ..., N}), and an additional nonlinear operating
offset En in the voltages (panel b) that are present in
the voltage variables En if the system is perturbed peri-
odically. Numerically, the operating offset is determined
according to

E =
1

∆t

∫ t1+∆t

t1

E(t) dt−E∗, (6)

for ∆t � Tω =: 2π/ω(0) and sufficiently large t1 to ensure
that transient dynamics have declined. In practice, the tra-
jectoryE(t) is obtained by numerical integration of system
(5). In Fig. 1 this offset E is visible when comparing the
linear response with the numerically integrated response
dynamics for the voltage variables. In Fig. 3 the operating
offsets E are displayed against the perturbation strength
ε. We observe that the scaling of the operating offset is pro-
portional to ε2 asymptotically as ε → 0, showing that this
operating offset is an inherently nonlinear effect. Moreover,
solutions near the original fixed point cease to exist for
ε > εcrit ≈ 2.4. Here E is still well-defined but E+E∗ lies
outside the neighborhood U(Θ∗,ω∗,E∗). Such a solution
is known as a low voltage solution, obtained after a voltage
drop of the power system, an undesired operational state
usually causing power outages [Machowski et al. 2011]. To
understand the origin of the nonlinearity and the ceasing
of solutions in the original stability neighborhood, let us
study a simpler model.

4. ONE-DIMENSIONAL MODEL AND METHODS

To explicitly capture the nonlinear operating offset and its
breakdown analytically, we study a one-dimensional model
given by

dx

dt
= f(x) + ε cos(ωt) := α− cos(x) + ε cos(ωt), (7)

with x ∈ R and a model parameter α ∈ [0, 1]. The linearly
stable fixed points x∗ for ε = 0 are given by

x∗ = 2π�− arccos(α), (8)

Fig. 2. Nonlinear operating offset of the voltage
response scales with ε2. The voltage operating
offsets En as a function of the perturbation amplitude
ε for 16 randomly drawn nodes n of the network
in Fig. 1. Inset: Absolute values |δE| plotted double
logarithmically indicates nonlinear scaling for small
ε. At some large εcrit the trajectories leave the stable
neighborhood U(Θ∗,ω∗,E∗) and the description of
the operating offset breaks down.

with � ∈ Z. Hence, the parameter α is defining the location
of the fixed points x∗ and the slope and curvature of
the function f(x) at x∗. For clarity, we pick the one
fixed point for � = 0. Like in the power grid model, the
one dimensional model Eq. (7) shows an operating offset
x when exposed to periodic signals. If the perturbation
strength increases beyond a critical perturbation strength
εcrit ≈ 7 for the example shown in Fig. 3, the response
dynamics diverge to +∞ for t → ∞. Numerically, the
operating offset x is measured in the same way as in Eq. (6)
and scales quadratic with ε for, ε → 0, as shown in Fig. 3c.

4.1 Response theory in ε

Let us first recapitulate dynamical response theory up to
second order for the one-dimensional model defined by
Eq. (7). We write the response dynamics x(t) as a formal
power series [Bender et al. 1999] in ε such that

x(t) =
∞∑

n=0

an(t)ε
n ∼ x∗ + a1(t)ε+ a2(t)ε

2 as ε → 0, (9)

with functions an : R → R. The aim of perturbation
theory is to find the functions an(t) up to a desired
order M , proceeding as follows. Expanding the nonlinear
function f(x) into a Taylor series about the fixed point x∗

up to εM and substituting the power series (9) into the
differential equation (7) yields

εȧ1 + ε2ȧ2 ∼ f(x∗) + ε cos(ωt) + f ′(x∗)
(
εa1 + ε2a2

)

+
1

2
f ′′(x∗)ε2a21 as ε → 0, (10)

where ȧn refers to the first derivative of an with respect to
t and f ′(x) and f ′′(x) refer to first and second derivatives
of f(x) with respect to x. If the power series (10) is
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according to

E =
1

∆t

∫ t1+∆t

t1

E(t) dt−E∗, (6)

for ∆t � Tω =: 2π/ω(0) and sufficiently large t1 to ensure
that transient dynamics have declined. In practice, the tra-
jectoryE(t) is obtained by numerical integration of system
(5). In Fig. 1 this offset E is visible when comparing the
linear response with the numerically integrated response
dynamics for the voltage variables. In Fig. 3 the operating
offsets E are displayed against the perturbation strength
ε. We observe that the scaling of the operating offset is pro-
portional to ε2 asymptotically as ε → 0, showing that this
operating offset is an inherently nonlinear effect. Moreover,
solutions near the original fixed point cease to exist for
ε > εcrit ≈ 2.4. Here E is still well-defined but E+E∗ lies
outside the neighborhood U(Θ∗,ω∗,E∗). Such a solution
is known as a low voltage solution, obtained after a voltage
drop of the power system, an undesired operational state
usually causing power outages [Machowski et al. 2011]. To
understand the origin of the nonlinearity and the ceasing
of solutions in the original stability neighborhood, let us
study a simpler model.

4. ONE-DIMENSIONAL MODEL AND METHODS

To explicitly capture the nonlinear operating offset and its
breakdown analytically, we study a one-dimensional model
given by

dx

dt
= f(x) + ε cos(ωt) := α− cos(x) + ε cos(ωt), (7)

with x ∈ R and a model parameter α ∈ [0, 1]. The linearly
stable fixed points x∗ for ε = 0 are given by

x∗ = 2π�− arccos(α), (8)

Fig. 2. Nonlinear operating offset of the voltage
response scales with ε2. The voltage operating
offsets En as a function of the perturbation amplitude
ε for 16 randomly drawn nodes n of the network
in Fig. 1. Inset: Absolute values |δE| plotted double
logarithmically indicates nonlinear scaling for small
ε. At some large εcrit the trajectories leave the stable
neighborhood U(Θ∗,ω∗,E∗) and the description of
the operating offset breaks down.

with � ∈ Z. Hence, the parameter α is defining the location
of the fixed points x∗ and the slope and curvature of
the function f(x) at x∗. For clarity, we pick the one
fixed point for � = 0. Like in the power grid model, the
one dimensional model Eq. (7) shows an operating offset
x when exposed to periodic signals. If the perturbation
strength increases beyond a critical perturbation strength
εcrit ≈ 7 for the example shown in Fig. 3, the response
dynamics diverge to +∞ for t → ∞. Numerically, the
operating offset x is measured in the same way as in Eq. (6)
and scales quadratic with ε for, ε → 0, as shown in Fig. 3c.

4.1 Response theory in ε

Let us first recapitulate dynamical response theory up to
second order for the one-dimensional model defined by
Eq. (7). We write the response dynamics x(t) as a formal
power series [Bender et al. 1999] in ε such that

x(t) =
∞∑

n=0

an(t)ε
n ∼ x∗ + a1(t)ε+ a2(t)ε

2 as ε → 0, (9)

with functions an : R → R. The aim of perturbation
theory is to find the functions an(t) up to a desired
order M , proceeding as follows. Expanding the nonlinear
function f(x) into a Taylor series about the fixed point x∗

up to εM and substituting the power series (9) into the
differential equation (7) yields

εȧ1 + ε2ȧ2 ∼ f(x∗) + ε cos(ωt) + f ′(x∗)
(
εa1 + ε2a2

)

+
1

2
f ′′(x∗)ε2a21 as ε → 0, (10)

where ȧn refers to the first derivative of an with respect to
t and f ′(x) and f ′′(x) refer to first and second derivatives
of f(x) with respect to x. If the power series (10) is

Fig. 3. Nonlinear operating offset and response di-
verergence in simple model. Response dynam-
ics as a function of driving amplitude for the one-
dimensional model (7). (a) Response dynamics rela-
tive to the fixed point x∗ as a function of time for
moderate driving amplitude ε = 6. Offset x deter-
mined in analogy to Eq. (6) marked at right vertical
axis. (b) For larger ε = 8, an estimate x(t) (with
∆t = 2) continually increases with time and no steady
solution is assumed. (c) Nonlinear quadratic scaling
of the operating offset x asymptotically as ε → 0,
the same as for the power system model, see Fig. 3.
Parameters: α = 0.1, ω = π.

convergent, the coefficients of powers of ε are unique, such
that we can equate coefficients for identical powers of ε to
obtain

ε1 : ȧ1(t) = f ′(x∗)a1(t) + cos(ωt)

ε2 : ȧ2(t) = f ′(x∗)a2(t) +
1

2
f ′′(x∗)a21(t) . (11)

To solve for an(t), one starts with n = 1 and iteratively
solves the linear inhomogeneous differential equations for
an+1(t) given in terms of the inhomogeneities an(t) (and
the driving term for n = 1). For our example system, the
function a1(t) – the linear response function – is given by
(see Eq. (A.8) derived in the appendix)

a1(t) = |A1| cos(ωt+ arg(A1))− Re(A1)e
f ′(x∗)t, (12)

with the response factor

A1 =
1

ıω − f ′(x∗)
∈ C. (13)

The initial condition x(0) = x∗ implies an(0) = 0 for all
n ∈ N. The linear response function a1(t) has a transient
term, declining over time as f ′(x∗) < 0 and a part that
is fluctuating symmetrically around the fixed point x∗, as
expected, providing no information about the operating
offset x whatsoever.

4.2 Nonlinear offset from second order response theory

We aim at determining the average (and thus temporally
constant) nonlinear operating offset x around which the

response dynamics x(t) fluctuate in the long term, i.e.,
after some transient. The linear response function, a1(t)
Eq. (12), cannot help us in this matter, as it is composed
of time-varying terms only. However, the second order
response function a2(t) exhibits an offset. We determine
the constant part without solving for the time variation of
the function a2(t) as follows. First, consider

a1(t) ∼ |A1| cos(ωt) as t → ∞, (14)

because f ′(x∗) < 0, and neglecting the phase arg(A1), such
that

ȧ2(t) ∼ f ′(x∗)a2(t) +
f ′′(x∗)|A1|2

4
(cos(2ωt) + 1), (15)

where we applied the trigonometric identity cos2(x) =
(cos(2x) + 1)/2. Utilizing the superposition principle for
linear equations, we compute a fixed point of Eq. (15)
neglecting the cos(·) term, yielding

a2 = −|A1|2f ′′(x∗)

4f ′(x∗)
, (16)

as a first approximation of the nonlinear operating offset
x, this is sufficient as Eq. (15) has the same form as
the differential equation for a1(t) for which fluctuating
perturbations cannot contribute to an offset. From Eq. (15)
we learn that the offset

x(ε) ∼ a2ε
2 =: xS as ε → 0 (17)

scales quadratically in the lowest order of amplitude ε
of the driving signal, just as for the power grid example
above, see Fig. 3. Moreover, the nonlinear magnitude of
the offset increases with the curvature of f(x) at x∗.
The superscript ”S” marks an approximation obtained via
standard second order response theory. It is contrasted
with an alternative integral method we propose below for
estimating the same quantity.

4.3 Nonlocal response theory to predict divergence – the
integral method

Second order response theory correctly predicts the non-
linear (quadratic) scaling of the response offset, yet it
cannot tell us at which driving amplitude εc such periodic
responses cease to exist and even whether they ever stop
existing. Furthermore, any polynomial approximation nec-
essarily fails because polynomial functions always evaluate
to some finite number given an argument. Standard second
and higher order perturbation theory thus fails to inform
us about diverging response amplitudes. We now introduce
an alternative method of approximating the response, ex-
ploiting an incompleteness that arises in an integral con-
sistency condition if a first order response approximation
is evaluated instead of the exact periodic response. We re-
quire that response trajectories are periodic with the same
periodicity Tω = 2π/ω as the perturbation. Integrating the
nonlinear differential equation Eq. (7) on both sides over
one period Tω then cancels all periodic terms, especially
the perturbation term, and yields

0 =
1

Tω

∫ t1+Tω

t1

ẋ(t) dt =
1

Tω

∫ t1+Tω

t1

f(x(t)) dt. (18)

However, as we do not know the true solution x(t) to our
problem, but rather just an approximation for small ε such
as in Eq. (10), we cannot expect that the right-hand side
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of Eq. (18) is identically zero if we replace x(t) with its
linear response x∗+ εa1(t) approximation. We exploit this
discrepancy by demanding that

0 = lim
t1→∞

1

Tω

∫ t1+Tω

t1

f(x∗ + εa1(t) + xI(ε)) dt (19)

holds for a newly and implicitly defined function xI(ε) that
we consider as an alternative, higher order approximation
for the actual nonlinear operating offset x(ε). Depend-
ing on the explicit model nonlinearity f(x), the integral
Eq. (19) may or may not be analytically solvable.

4.4 Prediction of response divergence

For the one-dimensional example model (7), the method
is analytically executable to yield an implicit equation
directly for an approximation εIcrit for the critical driving
amplitude εcrit (and not only for xI(ε)).

We apply both response theoretic approaches, the stan-
dard second order response theory and the integral
method, to that model (7). First, relations (16) and (17)
explicitly yield

xS = ε2
cos(x∗)

4(ω2 + sin2(x∗)) sin(x∗)
, (20)

yielding an offset for all ε ∈ R. As discussed above,
as a simple polynomial in ε, this second order estimate
clearly fails to predict that or for which εcrit local response
solutions cease to exist and responses start to diverge.

In contrast, the integral approach expresses xI as a func-
tion of ε and εcrit as follows. Due to the periodicity condi-
tion, we have

0 = lim
t1→∞

1

Tω

∫ t1+Tω

t1

f(x∗ + a1(t)ε+ xI(ε)) dt

=
1

Tω

∫ Tω

0

[
α− cos(x∗ + ε|A1| cos(ωt) + xI)

]
dt

= α− cos(x∗ + xI)
1

Tω

∫ Tω

0

cos(ε|A1| cos(ωt)) dt

= α− cos(x∗ − xI)J0(ε|A1|), (21)

in terms of the Bessel function of the first kind J0(z) =
π−1

∫ π

0
cos(z sin(τ)) dτ . The offset predicted by the inte-

gral method thus is

x̄I(ε) = arccos

[
α

J0(ε|A1|)

]
− x∗ . (22)

In contrast to the standard second order approximation
(20) for the average offset, the integral approximation
(22) has bounded support in ε due to the limited domain
(−1, 1) of the arccos(·) function. It is thus capable of
predicting that divergent responses emerge and approxi-
mately at which εcrit they diverge and leave the neighbor-
hood U(x∗) of the fixed point. We exploit this feature to
extract εIcrit from the condition of maximal support

εIcrit =
J−1
0 (α)

|A1|
, (23)

with a local inverse J−1
0 of the Bessel function, an answer

to the second question we raised in the introduction.

Fig. 4. Integral method predicts offset and critical
εcrit The approximation x̄I(ε) (dashed blue, Eq. (22))
matches the nonlinear offset (purple) in model (7)
and well predicts the critical perturbation amplitude
εcrit (vertical dotted line where the purple curve
ends) above which no steady response exists. Integral
method provides prediction x̄I as the upper limit
where Eq. (22) does not have a real solution. Second
order response theory estimate x̄S(ε) (green) becomes
highly inaccurate at higher perturbation amplitudes
and does not capture the breakdown of the steady
response. (inset) For small ε all approximations agree
and asymptotically scale as x̄ ∝ ε2. The parameters
are the same as in Fig. 3.

Figure 4 shows a comparison of the actual x(ε) with its
approximations xS(ε) and xI(ε). For ε → 0 all curves
agree and scale ∝ ε2. For larger ε the approximation xI(ε)
obtained from the integral method still well resembles the
actual value x(ε) yet its second order standard prediction
xS(ε) disagrees strongly. For ε of the order of εcrit, x

I(ε)
still resembles the actual value and εIcrit accurately predicts
the point of failure. The standard second order estimator
does not indicate any εcrit due to its polynomial nature.

5. CONCLUSION

In summary, we have reported a nonlinear operating offset
x and the ultimate loss of local reponses for flucutation-
driven systems. The offset characterizes a non-zero average
of a temporally fluctuating response near an operating
point determined by an undriven system, i.e., a fixed
point x∗. It scales with the square of the perturbation
strength, ε2 asymptotically as ε → 0. Linear response
theory generically does not capture such offsets at all. We
have demonstrated that standard second order response
theory predicts an offset xS that captures the asymptotic
scaling as ε → 0 but necessarily fails to predict the
existence (and position) of a critical driving strength εcrit
(small or large) above which response trajectories diverge
from a local neighborhood U(x∗).

We have introduced an alternative approach that is jointly
capable of both, approximating the nonlinear scaling and
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of Eq. (18) is identically zero if we replace x(t) with its
linear response x∗+ εa1(t) approximation. We exploit this
discrepancy by demanding that

0 = lim
t1→∞

1

Tω

∫ t1+Tω

t1

f(x∗ + εa1(t) + xI(ε)) dt (19)

holds for a newly and implicitly defined function xI(ε) that
we consider as an alternative, higher order approximation
for the actual nonlinear operating offset x(ε). Depend-
ing on the explicit model nonlinearity f(x), the integral
Eq. (19) may or may not be analytically solvable.

4.4 Prediction of response divergence

For the one-dimensional example model (7), the method
is analytically executable to yield an implicit equation
directly for an approximation εIcrit for the critical driving
amplitude εcrit (and not only for xI(ε)).

We apply both response theoretic approaches, the stan-
dard second order response theory and the integral
method, to that model (7). First, relations (16) and (17)
explicitly yield

xS = ε2
cos(x∗)

4(ω2 + sin2(x∗)) sin(x∗)
, (20)

yielding an offset for all ε ∈ R. As discussed above,
as a simple polynomial in ε, this second order estimate
clearly fails to predict that or for which εcrit local response
solutions cease to exist and responses start to diverge.

In contrast, the integral approach expresses xI as a func-
tion of ε and εcrit as follows. Due to the periodicity condi-
tion, we have

0 = lim
t1→∞

1

Tω

∫ t1+Tω

t1

f(x∗ + a1(t)ε+ xI(ε)) dt

=
1

Tω

∫ Tω

0

[
α− cos(x∗ + ε|A1| cos(ωt) + xI)

]
dt

= α− cos(x∗ + xI)
1

Tω

∫ Tω

0

cos(ε|A1| cos(ωt)) dt

= α− cos(x∗ − xI)J0(ε|A1|), (21)

in terms of the Bessel function of the first kind J0(z) =
π−1

∫ π

0
cos(z sin(τ)) dτ . The offset predicted by the inte-

gral method thus is

x̄I(ε) = arccos

[
α

J0(ε|A1|)

]
− x∗ . (22)

In contrast to the standard second order approximation
(20) for the average offset, the integral approximation
(22) has bounded support in ε due to the limited domain
(−1, 1) of the arccos(·) function. It is thus capable of
predicting that divergent responses emerge and approxi-
mately at which εcrit they diverge and leave the neighbor-
hood U(x∗) of the fixed point. We exploit this feature to
extract εIcrit from the condition of maximal support

εIcrit =
J−1
0 (α)

|A1|
, (23)

with a local inverse J−1
0 of the Bessel function, an answer

to the second question we raised in the introduction.

Fig. 4. Integral method predicts offset and critical
εcrit The approximation x̄I(ε) (dashed blue, Eq. (22))
matches the nonlinear offset (purple) in model (7)
and well predicts the critical perturbation amplitude
εcrit (vertical dotted line where the purple curve
ends) above which no steady response exists. Integral
method provides prediction x̄I as the upper limit
where Eq. (22) does not have a real solution. Second
order response theory estimate x̄S(ε) (green) becomes
highly inaccurate at higher perturbation amplitudes
and does not capture the breakdown of the steady
response. (inset) For small ε all approximations agree
and asymptotically scale as x̄ ∝ ε2. The parameters
are the same as in Fig. 3.

Figure 4 shows a comparison of the actual x(ε) with its
approximations xS(ε) and xI(ε). For ε → 0 all curves
agree and scale ∝ ε2. For larger ε the approximation xI(ε)
obtained from the integral method still well resembles the
actual value x(ε) yet its second order standard prediction
xS(ε) disagrees strongly. For ε of the order of εcrit, x

I(ε)
still resembles the actual value and εIcrit accurately predicts
the point of failure. The standard second order estimator
does not indicate any εcrit due to its polynomial nature.

5. CONCLUSION

In summary, we have reported a nonlinear operating offset
x and the ultimate loss of local reponses for flucutation-
driven systems. The offset characterizes a non-zero average
of a temporally fluctuating response near an operating
point determined by an undriven system, i.e., a fixed
point x∗. It scales with the square of the perturbation
strength, ε2 asymptotically as ε → 0. Linear response
theory generically does not capture such offsets at all. We
have demonstrated that standard second order response
theory predicts an offset xS that captures the asymptotic
scaling as ε → 0 but necessarily fails to predict the
existence (and position) of a critical driving strength εcrit
(small or large) above which response trajectories diverge
from a local neighborhood U(x∗).

We have introduced an alternative approach that is jointly
capable of both, approximating the nonlinear scaling and

predicting critical driving strengths. It is based on a consis-
tency condition of integral form and has qualitatively new
features compared to standard nonlinear response theory.
First, it is capable of expanding the range of validity be-
yond small ε. Second, it provides a condition for the value
εcrit even if that is large and as such captures non-local
influences. We have explicated one model applications
where the estimator is computable analytically. Specifi-
cally, all (linear response, standard second order response
and non-standard integral) approaches have been tested on
a simple, one-dimensional model. Our estimator correctly
captures the nonlinear scaling, as well as the fact that
local solutions fail to exist beyond some critical driving
strength. For the one-dimensional model, the estimator is
quantitatively accurate. Possible improvements for larger
systems include utilizing higher order response theories
within the integral approach.

The nonlocal integral method relies on the stationary
dynamics, i.e., post transient dynamics only. Therefore,
transient dynamics causing the system to leave the neigh-
borhood U(x∗) cannot be captured by this method. It is
conceivable that the integral method might be extendable
to capture also basic trends set by transient dynamics, e.g.
exponential decays or linear drifts.

In addition, several research directions open up. The ex-
ample of the one-dimensional system has illustrated how
increasing driving amplitudes cause the system to per-
manently leave a local neighborhood set by an unstable
fixed point closest to the operating point x∗, marking
the boundary of the basin of attraction of x∗. It remains
unclear how the method transfers to more complex basin
boundaries. More generally, which types of loss of local
responses, and tipping points caused by the driving, can
be identified with the integral method? A thorough inves-
tigation of systems near known bifurcations may be valu-
able to fill in these knowledge gaps. Identifying suitable
approximations for the extracting explicit approximate
expressions for εcrit would therefore be desirable.
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Thümler, M., Zhang, X., and Timme, M. (2022).
Absence of pure voltage instabilities in the third-

order model of power grid dynamics. Chaos: An
Interdisciplinary Journal of Nonlinear Science,
32(4), 043105. doi:10.1063/5.0080284. URL
https://doi.org/10.1063/5.0080284.

Witthaut, D., Hellmann, F., Kurths, J., Kettemann, S.,
Meyer-Ortmanns, H., and Timme, M. (2022). Collec-
tive nonlinear dynamics and self-organization in de-
centralized power grids. Reviews of Modern Physics,
94(1). doi:10.1103/revmodphys.94.015005. URL
https://doi.org/10.1103/revmodphys.94.015005.

Zhang, X., Hallerberg, S., Matthiae, M., Witthaut, D.,
and Timme, M. (2019). Fluctuation-induced distributed
resonances in oscillatory networks. Science Advances,
5(7), eaav1027. doi:10.1126/sciadv.aav1027. URL
https://doi.org/10.1126/sciadv.aav1027.

Appendix A. METHODS

A.1 Response theory in one dimensional systems

Here, we present a known derivation of the linear response
function a1(t), defined via the differential equation

ȧ1(t) = f ′(x∗)a1(t) + cos(ωt), (A.1)

with the initial condition a1(0) = 0. For this purpose, it
is useful to make an excursion to the complex plane and
solve the following differential equation for y(t)

ẏ(t) = f ′(x∗)y(t) + eıωt, (A.2)

and afterwards obtaining a1(t) = Re(y(t)). The homoge-
neous solution yh(t) of the separable, linear differential
equation is given by

yh(t) = Cef
′(x∗)t. (A.3)

A particular solution is obtained by the method of varia-
tions of the constant, which we explicate in the following.
We take the homogeneous solution and treat the constant
C as being time dependent itself C → Cp(t) and inserting
this function on both sides of the differential equation

Ċp(t) ef
′(x∗)t + Cp(t)f

′(x∗)ef
′(x∗)t

= Cp(t)f
′(x)ef

′(x∗)t + eıωt

⇒Cp(t) =
1

ıω − f ′(x∗)
eıωt−f ′(x∗)t . (A.4)

The particular solution follows as

yp(t) = Cp(t)e
f ′(x∗)t =

1

ıω − f ′(x∗)
eıωt. (A.5)

The comprehensive set of solutions of the linear differential
equation is then given by the superposition of homogenous
and particular solution

y(t) = yh(t) + yp(t) = Cef
′(x∗)t +

1

ıω − f ′(x∗)
eıωt, (A.6)

where the constant of integration C can be determined
from the initial condition y(0) = a1(0) = 0, yielding

y(t) =
1

ıω − f ′(x∗)

(
eıωt − ef

′(x∗)
)
=: A1

(
eıωt − ef

′(x∗)t
)
.

(A.7)
We obtain a1(t) as the real part of y(t)

a1(t) = Re
(
A1e

iωt −A1e
f ′(x∗)t

)

= |A1| cos(ωt+ arg(A1))− Re(A1)e
f ′(x∗)t,(A.8)

which is the solution we referenced in the main text.


