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Abstract
What can we learn from the collective dynamics of a complex network about
its interaction topology? Taking the perspective from nonlinear dynamics,
we briefly review recent progress on how to infer structural connectivity
(direct interactions) from accessing the dynamics of the units. Potential
applications range from interaction networks in physics, to chemical and
metabolic reactions, protein and gene regulatory networks as well as neural
circuits in biology and electric power grids or wireless sensor networks in
engineering. Moreover, we briefly mention some standard ways of inferring
effective or functional connectivity.
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1. Where are you linked?

1.1. Relating connection topology of a network to its dynamics

Networks are everywhere. And most of them are dynamic. From networks of biochemical
reactions that regulate the metabolism in the cells of our bodies to the neuronal circuits in our
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brains, from social ties forming networks of our friendships and collaborators to the power
grids and internet that provide huge amounts of electric energy and information every second.
All of these systems form networks of units that interact to yield complex, collective forms of
functions—and all are crucial to our everyday life.

The interaction topology of complex networks strongly impact their collective dynamics
and thus the function of entire systems. For many network dynamical systems, for instance
in physics and biology, the dynamics of individual units becomes more and more accessible
whereas their intricate web of interactions remains uncertain or even often largely unknown. As
an example, many constituents of protein and gene interaction networks are well characterized
but how they interact and which pathways are relevant for suitable functioning is not well
understood [1, 2]. In neuroscience, the number of units from which one can simultaneously
measure neuronal activity is increasing rapidly from a few units to hundreds of them [3]. Still,
identifying the synaptic connections of a neuronal circuit by anatomical methods is mostly
restricted to individual synapses and computer-aided reconstruction based on optical methods
for more than two cells becomes available only since very recently [4–6]. In social networks,
even in simple settings such as basic games, pairwise interactions are roughly understood, but
often both the (temporally varying) interaction network and its collective consequences remain
a riddle. Thus, reconstructing the structure of interaction networks from (only) the collection
of local dynamical data constitutes a current open challenge, with applications across the
natural and social sciences as well as engineering.

Network dynamics: forward versus inverse problem. Yet, the vast majority of research
on network dynamics has focused on the ‘forward direction’ of modeling and asked what
types of collective dynamics emerge from a network of given topology. Researchers from
the natural sciences and engineering systematically address the reverse questions—how to
control a network or, more generally, how to design networks for a desired dynamics and
thus function and how to infer topology from dynamics—now at a rapidly increasing pace:
in particular in engineering, the design of systems for a specific function always was core [7]
and with the systems becoming more complex, considering recurrently interacting networks
becomes indispensable. Conversely, complex systems in physics and biology require a view on
networked systems to understand how complex emergent phenomena contribute to (possibly
optimal) system’s dynamics or function [8–12]. Finally, also how one could perhaps redesign
collective dynamics of networks, e.g., gene and protein networks [13, 14] poses challenges of
frontier research.

The inverse problem of how to infer interaction topology from network dynamics
constitutes the main topic of this review.

1.2. Aims and options of network inference

What do we aim to infer? Before addressing any inference problem, we have to clarify what we
actually want to find out about the networked system and which level of detail we are interested
in, see table 1. For instance, we may want to know effective or functional connectivity not
caring about individual interactions per se but only about statistical dependences which the
entire set of interactions yield between pairs of units through the collective network dynamics.
Inter-unit correlations and various information-theoretic measures have been devised to solve
such problems. These often neglect the temporal dynamics as they use temporal averages or
statistical distributions of observables. Moreover, effective connectivity may depend on the
current collective state and function of a given system and thus the same physical network
may display different effective topologies for different functions or in different states. We may
alternatively want to know structural connectivity, i.e. which unit directly interacts with which
other units (and how)?
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Table 1. Levels of interest. Which properties of the connections are we interested in?

Distinctions
Property of connection ...and examples thereof

Structural versus effective Direct interaction or statistical dependence?
EEG versus connectomics for neural ‘connectivity’

Pure existence Presence or absence of links?
does one gene directly influence another?

Sign Positive, negative, or mixed-sign interaction?
phase-advancing or phase retarding (for coupled oscillators);
activating or inhibiting (for gene and protein interactions);

Directedness Directed or undirected (bi-directed) interactions?
chemical versus electrical neuronal synapses

Type of interaction Continuous time or discrete time; linear versus nonlinear?
chemical versus electrical synapses
diffusive versus nonlinear coupling

Time scales Instantaneous, temporally localized or extended?
slot communication (in mobile phones) versus genetic interactions

Spatial scales Local, global, non-local, bounded?
message broadcasting, from wireless networks to cell tissue

In this review, we focus on these direct physical interactions and address various levels of
detail. We also briefly present basic methods to infer different types of effective connectivity. By
construction, such a review cannot be complete, also because the field is currently developing
at a breathtaking pace. We therefore select specific reconstruction methods from those that are
commonly used, appear promising for the future of the field, or have been recently developed
and form the basis of current research.

What can we learn about the connections of a network from accessing the units’ dynamics?
Mathematically, inferring the connectivity constitutes a high-dimensional inverse problem and
various methods have been devised to address this question. Every inference method starts from
different levels of pre-knowledge about the system and has its own aims what to reconstruct,
cf table 1. We may be interested in whether the interactions are directed or undirected, in
whether or not a link exists, in the sign of the interaction dynamics, the type of links (e.g.,
electric versus chemical synapses, diffusive versus nonlinear coupling), the strengths and the
temporal and spatial scales of interactions etc.

Structural connectivity may be very different from effective or functional connectivity
(figure 1). On the one hand, high correlations may exist between two units that are not
directly connected but only influenced by each other via a third unit they both directly interact
with. In general, such indirect interactions may be induced not only by one third node, but
equally by the entire collective dynamics of a network. On the other hand, even a strong
direct interaction between two units does not necessarily mean that their dynamics is highly
correlated; correlations could be submerged, e.g., by external noise or recurrent inputs the two
units receive, e.g., from two distinct other parts of the network, or even from outside of it.

In general, effective and structural connectivity are related in a highly non-trivial way.
In fact, a number of counter-intuitive phenomena have been observed in various systems.
For instance, recent work on coupled oscillator networks highlight that under certain
conditions noise may aid to reconstruct structural connectivity from correlation-based effective
connectivity [15]; and one may detect small-world features in the functional connectivity even
if it is derived from randomly connected dynamical systems without any specific small-world
features [16].
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(a) (b)

Figure 1. Diverse dynamic impact of structural links on effective connectivity.
(a) Structural links may not be detectable by certain correlation measures due to strong
independent driving signals (e.g. noise). For example, strong inputs along two links
(from within or outside the network, marked by arrows) may decorrelate the dynamics
of the two nodes (gray disks) although they directly interact. (b) Common input may
create effective link without the structural link present. For example, common input
from a third node (open circle) may create effective connectivity (dashed line) between
two nodes (gray disks) that are not directly connected. In both examples, (a) and (b), it
may depend on the entire collective state of the network (and the external inputs it may
receive) whether or not an effective connection is detected.

Where do we start from? It is important to clarify which knowledge about the networked
system we presuppose. Is the collective dynamics known to be simple such as converging
to a fixed point of concentrations in biochemical networks or to a limit cycle in coupled
oscillator networks? Or do we expect more complex, irregular, and perhaps unpredictable,
chaotic or random types of dynamics? Can we change the dynamics of units by interfering
with the system or can we just observe? Does the research question require a global analysis
in state space or do we focus on a specific dynamical state where local analysis may suffice?
We should answer these questions, among others, before using or developing any inference
method—to achieve reconstruction at the level we need with best quality and minimal efforts,
both experimentally and computationally.

Here we review recently developed approaches to inferring structural connectivity of a
network from accessing its collective dynamics. The presented approaches assume various
levels of pre-knowledge about the system and may or may not require the observer to interfere
with the system. The article is structured as follows. We first clarify in section 2 what we mean
by a network dynamical system, taking the view of continuous-time dynamics described by
coupled ordinary differential equations. In sections 3–5, we explain three principally different
classes of methods to obtain information about the structure of the network topology from
dynamical quantities.

Section 3 illustrates basic theoretical approaches based on measuring and evaluating
the response of a network to external perturbations or driving. As the response depends
on both the external driving signal and the interaction topology of the network, sufficiently
many driving-response experiments yield information about the entire network topology. A
second class of methods sets up a model copy of the original system (section 4) and adapts
the coupling matrix of the model so as to synchronize its dynamics with the original. If
synchronization is achieved, the topology obtained for the model is taken as a proxy for
the original. Finally, a set of direct methods (section 5) rely on measuring time series (or
features thereof), evaluating temporal derivatives, and exploiting smoothness assumptions to
find solutions to an optimization problem given by the restrictions by data.

We briefly comment on technical issues (section 6) and mention basic core approaches
for identifying effective connectivity (section 7). These approaches rely on simple linear
correlation, maximum entropy principles and related statistical inference methods. Finally,
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we provide an outlook (section 8) where we highlight current challenges, point out aspects
sometimes overlooked and show potential research paths towards uncovering more of the
topology of the networks that surround us.

This review on purpose is short but self-contained. It is intended for researchers mainly
in the physical and biological sciences and engineering and assumes basic knowledge of
dynamical systems and probability theory. Let us start with the details.

2. Nonlinear dynamics of networks

2.1. Systems of ordinary differential equations describing networks

Throughout the main part of this review, we consider networks of units assumed to be described
by systems of ordinary differential equations. Discrete time maps coupled to a network are
not discussed but typically approaches similar to those presented here are viable in slightly
modified forms. We discuss specific issues for systems of pulse-coupled units, such as spiking
neurons, in section 5. These are formally hybrid systems, i.e. mixtures of continuous-time and
discrete time systems.

Assuming that interactions occur between pairs of coupled units, a generic network
dynamical systems is given by

d

dt
xi = f i(xi) +

N∑
j=1

Ji jgi j(xi, x j) + Ii(t) + ξi(t) (1)

where i, j ∈ {1, 2, . . . N}, xi(t) = [x(1)
i (t), x(2)

i (t), . . . , x(D)
i (t)]T ∈ R

D describes the state of
the ith unit at time t ∈ R, and the functions f i : R

D → R
D and gi j : R

D × R
D → R

D

mediate intrinsic and interaction dynamics of the D-dimensional units, respectively. The term
Ii(t) represents a vector of external driving signals (possibly random) and ξi(t) symbolically
represents external noise. Finally, the Ji j define the interaction topology, in the simplest setting
in terms of the adjacency matrix A such that Ji j = Ai j = 1 if there is a direct physical
interaction from unit j to i and Ji j = Ai j = 0 otherwise. In general, units’ interaction may be
higher order, e.g. requiring terms like hi jk(xi, x j, xk) added to the right-hand side of (1). For
instance in gene and protein interaction networks, a protein (the so-called transcription factor,
say unit k) is directly influencing the rate of transcription of a gene (say, unit j) to a DNA
segment (say unit i). We do not treat such terms here explicitly. Their relevance for network
dynamical systems is discussed in [17].

For some methods to infer effective connectivity, the functional form of (1) does not
directly enter the inference argument, other methods can be extended to include higher order
terms explicitly. We comment on higher order terms where appropriate (cf also section 5).

2.2. Rescaling, simplifications, and common interactions

Some a priori technical issues. Considering (1) as our basic level of description, in case the
dimension Di of the local dynamical system i depends on unit i, we would just consider the
maximal occurring dimension D = maxi∈{1,...,N} Di and for each unit ignore the D−Di dummy
variables. This is done purely for notational simplification. Note further that in general, the
quantity Ji j is a D×D matrix of coupling strengths Jdd′

i j , but that for many paradigmatic model
systems, only one of these elements is non-zero, i.e. Jdd′

i j = Jdd′
i j δd,d1δd′,d2 such that Ji j = Jd1d2

i j
is sufficient to describe the influence of unit j on i.

Given a dynamical system of the form (1), the right-hand side is determined up to N × D
additive constants Cd

i and one overall multiplicative constant C0. Shifting the state variables xd
i
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to co-moving frames and rescaling time enables us to set Cd
i = 0 for all i and all d and C0 = 1

without loss of generality.
For simplicity of presentation, we furthermore describe the methods below as if they

were for networks of coupled one-dimensional units only. Often, different dimensions may be
treated independently during reconstruction.

We thus take the coupled equations

d

dt
xi = fi(xi) +

N∑
j=1

Ji jgi j(xi, x j) + Ii(t) + ξi(t) (2)

as our basic network characterization we start from, where now the variables xi and x j and the
functions fi and gi j are treated as real scalars.

Common Interaction Functions. Only non-trivial coupling terms that are not identically
zero,

∂gi j

∂x j
�= 0 (3)

for the relevant domain of arguments actually contribute to interactions, so we assume all
coupling functions gi j for which Ji j �= 0 to be non-trivial in this sense. A broad range of
systems exhibits diffusive coupling such that

gi j(xi, x j) ∝ (x j − xi) (4)

which is a special case of coupling functions

gi j(xi, x j) = g̃i j(x j − xi) (5)

that depend on state differences (e.g. phase differences for coupled oscillators) only. The
simplest non-trivial form of interaction is linear coupling,

gi j(xi, x j) = Ai jx j, (6)

and does not depend on the dynamical variable of the unit it influences.
We have now set the stage to dive into specific inference approaches.

3. Driving-response experiments

One idea of inferring network topology is to measure the collective response of a network
dynamical system to driving by external signals. For instance, if a system exhibits a stable
collective state (e.g. fixed point or periodic orbit, cf figure 2), it will relax back to that state
after a transient input (pulse), if the latter is not too strong (such as to not kick the system
out of the basin of attraction of the stable state) [18–22]. Here, the input signal (driving)
effectively changes the initial condition of the system, leaving the system features (given by
the local and interaction functions and their parameters) the same. Similarly, a stable state
of the system will generically move in state space (and keep qualitatively the same stability
properties) in response to sufficiently weak, temporally constant external perturbations. These
kinds of perturbations effectively creates a non-identical but similar systems with different
parameters determined by the driving signal.

Both the relaxation dynamics and the shift in state space in general depend not only on the
external signal (which unit is perturbed, how and how strongly, i.e. known quantities), but also
on the (unknown) interaction topology of the network. Each collective response of the system
to an external perturbation yields a restriction on the network topology such that sufficiently
many driving-response experiments may reveal the entire topology. In this section, we present
the main ideas underlying several related driving-response approaches.

6
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(a) (b)

Figure 2. Stable state approaches to network inference. (a) Constant external driving
signal (parameter change) moves the stable fixed point (gray) in state space to another
position (blue). The difference vector v (red) depends on both the driving signal and
the network topology such that several measurements of v under different driving
conditions yields information about the topology. (b) Same as (a) but for transient
perturbative signal: After the driving signal is switched off, the dynamics relaxes back
(dashed blue trajectory) towards the original fixed point (gray). Now, the relaxation
trajectory contains information about the topology.

3.1. Restrictions from local fixed point analysis

Recent efforts for developing methods to identify a network’s topology have emerged from
the need to understand biological, in particular gene regulatory networks [1, 23–25]. Such
networks consist of genes and proteins that interact with each other within a cell [26, 27].
These interactions in particular control (indirectly) the rates at which genes are transcribed
into mRNA and the regulatory features emerge via the interactions and generally do not
follow from the single-gene level [28]. Gene regulatory networks and other reaction networks,
e.g., in chemistry or population dynamics, are often modeled by nonlinear differential
equations

żi = fi(z1, z2, . . . , zN; p, Ĩ), (7)

describing the rate of change of the expected numbers (or concentrations) zi(t) of entities (e.g.
genes, atoms and molecules or individual organisms) at time t in terms of their dependence
on the number of other entities [27]4. Here p is a set of parameters and Ĩ represents a set
of external perturbations directed to the entities. The zi are typically positive real numbers
but mathematically there is no restriction for them to also be negative. Under the assumption
that such a system is close to a steady state z∗ = (z∗

1, z∗
2, . . . , z∗

N ), a stable fixed point where
fi(z1, z2, . . . , zN; p, Ĩ) = 0 for all i, the dynamics for perturbations xi(t) = zi(t) − z∗

i from
steady state concentrations of such nonlinear models may be approximated to first order in the
xi by

ẋi =
N∑

j=1

Ji jx j + Ii(t), (8)

where the local Jacobian Ji j = (∂ fi/∂z j)(z∗) is the effective interaction matrix given the
steady state and Ii(t) is assumed to be an external perturbation linearly coupling to deviations
of variables xi. We remark that when deriving (8) from (7) we implicitly use the relation

Ii(t) =
∑

j

Ĩ j(t)
∂ fi

∂ Ĩ j

∣∣∣∣
z=z∗,Ĩ=0

+ O(ĨiĨ j) (9)

ignoring the second and higher order terms.

4 From now on we write ż for the rate of change d
dt z of a variable z.
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3.1.1. Driving the system constantly to move a stable state (changing parameters). The
method presented now effectively moves the parameters and thus in particular the fixed
points of a system. Originally intended for gene and protein interaction networks, Gardner and
coworkers [1, 29] have explicated that reconstruction is possible, at least for small networks.
We here discuss two approaches of using the general form (8) to reconstruct the interaction
network, i.e. the Ji j. The first is based on driving the system (8) by sufficiently small, temporally
constant driving forces Ii(t) = Ii,m to new fixed points x∗

i,m �= 0 close to the original one x∗
i = 0.

As the original fixed point was structurally stable, the new fixed point will generically exist
and have qualitatively the same stability properties if the Ii,m are small enough (figure 2(a)).
This is because solutions of (7), in particular fixed point solutions, typically vary continuously
with changing parameters (here: changing Ii,m from zero) and there is no bifurcation close to
the parameters yielding a generic stable fixed point y∗

i .
The observed values assumed at each new steady state together with the (known) driving

signals provide information about the interaction topology Ji j. Performing several perturbation
experiments m ∈ {1, . . . , M} yield N × M equations

N∑
j=1

Ji jx
∗
j,m = −Ii,m, (10)

one for each experiment m and for each unit i.
After an arbitrary number M of experiments, equation (10) in matrix form becomes

JX = Y, (11)

where J ∈ R
N×N represents the connectivity among the units, X ∈ R

N×M the steady state
values with Xi,m = x∗

i,m, and Y∈ R
N×M the perturbations Yi,m = −Ii,m that we assume to be

known. This matrix equation restricts the connectivity J given the measured data X and the
input perturbations I. The matrix equations constraining the full network topology J can be
split into N equations

JiX = Y i, (12)

one for each input connectivity Ji := (Ji,1, . . . , Ji,N ) ∈ R
1×N of a unit i. Thus, the same set

of data X restrict all the sets of units providing interactions to i ∈ {1, . . . , N} but the data
Y i = (Yi,1, . . . ,Yi,M )T are unit dependent. This reduction to N individual equations also admits
to split the computational effort for solving them. The problem becomes trivially parallelizable
because for different i, these restrictions (12) are independent in the sense that reconstruction
of the input coupling strengths to each unit i can be performed without taking care of input
coupling strengths of other units k �= i.

3.1.2. Observe relaxation to stable state after transient driving (changing initial conditions).
A second approach assumes that the quantities yi (and thus the xi) are perturbed such that at
time t0 we have xi(t0) = x(0)

i and the transient dynamics yi(t) of relaxation back to the original
fixed point y∗

i (and thus x∗
i = 0) are observed at a sequence of times tm > t0, m ∈ {1, . . . , M}.

This yields the same type of equation (11), but now with the Yi,m = −ˆ̇xi,m being estimates
of the derivatives ẋi(tm). We remark that these derivatives may be estimated in various ways,
each of them requiring a resolution of the measured data on sufficiently small time scales, cf
section 5.1. In this second approach, the different times the transient dynamics is measured
replaces the different driving experiments in the first approach. Finally, both approaches can
of course be combined, several experiments evaluated at several time points, again yielding
the same form of restrictions (11).

8
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3.2. Solving the restricting equations

How can we finally obtain the coupling elements Ji j and thus the interaction network? In
principle, solving the matrix equation (11) yields the interaction matrix J as a function of the
known data X and Y . One may naively assume that it is directly solvable once the number of
experiments equals the number of units in the network, M = N. However, this problem can be
numerically ill-conditioned [30] for large N, such that the result is not reliable. In addition, as
also stressed in [1], the results may be sensitive to noise in the measured data.

A way to overcome this problem is by performing (many) more experiments than nodes
available, M � N, thus over-determining (11). In general, due to noise and measurement
inaccuracies, this yields the system (12) to be inconsistent such that there is no vector Ji that
satisfies all constraints. It will still be possible to find a robust approximation Ĵi that minimizes
the error between the predicted dynamics JiX and the actual dynamics Y i for a given node.
Specifically, this error function may be modeled as

Ei(Ĵi) = d(Y i, ĴiX ), (13)

where the distance measure d(v,w) = ‖v−w‖p
p between two vectors v,w ∈ R

M is commonly
defined in terms of the pth power

d(v, 0) = ‖v‖p
p =

(
M∑

m=1

vp
m

)
(14)

of an Lp-norm with p � 1, due to its convexity properties. This guarantees that any local
minimum of Ei is also a global minimum [31]. Particularly, the L2-minimization criterion,

Ei(Ĵi) = ‖Y i − ĴiX‖2
2, (15)

is of great importance because it has an analytical solution for its extremum. Equating to zero
the derivatives of the error function with respect to the matrix elements, ∂

∂Jik
Ei(Ĵi)

!= 0, yields
an analytical solution (see appendix A) to L2 error-minimization given by

Ĵi = Y iX
T(XXT)−1. (16)

Evaluating such equations for all i ∈ {1, . . . , N} yields the complete reconstructed
network Ĵ. This mathematical form of minimum L2-norm solution is implemented in many
mathematical packages (e.g. as the mrdivide function in Matlab [32] or the LeastSquares
function in Mathematica [33]). We explicate that the obtained off-diagonal terms Ĵi j serve
as the best estimate (in the procedural sense using the L2-minimization above) for the
coupling constants Ji j ; at the same time, the diagonal elements Jii are not relevant for the
network topology because the influence of these terms on the dynamics of unit i is physically
indistinguishable from an intrinsic drive to i included in the local dynamics specified by f (xi)

in (2), cf equation (3).
Experimentally, it is in principle possible to over-determine a system of equations by

performing repeated measurements on the network until the condition M � N is achieved.
Nevertheless, it may often seem unsuitable for large networks due to the large number of
experiments that would be required.

So, if the size of the network is an issue or the number of available measurements
insufficient to over-determine the system, we have M < N. Assuming that the network is
sparse (i.e. that each unit is connected with a small number of others and thus many connection
strengths are Ji j = 0), may still yield the collection of all network links. This implies that
several Ji j are effectively set to zero, therefore decreasing the amount of unknown coefficients
to be solved for. It leaves us with the problem of finding which links are actually present and
which are not. We present two related options to do so.

9
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3.2.1. Sparse solution with a bounded connectivity per unit. If an upper bound for the number
of links Ki < M is known, we may assume only M < N experiments are available and we have
a rough idea of how many nodes (at most) are connected to a particular node. In particular,
assume that the number of incoming connections for node i is given by at most Ki < M [1].
This assumption shifts the system (12) from having more unknowns than constraints, M < N,
to have more constraints than unknowns, M > Ki, therefore, implicitly over-determining the
system. It means that out of the N nodes present in the network only Ki of them are chosen
to be part of the system of equations for node i. Such assumption may be done when there is
some a priori information about the network’s connectivity and dynamics.

Specifically, the system of equations (12) may in principle be rewritten as

BiZi = Y i, (17)

where Bi ∈ R
1×Ki is the reduced connectivity vector for node i that contains the coupling

strengths for the selected nodes and Zi ∈ R
Ki×M is a matrix that contains the states of such

nodes. If we knew which Ki of the N − 1 possible connections actually contributed, we could
use equation (16) to solve (17) using L2-minimization yielding

B̂i = Y iZ
T
i (ZiZi

T )−1, (18)

where B̂i is the best approximation to Bi.
Yet, it so far remains unclear which of the

(N
Ki

) = N!
Ki!(N−Ki)!

possible combinations of

incoming connections is best suited for reproducing the dynamics of i. In principle, B̂i may
be calculated for each combination of Ki genes, and the combination that yields the smallest
value of the L2 norm ‖B̂i‖2 in (18) may be chosen as the best estimate for Ji. The efficiency
of such a procedure relies in number Ki of interactions per node. Hence, choosing a proper
Ki aiming to recover the largest number of real interactions with the smallest number of false
positives is a key factor to achieve a successful topological reconstruction.

3.2.2. Maximizing the sparseness of the connectivity matrix. If M < N and the Ki are
unknown, cannot be estimated or there are too many of them (making the combinatorial search
practically impossible) maximizing the number of zero entries in J, (i.e. minimizing the Ki

and thus maximizing sparseness) may be a way to solve (12). This approach is particularly
useful if the only a priori knowledge about the network’s connectivity is some sparsity.

For general matrix equations

Ay = b, (19)

where A ∈ R
m×n, y ∈ R

n×1 and b ∈ R
m×1, singular value decomposition (SVD) of A according

to

A = U�V T, (20)

yields an analytic solution

y = V �̃UTb + V c, (21)

where �̃ = �T(��T)−1that parametrizes the space of all solutions through the vector
c ∈ R

n×1 with ci = 0 for i ∈ {1, . . . , r} and r = Rank(A).
In our reconstruction problem, we are seeking to maximize the number of zero entries in

J based on solving the restricting equations (12) for Ji as we solved (19) for y. Consider the
transpose

XTJT
i = Y T

i (22)

10
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of (12). The analogous SVD-based solution then reads

JT
i = V �̃UTYT

i + V c, (23)

where U ∈ R
M×M , V ∈ R

N×N , �̃ ∈ R
N×M and c ∈ R

N×1 is a vector of remaining coefficients
parametrizing the solution space. Thus, the set of all possible solutions for Ji is given by (23).
The goal now is to pick the sparsest solution from this set. Therefore, equation (23) may be
posed as the overdetermined (M > N − r) problem

V �̃UTYT
i = −V c. (24)

Minimizing the L1 error

Ei(c) = ‖V �̃UTYT
i + V c‖1, (25)

yields a sparse solution [31]. However, unlike the L2 minimization, L1 minimization has no
analytical solution, so choosing an appropriate iterative algorithm to solve it is essential. The
Barrodale Roberts algorithm [34] provides a particularly fast solver that has been vastly used
in the field of network reconstruction [10, 12, 29, 35].

Remarks. The core equations (50) also provide the option to reconstruct network connectivity
via maximizing sparseness of the network and there is a particular relation to what is known
as compressive sensing cf, e.g. [36].

In general, linearization of dynamical equations, e.g. linearizing in state variables close
to fixed points, often well approximates nonlinear dynamics. This seems to hold for gene
regulatory networks [29] as well as in models of Drosophila segmentation networks [37] and
may thus be of general use across systems. For gene and protein interaction networks, often
single genes are selected for perturbations in an experiment, with the danger of providing non-
generic restrictions in (12). Finally, for some systems increasing the number of experiments
may reduce the resulting computational costs such that this trade-in may be considered.

3.3. Driving the system’s state to a fixed point

One may also infer network structure by externally driving the system to a fixed point and
shifting component values of the fixed point for individual units [38, 39]. As before, the
differences between pairs of steady-state responses are analyzed. Let us describe the network
as

ẋi = fi(xi) +
N∑

j=1

Ai jgi j(xi, x j) + Ii, (26)

where the Ai j ∈ {0, 1} are the entries of the adjacency matrix specifying only if an interaction
from j to i is present (Ai j = 1) or not (Ai j = 0), the gi j(xi, x j) are the coupling functions from
j ∈ {1, 2, . . . , N} to i, and Ii is the driving signal applied to unit i. It was demonstrated by Yu
and Parlitz [38] that under driving signals

Ii = −(xi − x̂i)θ, (27)

with sufficiently large gain factor θ ∈ R and Lipschitz continuous fi and gi j , the network may
be driven to a globally stable fixed point x∗ := (x∗

1, x∗
2, . . . , x∗

N )T ∈ R
N that is arbitrarily close

to a predetermined point x̂ := (x̂1, x̂2, . . . , x̂N )T ∈ R
N, independent of the initial conditions

[38] . At such fixed point we have

(x∗
i − x̂i)θ = fi

(
x∗

i

) +
N∑

j=1

Ai jgi j
(
x∗

i , x∗
j

)
(28)

11
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for all i. To understand how the network responds to changes in x̂, let us define

�i := fi(x̂i) +
N∑

j=1

Ji jgi j(x̂i, x̂ j) −
⎡
⎣ f

(
x∗

i

) +
N∑

j=1

Ji jgi j
(
x∗

i , x∗
j

)⎤⎦ , (29)

hence, equation (28) may be rewritten in terms of �i as

(
x∗

i − x̂i
)
θ = fi(x̂i) +

N∑
j=1

Ai jgi j(x̂i, x̂ j) − �i. (30)

The main idea at this point is to check whether unit k couples to unit i by evaluating how
x∗

i reacts to the shifting of x∗
k through x̂k. Therefore, let us set

x̂ j =
{

x̂k if j = k
0 if j �= k,

(31)

and evaluate (30) at this point, yielding

x∗
i θ = Aikgik

(
0, x̂k

) − �ik + fi(0) +
N∑

j �=k

Ai jgi j (0, 0) . (32)

Shifting the same component twice to x̂(1)

k and x̂(2)

k , resp., fixes a reference frame and
thereby yields equations characterizing the difference between responses of a given unit i to a
shifted fixed point component for unit k. It results in[

x∗
i,2 − x∗

i,1

]
θ = Aik[gik(0, x̂k,2) − gik(0, x̂k,1)] + [�ik,1 − �ik,2], (33)

a condition that may be rewritten as

Sikθ = Aikηik + λik. (34)

We remark that the differences [�ik,1 − �ik,2] in (33) are not known but the general form
(34) may be used to reveal whether they are zero, λik = 0, or not: given that we are dealing
with entries of the adjacency matrix, we may infer two possible outcomes from (34), whether
system k is coupled to i or not. Specifically,

Sikθ =
{
ηik + λik if unit k coupled to i
λik if not.

(35)

It was also demonstrated by Yu and Parlitz [38] that �i decreases with θ if fi and gi j are
Lipschitz continuous. This permits to discriminate whether there is a coupling between a pair
k → i. Especially, when θ is sufficiently large, the |Sikθ | values may be classified into sets I0

and I1, non-coupled and coupled sets, respectively. To construct such sets, Yu and Parlitz [38]
propose to:

• For fixed k, organize the |Sikθ | values in an ascending order, i.e., the values should be
arranged into a new series z where zk, j < zk, j+1 < . . . that defines the indexing j of the
zk, j.

• Establish the critical values of each set. In this case, the critical values jc and jc+1 define
the end and the beginning of I0 and I1, respectively. Yu and Parlitz suggest to find jc by
requiring the distance between any element from I1 with respect to zi,1 to be larger than
twice the size of I0, zk, j − zk,1 � 2(zk, jc − zk,1) for all j > jc.

Finally, by performing this process on every unit, the topology of the network may be
reconstructed.

12
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Remarks. The approach relies on the feasibility of (i) perturbing the systems in a specific
manner, and (ii) measuring the steady states, suggesting that it is model independent to a
large extent in that it does not in principle require knowledge of local dynamics or coupling
functions (yet it requires these to be Lipschitz continuous). These features may make the
approach of interest under certain conditions where only little pre-knowledge about the system
is available. Yet the approach requires substantial control over the system, in particular, the
option of externally driving every unit (independently) constitutes a major requirement. The
study [38] does not state how indirect actions are treated, for instance, how is an indirect effect
from unit k via k′ onto i distinguished from direct interactions from k to i? Possibly, driving
k may indirectly affect i only weakly and this potentially second order contribution could be
treated in a perturbative way.

3.4. Distributed perturbations to collective periodic dynamics

The approaches presented above (sections 3.1–3.3) required the existence of fixed points
either in the original system or in the presence of sufficiently strong external driving. Yet,
more complex dynamics prevails in a large range of biological, physical or artificial systems.
The second most simple invariant dynamics are periodic orbits and often arise as limit
cycles of coupled oscillatory units, thus asking for a generalization beyond simple fixed
point approaches. Even more complex dynamics, e.g. collective chaos, is treated by a direct
approach below in section 5.1.

Is it possible to infer network topology from driving-response experiments also for
oscillator networks? Below we positively answer this question, at the same time showing
that distributed driving signals not precisely targeted to one or a few units are at least
equally appropriate to infer network topology. Several theoretical model studies of coupled
oscillators [40–45] have shown that the response of single units in a network to constant or
periodic driving signals as well as the transient dynamics of synchronization depend on the
network topology. Some recent works [43, 44] helped us to understand specific quantitative
influence of structural features on the response and how the network response provides
some information about the structure (and the driving signal). For instance, the magnitude
of responses seem to decay exponentially with distance from the driving node [43], and the
coarse-scale connectivity among connected components may qualitatively determine to which
degree network dynamics is coordinated globally [44]. Further developing such insights, a
follow-up work [10] presents a method of reconstructing network topology from systematic
measurements of network responses to temporally constant, distributed driving signals in
coupled phase-oscillator networks.

The basic idea is that any network displaying a stable invariant dynamics, not just fixed
points, yield a specific response to a given perturbation as a consequence of the network’s
topology and the perturbation itself [40, 42, 44], cf figure 3. If the perturbations are small,
the invariant set is typically qualitatively unchanged and only slightly moved in state space.
Keeping track of which driving signals resulted in which responses, we can collect evidence
about the interactions among units in a network. Sufficiently many repetitions of appropriate
driving-response experiments then yield the network’s topology.

Weakly coupled limit cycle oscillators are well-characterized by ignoring (in the long
time limit) amplitude responses to coupling and by modeling them as phase-oscillators with
coupling via their phase differences only. A method to infer network topology for coupled
phase-oscillators with arbitrary stable, phase-locked dynamics has been presented in [10].
One key observation is that the phase differences (yet not the phases themselves) in such
systems converge with time and that comparing differences of phase differences among
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Figure 3. Topology revealed by driving a stable periodic orbit. As for fixed point
approaches discussed above (section 3.1 and figure 2), the difference vector v (red)
depends on both the driving signal and the network topology such that several
measurements of v under different driving conditions yields information about the
topology.

different driving conditions yield restrictions to network topology. The network dynamics is
given by

φ̇i = ωi +
N∑

j=1

Ji jgi j(φ j − φi) + Ii,m, (36)

where φi(t) and ωi are the phase and natural frequency of oscillator i, respectively, Ji j the
connection strength from oscillator j to i and Ii,m is a temporally constant driving signal
applied to i during the experiment m. We assume that in the absence of driving, Ii,m ≡ 0,
the network is in a phase-locked state where φ̇ j − φ̇i = 0 for all i, j. We remark that one,
several or all units may be perturbed during each given experiment, such that driving can be
arbitrarily distributed and effectively changes the frequencies of the driven oscillators. As for
the approaches relying on fixed points (section 3.1), the existence of a stable periodic orbit (and
thus in particular a phase-locked state) implies that sufficiently small constant perturbations
yield an (only slightly moved and slightly different) stable periodic orbit.

If for a given driving condition m, the dynamics becomes phase-locked, the phase
differences

�i j,m(t) = φ j,m(t) − φi,m(t) (37)

become constant in time, �i j,m(t) → �∗
i j,m := limt→∞

(
φ j,m(t) − φi,m(t)

)
because all

oscillators move at the same collective frequency

�m = ωi +
N∑

j=1

Ji jgi j(φ j,m − φi,m) + Ii,m. (38)

Hence, if the network is perturbed by a sufficiently small driving signal, the original
phase-locked state (for Ii,m ≡ 0) is slightly moved such that |�∗

i j,m − �∗
i j,0| � 1 and there

is a small difference between the perturbed and non-perturbed collective frequencies �m and
�0. Defining the effective frequency difference Di,m := �m − �0 − Ii,m of oscillator i, and
approximating the arbitrarily nonlinear coupling functions gi j by a first order Taylor expansion
around �∗

i j,0 we obtain

Di,m =
N∑

j=1

Ĵi jθ j,m (39)
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(a) (b)

Figure 4. Revealing network topologies from response dynamics for directed
networks of phase-locked Kuramoto oscillators. Variables evolve according to
ẋi = ωi + k−1

∑N
j=1 Ji j sin(x j − xi), with random frequencies ωi ∈ [0.1, 1] and k = 8

directed interactions of strengths Ji j = k−1, randomly selected for each unit. Panels show
reconstructed coupling matrices J for (a) N = 16, and M = 32, and (b) N = 64, and
M = 32. The matrices are gray-coded from white (Ĵi j = 0) to black (Ĵi j = maxi′ j′ {Ĵi′ j′ }).
Insets: element-wise absolute difference |Jderived

i j − Joriginal
i j |, plotted on the same scale.

where θ j,m := φ j,m − φ j,0 is the phase shift and Ĵ is the Laplacian matrix of the network given
by

Ĵi j =

⎧⎪⎨
⎪⎩

−Ji jg′
i j

(
�∗

i j,0

)
for i �= j∑

k,k �=i

Ji jg′
ik

(
�∗

ik,0

)
for i = j. (40)

Now, identifying the matrices Xi,m = Di,m and Yi,m = θi,m we have reduced the problem
of identifying network topology using distributed perturbations in systems of limit cycle
oscillators to solving the same linear algebraic equation (11).

As remarked in previous sections, several experiments are necessary in order to perform
the reconstruction of Ĵ. Therefore, from repeated measurements for different conditions it
is possible to rewrite equation (39) in the form (11) in terms of Y = D ∈ R

N×M and
X = 
 ∈ R

N×M representing the differences between collective dynamics and phase shifts
for each of the N systems during the M experiments.

Now, for sufficiently many experiments, i.e. M � N, the reconstruction may be
accomplished in principle but may be ill-conditioned numerically. In addition, for large N
the many required experiments may not be practical. if this condition is not fulfilled, methods
like the setting a maximum connectivity per system or maximizing the sparseness of the
connectivity matrix (section 3.2.2), may be applied in order to make the problem of retrieving
Ĵ an overdetermined problem.

As shown in [10], we may compare how accurate our prediction is by defining
Jmax := maxi′ j′

{∣∣Jderived
i′ j′

∣∣, ∣∣Joriginal
i′ j′

∣∣}, and using a relative difference defined as

�Ji j := 1

2Jmax

∣∣∣Jderived
i j − Joriginal

i j

∣∣∣ , (41)

where �Ji j ∈ [0, 1] ∀ i, j . In addition, the quality of reconstruction Qα may be posed as the
fraction

Qα := 1

N2

∑
i, j

H((1 − α) − �Ji j) ∈ [0, 1] (42)
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(a) (b)

Figure 5. Quality of reconstruction and number of required experiments for
reconstructing directed networks. Phase-locked Kuramoto oscillators with dynamics
defined as in figure 4 with ki = 10 random incoming connections per node. (a) Quality
of reconstruction at α = 0.95 for N = 24 (×), N = 36 (�), N = 66 (◦) and N = 96
(�). (b) Minimum number of experiments required for a reconstruction of quality level
q = 0.98 and accuracy α = 0.95.

of connection strengths which are assumed to be correct. Here α � 1 is a constant employed
to set the required accuracy for predictions and H is the Heaviside function, H(x) = 1 for
x � 0 and H(x) = 0 for x < 0. For instance, α = 0.95 means that the derived matrix has
a normalized relative error (41) of at most 5%. Moreover, we may estimate the minimum
number of experiments

Mq,α := min {M|Qα(M) � q} (43)

required for a reconstruction with a quality level q and with a prediction accuracy α. Figure 5
illustrates these measures for random networks of phase-locked Kuramoto oscillators for
several random topologies and parameters.

The driving response method in principle may be applied to a broad variety of problems
involving stable dynamics. A model analogous to equation (39) could be inferred as long as
the systems may be linearized around a stable state, allowing to retrieve the topology from
the network responses as above. Yet, there may be practical problems. For instance, even
for perturbations induced by constant driving signals, the invariant solution resulting from
perturbations to more complex periodic orbits or other stable invariant sets may be describable
only by time dependent quantities (and not, e.g., temporally constant phase differences),
limiting the approach suggested above to specific classes of systems.

3.5. Features and restrictions

One common advantage of the approaches presented above is that their required computational
effort scales well (weaker than linearly) with system size N such that at least moderately large
systems appear accessible (cf figure 5). At the same time, the approaches are relatively simple
to realize because they do not require knowledge in higher mathematics or computational
approaches beyond a basic standard.

A possible route of generalization is to combine some of the above approaches. For
instance, one may first drive a system to a stable fixed point as in section 3.1 and then apply
small perturbations around that new point as in section 3.3.

Yet, all these approaches require the researchers to be able to access (measure and drive) the
dynamics of all units in the system. Moreover, the local dynamics as well as the (approximate)
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form of interactions typically need to be at least partially known. The collective dynamics
suitable for the driving-response approaches described above also need to be simple, in fact to
exhibit a stable fixed point or periodic orbit or to admit the system to be driven to such as state.
Finally, the presented inference of the existence of physical interactions and their functional
form [46] seems well understood for networks of phase-oscillators, where perturbations in
oscillation amplitude decays on faster time scale than the relaxation of phases. It thus remains
an open problem how to use a driving-response approach to properly infer structural network
connectivity of coupled oscillators in systems, where the amplitude degrees of freedom play
a role or are even dominant. More generally, systems exhibiting more complex dynamics,
such asynchronous chaotic activity, bifurcations, multistability or other prevalent features of
high-dimensional, nonlinear systems, currently still prevent network reconstruction by the
methods presented above.

These requirements severely restrict the range of applicability in praxis to simple, well-
accessible systems only. In particular for biological systems such as neural circuits or gene
interaction networks, dynamics are typically more complex, systems are large and it is still
hard to implement controlled large-scale driving experiments on the single-unit level. Direct
methods (section 5) that do not rely on driving the system seem to offer viable directions
towards reconstructing networks with such more complex dynamics as well. A currently open
question of research constitutes how to exploit recorded time series from only a fraction of the
units.

4. Copy-synchronization: adapting a model copy

Another way of reconstructing network topology of a given network is by adapting the topology
of a second, model system, a network copy, such that it synchronizes with the original system.
The idea is to update the model topology continuously until the copy system exhibits a
dynamics identical to the original system; the rationale is that the final topology of the copy is
likely to be the original topology [47].

Specifically, consider an (original) system of the form

ẋi = fi(xi) +
N∑

j=1

Ji jg j(x j), (44)

where fi and gi j are known and assumed to be Lipschitz continuous. This original system can
in principle have arbitrary dynamics. Now, let us propose a model copy

ẏi = fi(yi) +
N∑

j=1

Ki jg j(y j) + Ii, (45)

where yi represents the state of the copy system, Ii(t) are control feedback signals and Ki j(t)
is current coupling strength in the test system. In order to synchronize the copy to the original
system, both the feedback signals Ii(t) and the coupling strengths Ki j(t) evolve in time
and depend on the states of the actual and the copy system. Defining the synchronization
error

ei = yi − xi (46)

we adapt the coupling strengths in the model copy according to

K̇i j = −γi jg j(y j)ei (47)

and

Ii = −αei (48)
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(a)

(b) (c) (d) (e)

Figure 6. Revealing network topology via copy-synchronization. Dynamics of
reconstructed network for directionally coupled Kuramoto oscillators ẋi = ωi +
k−1

∑N
j=1 Ji j sin(x j − xi) with random frequencies ωi ∈ [−1, 1], random coupling

strengths Ji j ∈ [0.5, 1], N = 10 and k = 3 random incoming connections per node. (a)
Dynamics of synchronization error between the original and the copy network measured

as e(t) =
√

N−1
∑

i e2
i (t). (b), (c), (d) and (e) show the inferred topologies at t = 0,

t = 2, t = 500 and t = 104. The matrices are gray-coded from white (Ji j = 0) to black
(Ji j = 1). The insets depict the element-wise absolute differences |Jderived

i j − Joriginal
i j |,

plotted on the same scale.

where α > 0 and γi j > 0. We remark that here the local dynamics fi(.) as well as the coupling
function gi j(.) need to be known in order to set up the test copy. It was proven in [47] that under
feedback signals (48) with sufficiently large α, the synchronization error ei decreases in time,
ėi � 0 for all i such that the two systems converge to a synchronized state. The rationale is
that after synchronization, the copy topology equals that of the original network, Ki j ≈ Ji j, cf
figure 6. With minor modifications on the control signals Ii this method admits to reconstruct
networks and sub-networks in the presence of disturbances and modeling errors as well [47].

We remark that to the best of our knowledge, there is no guarantee that the resulting
topology of the copy system actually reflects the one of the original network. In particular,
symmetries might lead to disambiguities.

Further, the method based on copy-synchronization is model dependent such that knowing
the intrinsic and coupling functions of units is vital, as in several parts of section (3).
Its applicability has been explicated for sample networks of up to N = 16 nodes, but
it remains unclear how to handle large networks as of the order of N2 links Ki j need
to be co-evolved in time and a bound of convergence times is currently missing. At the
same time, the copy approach does not require perturbations to the original systems, so
experimental access to it need not include driving access to its units. Interestingly, Yu et al
[47] highlight that the method may be useful to track changes in a network’s connectivity in
real time.
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5. Direct approaches

In the previous two sections, we have introduced methods to infer network connectivity by
either interfering with the system (driving-response approaches, section 3) or by setting up
and synchronizing a second, model system (section 4). Both classes of methods work if certain
requirements are met (in particular, the option to actively drive the system or the option to
synchronize the copy with the original system, respectively). It remains a challenge to infer
network topology from dynamics without such requirements.

5.1. Reconstruction by purely observing dynamics5

Methods based on copy-synchronization (section 4) assume that the local dynamics fi as well
as the interaction functions gi j in (1) are known and the gij do not depend on the state of unit i,
gi j(x j). Inferring network connectivity, i.e. the Ji j, then relies on the construction of a second,
model network, with dynamics governed by equation (1) and network parameters J′

i j that are
tuned to that of the real network by an error minimization procedure. As noted recently [12],
one may solve the same reconstruction problem with significantly reduced efforts and reduced
requirements by evaluating the states and their time derivatives directly from the time series
recorded from the original system. In particular, such a simple direct method [12] removes the
need to set up and synchronize a second, copied, system.

The idea is as follows. If the local dynamics and the coupling functions are known, their
evaluations at different times are also known from recorded time series and the only remaining
unknown parameters in equation (1) are the coupling strengths, which are to be determined.
Specifically recording a time series xi (tm) at sufficiently closely spaced times tm ∈ R and
estimating the temporal derivatives6 of it yields the dynamics of the ith unit given by

ẋi(tm) = fi(xi(tm)) +
N∑

j=1

Jijgij(xi(tm), xj(tm)). (49)

If there are M such times, m ∈ {1, . . . , M}, we have M equations of the form

ẋi,m = fi,m +
N∑

j=1

Ji j gi j,m (50)

with abbreviations ẋi,m := xi(tm), fi,m := fi (xi (tm)) and gi j,m := gi j(xi(tm), x j(tm)). Repeated
evaluations of the equations of motion (49) of the system at different times tm thus comprise a
simple and implicit restriction on the network topology Ji j as follows: writing Yi,m = ẋi,m − fi,m

and the matrix Xi = (gi j,m) j,m ∈ R
N×M , these equations constitute the matrix equation

Y i = JiXi (51)

where Y i ∈ R
1×M and Ji ∈ R

1×N is the ith row of the interaction matrix J, comprising the
vector (Ji j) j∈{1,...,N} of all input coupling strengths to unit i.

The main restricting equations (51) again have the same form as the generic restrictions
(11) and thus may be solved analogously. In [12], Euclidean L2-norm minimization was used
to infer the topology. Numerical tests show that reconstruction works well for transient as well
as attractor dynamics, for simple as well as complex, chaotic units and collective states, and
even in the presence of noise that substantially alters the dynamics and thus the recorded time
series. Figure 7 illustrates successful reconstruction in the presence of various levels of noise.

5 Part of the material presented in this subsection is taken from [12] and partially modified; this is not to be confused
with the Guttenplag method.
6 We remark that equidistant times tm of sampling are not necessarily the best to evaluate ẋi, in particular if the time
derivatives are approximated linearly.
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(a) (b)

(d)

(c)

(e)

(f ) (g)

Figure 7. Reconstructing a random network complex chaotic dynamics. Example
of N = 32 Lorenz oscillators with dynamics given by ẋi = σi(yi − xi) + ∑N

j=1 Ji j(x j −
xi) + ξ

(x)
i , ẏi = xi(ρi − zi) − yi + ξ

(y)

i , żi = xiyi − βizi + ξ
(z)
i , with unknown parameters

∀ i, j {Ji j, σi, ρi, βi} in the presence of external Gaussian white noise ξi of amplitude λ.
(a) Dynamics of a unit in the absence (blue) and presence (black) of noise with λ = 5.
Original (b) and reconstructed (c) connectivity, inferred parameters ( f ), and their errors
compared to the original topology and parameters (e) and (g). (c) Receiver operating
characteristics (ROC) of reconstruction under noise-free (blue) and noisy measurements
(black and red) for λ ∈ {0.1, 1, 10}. Adapted from [12].

It is clear that certain types of dynamics do not allow topology inference. For instance,
if all local dynamics are identical fi ≡ f , all coupling functions are identical, gi j ≡ g, and
collectively the units are identically synchronous, i.e. all in the same states at the same times,
there is no information about the connection topology one can possibly obtain from (only)
recording time series, because for all strongly connected topologies7, the collective dynamics
would be identical.

Further theoretical considerations show that following the same lines of analysis as above,
all parameters occurring linearly in the local dynamics of coupling functions, can also be
reconstructed by the same error minimization based on equation (11). For instance for the
(fictional) coupling function gi j(x, y) = a sin(xy) − exp(b + y − x), the parameters a and b
need not be known but can be inferred as well (up to one constant prefactor for each pair
(i, j) of nodes), because both a and exp(b) occur linearly in the equations of motions (49).
In many physical systems, parameters actually do occur linearly. These include, for instance,
the dynamics of coupled classical electric LCR circuits and the strengths of diffusive (4) or
direct linear coupling (6). Moreover, widely used model systems for networks of neurons, such
as leaky integrate-and-fire (LIF) and quadratic integrate-and-fire neurons [50] or networks of
coupled chaotic systems such as Rössler or Lorenz systems [51, 52] exhibit all or at least most
parameters occurring linearly or affinely. For all such systems, local dynamics fi and coupling
functions gi j may not or not completely be required to be known in advance.

7 A network is strongly connected if for every pair of nodes (i, j), node j can be reached from node i via a (directed)
path within the network [48, 49].
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Such a direct inference method [12] for network topology from complex collective
dynamics thus serves as a simple starting strategy for connectivity reconstruction in a broad
range of networked systems.

5.2. Pulse-coupling: reconstruction from spike patterns

Networks of spiking neurons or other pulse-coupled units are formally hybrid systems [53],
because the continuous-time flow is interrupted at certain time points, where events (e.g. spike
sending or reception) modify the dynamics [54, 55] via discrete time maps.

To start addressing the reconstruction problem for such hybrid systems, researchers have
considered one of the simplest model networks of pulse-coupled units based on LIF models.
Such network models are most broadly used in mathematical analysis and computational
modeling. Each unit in such a network has one state variable, its membrane potential, roughly
emulates leaky capacitive properties observed for membranes of biological neurons and is
complemented with a threshold where a pulse (action potential or spike [56]) is artificially
created and the membrane potential is reset. Although these models lack certain biological
details, such as a natural spike generating mechanisms, they are simple enough to be studied
analytically and they have been useful for furthering our understanding how the information
is processed among neurons [57].

Explicitly, the membrane potential Vi(t) of a LIF unit i changes as in an RC circuit (resistor
and a capacitor connected in parallel) according to

V̇i = γi(RiIi − Vi) + Si(t), (52)

where Ri, γi and Ii are the membrane resistance, inverse membrane time constant and the
external current applied to neuron i, respectively. Once the potential of a unit j crosses a
threshold, Vj(t) � VT, j, the potential is reset to Vj(t+) = VR, j and the unit emits a pulse that it
transmitted to the neuron’s post-synaptic neighbors [58]. The time of this pulse sending event
is remembered as the unit’s mth spike time t j,m := t. The collection of such pulses then define
the actions onto post-synaptic units i such that the quantity

Si(t) =
N∑

j=1

∑
k∈Z

Ji jδ(t − t j,m − τi j), (53)

in (52) represents the pulses that unit i receives from the rest of the network. Here, Ji j and
τi j are the synaptic coupling strength and the synaptic transmission delay from unit j and i,
respectively. Furthermore, δ(.) is the Dirac delta distribution modeling a potential response
kernel that is much faster than all other time scales involved.

The main question we address now is whether and how the network connectivity, as
specified by the matrix of coupling strength Ji j can be reconstructed if the pattern of spikes
times

(
t j,m

)
j∈{1,...,N},m∈Z

is given? We remark that we do not assume access to the natural state
variables, the membrane potentials Vi(t), which may not be observable, but only to the spike
times that are generated by the dynamics of these potentials. This difference constitutes the
main novelty of the approaches presented in this subsection compared to those for continuous
time state variables presented before.

First observe that (52) has an explicit solution [35] given by

Vi(t) = RiIi(1 − e−γi(t−t0)) + Vi(t0) e−γi(t−t0) +
N∑

j=1

∑
t0<t j,m+τi j�t

Ji j e−γi(t−t j,m−τi j ). (54)
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if the time interval [t0, t) lies in between two subsequent spikes of neuron i. The first sum
is taken over all neurons while the second is taken over those spikes generated by the other
neurons j �= i that affect i in the time interval [t0, t).

Based on this solution, we now present two distinct approaches to infer network
connectivity, one direct and exact inference method assuming oscillatory units and one coarse
approximate method based on stochastic optimization.

5.2.1. Direct topology inference assuming oscillatory units. Van Bussel et al [35] assumes
that all the parameters of (54), besides the synaptic couplings Ji j, are known. The rationale
is that delays and membrane time constants as well as a unit’s equilibrium potential RiIi may
be estimated beforehand. How could these coupling strengths and thus the structural network
topology be inferred? If the currents Ii are sufficiently large such that RiIi > VT,i the units
are oscillatory such that they create spike even without recurrent inputs from the remaining
network. After crossing the threshold VT,i, unit i sends a spike to its post-synaptic neighbors
and is reset to a resting value VR,i, so that the unit’s state at the boundaries of each inter-spike
interval [ti,k−1, ti,k) is determined and one may take t0 = ti,k−1 and t = ti,k. However, these
threshold crossings may be induced in two manners at t = ti,k−1, (a) by incoming excitatory
spikes from other neurons such that Vi(t−) < VT,i but Vi(t−) + ∑

{ j:∃m:t j,m+τi j=t} Ji j > VT,i

or (b) by the intrinsic oscillation of the unit such that Vi(t−) = VT,i without simultaneously
incoming spike(s). In both cases, the membrane potential is at reset value immediately after
sending a spike. So identifying t0 = ti,k−1 in (54), we have

Vi(t0) := Vi(ti,k−1) = VR,i. (55)

If the next spike is oscillation-induced (b), the membrane potential approaches its threshold
value VT,i continuously such that in addition

Vi(t−) := Vi(t
−
i,k) = VT,i (56)

where we now identified t = ti,k in (54). Thus, each oscillation-induced spike at some
t = ti,k implies a linear restriction of the form (54) for the coupling strengths Ji j by equating
[t0, t) = [ti,k−1, ti,k).

For M different inter-spike intervals obeying (55) and (56), this provides a linear system of
equations restricting the coupling matrix. However, as van Bussel et al [35] remark, consecutive
intervals may display similar patterns, such that it is often advisable to select M > N inter-
spike intervals sufficiently separated in time, to minimize correlations between intervals and
thus numerical inaccuracies. For each i, defining the subset of inter-spike intervals

Di,m := (ti,lm−1, ti,lm ) (57)

and

Ti,m = ti,lm − ti,lm−1 = |Di,m| (58)

equation (54) may be rewritten as

XiJT
i = Y i, (59)

where Ji := (Ji j) j∈{1,...,N} and Xi ∈ R
M×N and Y i ∈ R

M×1 are given by

(xi)m j =
∑

t j,k+τi j∈Di,m

Ji j e−γi(ti,lm −t j,k−τi j ) (60)

and

Yi,m = VT,i − RiIi,m(1 − e−γiTi,m ) − VR,i e−γiTi,m . (61)
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Repeating the same process for all units i yields the topology of the whole network.
As shown in section 3.2, the overdetermined problem, M > N, and the undetermined,
M � N, may be solved minimizing the L2-norm or maximizing the sparseness of the network,
respectively. A major limitation is that the presented approach requires a large amount of prior
knowledge about the system, such as the time delays between units and their time constants,
among others. Given this knowledge, the approach is capable of inferring large networks of
neurons as the computation time, as well as the number M of required inter-spike intervals to
be evaluated scales linearly with system size [35, 59].

5.2.2. Stochastic optimization of all systems parameters. In a complementary study,
Makarov et al [60] showed how stochastic optimization of all system parameters

pi = (
γi, Ri, Ii, τi j, Ji j

)
i, j∈{1,...,N} (62)

given the spike trains for all neurons in the network may yield a network topology roughly
consistent with the actual one.

The idea is to evaluate the predicted inter-spike interval durations T̄i,m(p) from a test set
of parameters and to optimize those parameters to reproduce a given (measured) spike train as
closely as possible. Thus, minimizing the difference between the predicted and measured spike
trains is vital for this method. The authors in particular applied their idea also to recordings of
biological neurons.

As the equation (54) yields transcendental relations for the T̄i,m(p), their estimates need
to be determined numerically. Thus, finding

p∗
i = arg min

pi

Ei(pi) = arg min
pi

M∑
m=1

(Ti,m − T̄i,m(pi))
2 (63)

yields the best (in Euclidean distance norm) solution for the set of parameters.
Briefly, to find the minimum p∗

i in (63) one must explore the parameters space. This means
that the solution is found through iteratively choosing random values for pi and comparing
the value of (63) for consecutive iterations. By relating the changes in (63) with the changes
in pi one may establish directions in which the minimum may be found by gradient descent.
However, it is also advisable to change directions in the parameters space randomly. Mainly,
because there may better solutions for p∗

i in regions of the parameters space where they are not
expected to exist [61]. Makarov et al [60] thus applied stochastic optimization for searching
the minimum.

As a strong requirement, this method needs the number of recorded spikes to be M� 2N;
as noted in [60], robust regression models are more suitable to handle this kind of problems
and special care with the inter-spike intervals must be taken as, e.g., spike bursts may lead to
false intervals.

5.3. Features and limitations

The stochastic optimization approach provides a generic approach in finding best fitting
parameters and thus here, potentially a well fitting network; yet, it is computationally
demanding and simultaneously requires many recordings compared to the size of the network.
In contrast, the direct approach assumes a large amount of pre-knowledge, in particular
regarding the unit’s parameters. In addition, by requiring to pre-process the data sets (i.e.
choosing appropriate time intervals), the minimization problem is no longer required to deal
with transcendental relations. This leads to a considerable increase on the computational
performance and it is the key factor that makes the method suitable for large networks. We
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remark that still, both methods are currently not suitable in our opinion to reliably infer network
topology from real recordings of spike data, because of several reasons: For instance, other
network-external sources of spike generation, stochastic fluctuations due to intrinsic noise and
the highly specific conditions required for reconstruction still limit the methods applicability.
Finally, both approaches assume linearity of interactions, yet it is known that interactions can
be nonlinear, e.g. due to dendritic spikes in response to sufficiently strong, simultaneous inputs
to single dendritic branches of a neuron [62–64].

6. Technical issues

Let us briefly comment on four technical issues related to the structural inference approaches
discussed above. We mention how some of them may be directly transferred to settings, where
discrete time dynamics describes the system (section 6.1), discuss issues when measuring
data from real, e.g. biological networks (section 6.2), remark on L1 versus L2 minimization
(section 6.4) and finally discuss what happens for hyper-networks, where more than two-point
interactions influence the collective state (section 6.5).

6.1. Discrete time maps

If the dynamical system is described as a network of coupled discrete time maps instead of by
coupled differential equations (2), approaches similar to the ones presented above are often
viable in slightly modified form. For instance, the core equation becomes (for one-dimensional
local units)

xi(t + 1) = fi(xi(t)) +
N∑

j=1
Ji jgi j(xi(t), x j(t)) + Ii(t) + ξi(t) (64)

where now the time t ∈ Z is an integer. Here, the direct method of subsection 5.1 is immediately
applicable, even with the additional advantage that no temporal derivatives need to be estimated
such that an observed time series (xi(t))i∈{1,...,N},t∈{1,...,M} enters the inference equations without
approximations. Of course, that time series may still contain substantial measurement errors
that propagate into any solution of the inference problem.

6.2. Sampling dynamics of real networks

When sampling real life phenomena, measurement constraints may arise due to the nature
of the given phenomena, making the study of such a major challenge. For instance, in EEG
analysis, a group of sensors is employed to measure the brain activity. These recordings help
in finding functional connections among regions in the brain. Basically, each sensor measures
the activity of a population of neurons below its active area for a certain amount of time. Then,
by analyzing the correlations among the time series of each sensor, the interaction network is
constructed. Nevertheless, as remarked by Bialonski in [65], special considerations regarding
the spatial and temporal sampling must be accounted for. A simple constraint is that sensors
placed too close to each other, may record overlapping activity from neighboring populations,
thus increasing the difficulty to discern between direct and indirect interactions. Moreover, if
the size and frequency of the sampling fails to capture the intrinsic time scales, false functional
connections in network may be constructed. Clearly this example is particularly relevant for
inferring effective connectivities, as discussed in section 7. As an example regarding the
time domain, gene and protein interaction networks often still have a very limited number
of sampling points available [66, 67] such that a network inference problem may become
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drastically under-determined. Additional information such as the known existence of certain
interactions in such a network (but not the existence of others) sometimes is available but
how precisely to use this is currently unknown and requires further method development. So
briefly, when studying real networks, special technical considerations should be accounted for
to actually use what it is measured (the data) for what one wants to know about the system, cf
section 1.2.

6.3. L1 norm minimization as a linear program

Given the optimization problem

min
y

‖Ay − b‖1 , (65)

where A ∈ R
M×N , y ∈ R

N and b ∈ R
M , (65) may be posed as [31]

min
s

1Ts s.t.
Ay − b � s

Ay − b � −s
, (66)

where 1 ∈ R
M is a vector of ones and � and � denote entry-wise comparison and s is an

auxiliary variable. To solve (66), one has to solve the linear program

min
x

c̃Tx s.t. Ãx = b̃, (67)

where

x =
[

y
s

]
, Ã =

[
A −I

−A −I

]
, b̃ =

[
b

−b

]
, c̃ =

[
0
1

]
(68)

and I ∈ R
M×M and 0 ∈ R

N are the identity matrix and a vector of zeroes, respectively. The
advantage of posing problem (65) as (67) is that the latter can be easily solved in a standard
way by implementing any solver for linear programs (e.g. the linprog function in MATLAB
[32]).

6.4. L2 versus L1 norm minimization

The need to choose a minimization scheme may turn the reconstruction problem into a
great challenge, because different schemes may yield different solutions, thus forcing us to
discern which scheme is best suited for our purposes in specific reconstruction problems. As
illustrated in [1, 10, 29, 35, 59, 60, 68] these differences between minimizers may be exploited
in certain situations. For instance, the L2 minimizer finds the closest solution in the L2-norm
and moreover has an analytic solution. Yet, given the nature of the minimizers (check [68]), an
L1 minimizer is suited for finding particular sparse solutions and it is more robust to outliers
than L2, so it might be seen as more useful for applications. However, minimizing an L1 norm
is computationally more costly compared to the L2 and it may have more than one solution
[31]. We note that ‖p‖2 � ‖p‖1 for any vector p ∈ R

N .

6.5. Hypernetworks: beyond two-point interactions

We have explicitly excluded networks with more than two-unit interactions from our general
mathematical description (2) or dynamical networks with temporally changing connections.
Those may occur, for instance in networks of computers, or other communication networks
of engineering, where inputs from several units that give input to the same other unit are
nonlinearly processed (for instance, multiplied) to change the latter units’ state. Similarly,
non-additive dendritic interactions in neurons [20, 63], where two simultaneously received
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synaptic inputs in close spatial proximity initiate so-called dendritic spikes and thereby a
nonlinearity [62], naturally imply three-point interactions.

We remark that direct three-unit and higher order interactions (i.e. three-term and higher
order products such as xd

i xd′
j xd′′

k where i, j, k are mutually different) are omitted in (1) because
they refer to dynamical systems on hypernetworks, thus going beyond the scope of this review.
Such third order and higher order terms are not covered by (1), firstly, because the notation
stays much simpler without them, but secondly and more importantly, because there seem to
be few major theoretical results on reconstructing such systems, if any, that may be or become
of practical use. Yet, in social, communication and information networks, such questions may
soon become of interest as ‘big data’ are pouring in.

A brief introduction to the dynamics of complex hypernetworks is given in [17].

7. Effective connectivity: correlation-based methods

7.1. Linear correlation and covariance

One common way of quantifying effective connectivity is to measure scalar time series
x(t) = (x1(t), . . . , xN (t)), t ∈ {t1, . . . tM} from the N units of a system (spike rates of
neurons, expression levels of genes, ...), compute their (temporal) averages μi = 〈xi(t)〉t and
variances σ 2

i = 〈(xi(t) − μi)
2〉t and from those compute the covariance matrix

Covi j := 〈(xi(t) − μi)(x j(t) − μ j)〉t

σiσ j
. (69)

Here the averages are time averages

〈yi(t)〉t := M−1
∑

m∈{1,...,M}
yi(tm). (70)

If multiple measurements are available, averages may be taken over ensembles of experiments
rather than (or in addition to) temporal averaging. The obtained covariance matrix is then
often thresholded, either just choosing a heuristic value or according to some measure of
statistical significance (against an appropriate null hypothesis) and the resulting non-zero
values interpreted either as ‘strength’ of effective connectivity (weighted connectivity matrix)
or just as existence (adjacency matrix) of a functional link between units. Sometimes,
the value of a threshold is systematically varied and changes in resulting connectivity
evaluated. Correlation, covariance and other linear algebra measures are commonly used,
often complemented by nonlinear operations such as thresholding, to analyze, for instance
functional magnetic resonance imaging (fMRI) or other spatio-temporal data [69]. We note
that correlation measure may be (mathematically) seen in a number of different ways [70].

7.2. Entropy maximization

Entropy measures the uncertainty associated with a given probability distribution and
constitutes a key quantity in information theory [71]. Given the probabilities of a set of events,
the entropy measures how uncertain, on average, the occurrence of an event is; or in other
words, how much information, on average, one obtains by measuring the occurrence of that
event knowing the probability distribution of events. Reversely, given a collection of (observed)
data points, we can choose probabilities to maximize the entropy. Such a distribution, known
as a maximum entropy probability distribution, would be the least biased distribution possible
and any other would require further assumptions on the nature of the problem [72]. For a
network dynamical system, i.e. systems of coupled dynamical units, we can ask what the
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effective interactions are such that the probability distribution that best describes the data
(averages and correlations) has maximum entropy.

Specifically, the principle of maximum information from Bayesian statistics postulates
the ‘most likely’ probability ρ(x) of measuring x given the same type of time series data
x(t) = (x1(t), . . . , xN (t)) is the one maximizing the information obtained from measuring
one more state y. More precisely, the goal is to find the probability ρ(x) that maximizes
Shannon entropy

S = −
∑

x

ρ(x) ln ρ(x) (71)

under the constraints that the first and second moments are consistent with those estimated
from the data,

〈xi〉ρ :=
∑

x

xiρ(x)
!= 〈xi(t)〉t (72)

and

〈xix j〉ρ :=
∑

x

xix jρ(x)
!= 〈xi(t)x j(t)〉t . (73)

By restricting ourselves to these conditions (and no others), we here focus on pairwise
interactions and neglect three-point and higher order coupling that arise in hypernetworks
(cf section 6.5 and [17]). This yields (appendix A) the probability distribution of the form

ρ(x) = Z−1 exp

⎛
⎝ N∑

i=1

hixi + 1

2

N∑
i=1

N∑
j=1

Ĵi jxix j

⎞
⎠

where Z = ∫
RN exp

(∑N
i=1 hixi + 1

2

∑N
i=1

∑N
j=1 Ĵi jxix j

)
dNx is a normalization constant and

hi and Ĵi jare parameters to be chosen such that (C.3) and (C.4) hold. The quantities Ĵi j are
interpreted as effective couplings between units i and j.

If the matrix of covariances between the N time series is

Ci j = 〈xi(t)x j(t)〉t − 〈xi(t)〉t〈x j(t)〉t . (74)

the effective coupling matrix is given by its inverse (appendix A)

Ĵ = C−1. (75)

This means that the best available probability distribution (i.e. that yielding the maximum
information) is given by second order effective coupling strengths determined by (but by no
means identical to) the linear correlation matrix.

This concept is applied to a range of different systems, in particular in biology, including
gene networks [73], protein networks [74] and neural circuits [75]. We comment on an
approach originally suggested by Bialek and coworkers [75, 76] for revealing in how far
two-point interactions characterize the coupled dynamics of neural circuits in retina. In fact,
a systematic study of neural activity in the retina of larval tiger salamander and guinea pig
revealed that 90% of the multi-information (which measures all correlative dependences in a
system [76]) is covered by pairwise correlations only [75]. The authors took this finding as
a sign that pairwise interactions well characterize the full network dynamics and that higher
order interactions may be neglected. Specifically, they temporally discretized neural responses
into ‘1’ or ‘0’ states depending on whether a neuron was or was not active during each
considered time interval of generically 20 ms. Thus, the state of the entire (observed) network
at each time interval is given by an N-dimensional word composed of the binary components
of the N neurons. As sometimes done for effective connectivity, researchers often tend to go
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beyond what Bialek and coworkers concluded and interpret the effective coupling strengths
(75) as actual physical interactions of experimentally observed units. However, it is typically
not clear how correlative dependences yield information about direct physical interactions and
such that such interpretations are not justified without substantial further knowledge about the
system.

7.3. Further in finding effective connectivity

We would like to emphasize that there is a multitude of additional approaches for finding
effective or functional connectivities. For instance, a range of methods are based on
information-theoretic measures such as mutual information [77], transfer entropy [78] and
Granger causality [79, 80] and extensions thereof. In addition, there are various methods
relying on Bayesian statistics or explicit or implicit modeling or extended regression such as
used in generalized linear models [81]. In particular in biological sciences, such statistical
methods have been used early on even at times not many or not very reliable data were
available, see for instance [82] for an early study regarding effective connectivity in neural
circuits.

There are a number of open challenges regarding both precision of such methods and
the interpretation of the respective results. For instance, fMRI experiments of brain areas
may rely on differences in blood oxygen level (so-called BOLD signals) as observables but
often aims to relate actual dependences in neural spiking activity. The reasoning here is that
the cell metabolism and thus the blood oxygen consumption in a local region (typically one
cubic millimeter) of the brain is larger the more action potentials per time are generated
by the (104–106) neurons in that region so that such approaches are not undisputed [83].
Moreover, the terms effective connectivity, functional connectivity and structural or anatomical
connectivity are sometimes not well defined, used in different meanings across studies. There
are even overlapping definitions of non-structural forms of connectivity, e.g. for functional
connectivity, effective connectivity etc. Here we did not delve into historic waters and used
the term ‘effective connectivity’ for all forms of connectivity that is not structural. Sometimes,
effective connectivity is even taken as an indication for structural connectivity of physical
interactions. For instance, distinguishing direct interactions from indirect influences may be
an important issues (cf figure 1) that is not yet fully clarified [84].

Finally, we mention that for neural circuits [85] have devised a statistical method to find
the couplings Ji j that optimize the likelihood that a class of integrate and fire models generates
the spike trains observed in experiments. This statistical method assumes the same model class
as the approach for inferring structural connectivity presented above (section 5.2) and its goal
indeed is finding the (most likely) structural connectivity.

As a conclusive warning, we remark that in particular different methods exit for obtaining
effective connectivity given the same data set; the results each provide information about
specific features of the system: exactly those defined by the method. Some might almost
coincide with others, some might be congruent with and some may well be contradicting a
given structural connectivity (cf [86]).

8. Conclusion and open questions

This review focuses on how structural connectivity of networks may be inferred from
dynamical features of the networks’ nodes. It is on purpose on an introductory level and
(given that the area of network reconstruction is rapidly growing simultaneously in different
fields, from gene and neural networks to engineering systems) by construction only highlights
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some selected approaches, most of which based on a perspective of considering the collective
nonlinear network dynamics. We provide basic approaches about finding effective or functional
connectivities of a network from time series as a brief complement and to get a taste for
essential differences in perspective. One main distinction between approaches for identifying
qualitatively different types of connectivity is that structural inference, aiming to reconstruct
real physical interactions, take into account the time evolution of a system. In contrast, finding
effective connectivity is often based on a stationarity assumption and uses distributions of
states, neglecting all or parts of their temporal evolution. Relating observable, possibly effective
and physical connectivity, is at the heart of current interdisciplinary research [15, 87]. As also
mentioned in the Introduction and briefly discussed in section 7, functional versus structural
inference if often not well distinguished and, in particular in early publications, the qualitative
difference in approach was sometimes not even mentioned.

The methods and approaches presented in this review aim to tell whether or not and
how strongly units in a network directly interact with each other. This is in distinction
to the entire field of system’s identification [7] where the aim is to identify the rules
underlying a dynamical system from time series and predict its (future) dynamics based on
this identification. Systems identification for multi-dimensional systems, and thus in particular
for large networks, seems intractably hard because even if the ‘real’ system is almost (but not
entirely) perfectly reconstructed, predicting their future dynamics can be impossible due to
chaos (sensitive dependence on initial conditions), exponentially many different collective
states and uncontrolled external influences, with all these factors becoming typical for multi-
dimensional complex systems. At the same time, as in part illustrated in this review figure 5,
learning the existence of strengths of interactions only (and not the precise form of dynamics)
may well be successful for much larger systems. We thus speculate that novel methods
complementing those of systems identification may yield further insights into the interaction
networks of various complex systems.

A number of key issues are not discussed in this review but still are sometimes pressing
for progress research, in particular with respect to applications to real world settings. We list
a few.

(1) How much information can we actually access (cf [88])? Can we observe all the units of
a network? Can we observe all dynamical variables (dimensions) of each unit? In which
sense may it make sense to seek connectivity of nodes that are not observed?

(2) What do we know a priori about the system? Are the functional forms of network
interactions known? What can we say about stability or instability of the dynamics?
Perhaps the dynamics even exhibits a complex mixture of stable and unstable dynamics
[9, 89, 90].

(3) What are reasonable (or possible) number of experiments or measurements that can be
done and what is a clever trade-off against the required computational efforts that may
depend on the quality and quantity of those measurements [23].

(4) Which of the structural features are actually the most relevant and which are even possible.
In biochemical and gene regulatory networks, electric circuits and power grids, for
instance, many interaction links (or their absence) may have been identified by other
methods not related to network collective dynamics. Under these circumstances, can we
improve existing approaches to take such information into account?

(5) How can we address genuinely stochastic dynamics, e.g. in excitable systems, possibly
even induced by small number fluctuations—a pathway of though that links to non-
equilibrium physics, cf [91]?
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(6) What if network connectivities change, for instance by synaptic plasticity in neural circuits
[92–94] or other forms of adaptation, e.g. in social networks [95].

(7) ...think of your own, there are many more questions with great opportunity for scientific
progress in a range of fields ...

Answers to all these questions will specifically restrict or enhance the space of optional
networks consistent with recorded data. From an abstract point of view, these modify the
form and dimensionality of the set of all possible networks and points to a direction that still
addresses network dynamics as an inverse problem but goes beyond network reconstruction.
Given all restrictions, perhaps we can design or control a network to robustly exhibit a specific
functionality. Network design and control form two additional branches in the theory of
network dynamical systems, with currently highly active research, from biological sciences to
engineering [11, 96–99]. Such approaches might soon be extremely influential and thought-
provoking, when, e.g., the neural and biochemical networks in our bodies as well as our
infrastructure networks surrounding us can not only be reconstructed, but even controlled and
specifically engineered. We recommend a view point by Freeman Dyson for a very practical
taste [100].
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Appendix A. Multiple linear regression and L2−norm minimization

Multiple linear regression is a widely-used statistical tool for predicting values of a set of
variables depending on one independent set of variables. Its main purpose is to infer a linear
relationship between them. Thus, the relationship between sets is assumed to have the form

y = βx + ε, (A.1)

where y ∈ R
1×M are the values for a dependent variable, β ∈ R

1×K the column vector of
unknown linear coefficients, x ∈ R

K×M is the set of values for the K−independent variables
and ε = (ε1, . . . , εM ) ∈ R

1×M are random errors εi, i ∈ {1, . . . , M}. In addition, the errors εi are
assumed to be independent random variables distributed according to a Gaussian distribution
with mean μ = 0 and constant variance σ 2 [101].

The question is how to estimate β by some β̂ such that the difference between the predicted
and real values, βx and y, is minimized? Using L2 minimization, the problem formally becomes

β̂ = arg min
β

‖y − βx‖2
2, (A.2)

also known as the linear least squares method [101].
The local extremum of the L2 norm appearing in the right-hand side of (A.2) implies

∀i ∈ {1, . . . , K} :
∂

∂βi
[(y − βx)(y − βx)T ]|

β=β̂
= 0 (A.3)
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such that
∂

∂βi
[yyT − 2βxyT − βx(βx)T ]|

β=β̂
= 0,

⇔ ∂β

∂βi
(xyT − x(βx)T )|

β=β̂
= 0,

which in turn implies the best estimate

β̂ = yxT (xxT )−1, (A.4)

of β according to the linear least squares method [101].

Appendix B. Singular value decomposition and L1−norm minimization

Singular value decomposition (SVD) is regarded as an important tool for statisticians due
to its broad variety of applications (reduced rank regression, polar decomposition, image
compression, among others [102]). Formally, from the fundamental theorem of linear algebra,
any rectangular matrix A ∈ R

m×n may be decomposed into the product of three matrices as

A = U�V T, (B.1)

where U ∈ R
m×m and V ∈ R

n×n are unitary matrices with their columns referred to as left and
right singular vectors, respectively, and � ∈ R

m×n is a rectangular diagonal matrix containing
the singular values [103]. This decomposition is known as the SVD of matrix A.

The SVD properties are useful in finding the set of all possible solutions to an under-
determined system of equations, because for every under-determined system

Ay = b, (B.2)

where b ∈ R
m×1, we can use SVD (B.1) to rewrite A such that solving (B.2) for y yields the

particular solution

yp = V �̃UTb, (B.3)

where �̃ ∈ R
n×m is the pseudo-inverse of � and is defined as

�̃ = �T(��T)−1. (B.4)

Equation (B.3) defines a particular solution from the set of all possible solutions. The
general solution to equation (B.2) is given by our particular solution plus a linear combination
of vectors in the null-space of A, i.e.,

y = V �̃UTb + V c, (B.5)

where c ∈ R
n×1 and ci = 0 for i ∈ {1, . . . , r} and r = Rank(A). The latter ensures that the

linear combinations are made only with vectors that span the null-space.
In this case, the problem consists in maximizing the number of zero entries in y by

choosing the c j ∀ j > r properly. This may be achieved by solving the overdetermined
system (B.5) with M equations and M − r unknowns. Specifically, it has been illustrated in
[10, 29, 35] that by solving

arg min
y

‖V �̃UT b + V c‖1, (B.6)

employing the Barrowdale and Roberts algorithm [34], a solution having a low number
(possibly the least number) of non-zero values, consistent with the restricting equations, is
often recovered. However, there seem to not be a general proof of this observation [31]. In the
network reconstruction context, it has been shown that optimizing systems like (B.6) (where y
and b are replaced by the unit’s connectivity JT

i and network constraints YT
i ) yields the actual

network topology when the network is sparse (even if there are less linear constraints than
units in the network).
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Appendix C. Estimating maximum entropy parameters

Maximizing the entropy

S[ρ] := −
∑

x

ρ(x) ln ρ(x), (C.1)

we derive first the functional form of ρ(x) and second its parameters under the constraints that
the non-negative function ρ � 0 is normalized∑

x

ρ(x) = 1, (C.2)

and the first moment

〈xi〉ρ :=
∑

x

xiρ(x)
!= 〈xi(t)〉t , (C.3)

and second moment

〈xix j〉ρ :=
∑

x

xix jρ(x)
!= 〈xi(t)x j(t)〉t, (C.4)

are consistent with those estimated from data of N time scalar series xi(t). The covariance
matrix is defined via the data as

Ci j = 〈xi(t)x j(t)〉t − 〈xi(t)〉t〈x j(t)〉t . (C.5)

We maximize the entropy under these 1 + N + N(N − 1)/2 constraints using a Lagrange
function

L[ρ] := S[ρ] − a
∑

x

ρ(x) −
N∑

i=1

hi

∑
x

xiρ(x) − 1

2

N∑
i=1

N∑
j=1

γi j

∑
x

xix jρ(x), (C.6)

where we drop constants as they do not influence the location of a maximum. Here a, hi

and 1
2γi j are the Lagrange multipliers to be determined. Computing the first derivatives and

equating them to zero

− ∂L

∂ρ(y)
= ln (ρ(y)) + 1 + a +

N∑
i=1

hiyi + 1

2

N∑
i=1

N∑
j=1

γi jyiy j
!= 0, (C.7)

yields the (unique local) maximum entropy of the form

ρ(x) = exp

⎛
⎝−1 − a −

N∑
i=1

hixi − 1

2

N∑
i=1

N∑
j=1

γi jxix j

⎞
⎠

= exp

(
−1 − a − hTx − 1

2
xTĴx

)

= A exp

(
−1

2
zTĴz

)
, (C.8)

where we use the abbreviations Ĵ := (γi j)i j, z := x + Ĵ−1h is an affine function of x and

A := exp

(
−1 − a + 1

2
hTĴ−1h

)
, (C.9)

is independent of x.
In summary, this exact computation yields the probabilities of the form

ρ(x) = Z−1 exp

⎛
⎝ N∑

i=1

hixi + 1

2

N∑
i=1

N∑
j=1

Ĵi jxix j

⎞
⎠ , (C.10)

where Z−1 = exp (−1 − a).
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To estimate the parameters a, hi and Ĵi j we make the approximation that the data xi form
a continuous set such that we can approximate sums by integrals. We then first observe that∑

x

ρ(x)
cont=

∫
RN

ρ(x)dNx =
∫

RN

A e− 1
2 zT ĴzdNz

!= 1, (C.11)

due to normalization (C.2). This implies

A = (| det(Ĵ)|/(2π))N/2, (C.12)

and thus yields the parameter a as a function of h and Ĵ. Similarly, fixing the averages (C.3)
yields (approximately)

〈xi〉 =
∫

RN

xiρ(x)dNx

=
∫

RN

A e− 1
2 zT Ĵz

⎛
⎝zi −

N∑
j=1

ˆ(J−1)i jh j

⎞
⎠ dNz

=
N∑

j=1

(Ĵ−1)i jh j, (C.13)

for all i and thus h as a function of Ĵ.
Finally, the equations fixing the second moments

〈xix j〉 =
∫

RN

xix jρ(x)dNx

=
∫

RN

xix j exp

(
−1 − a − hTx − 1

2
xTĴx

)
dNx, (C.14)

can be evaluated using

F(h, x) = exp

(
−1 − a − hTx − 1

2
xTĴx

)
, (C.15)

subjected to
∂2F

∂hi∂h j
= xix jF(h, x). (C.16)

With the transformation x = z − Ĵ−1h, equation (C.14) becomes

〈xix j〉 = ∂2

∂hi∂h j

∫
RN

F(h, x) dNx

∂2

∂hi∂h j
exp

(
1

2
hTĴ−1h

) ∫
RN

exp

(
−1 − a − 1

2
zTĴz

)
dNz

= ∂2

∂hi∂h j
exp

(
1

2
hTĴ−1h

)
exp(−1 − a)

(
2π

| det(Ĵ)|

) N
2

= exp

(
1

2
hTĴ−1h

)
exp(−1 − a)

(
2π

| det(Ĵ)|

) N
2

[((Ĵ−1)ih)((Ĵ−1) jh) + (Ĵ−1)i j]

= 〈xi〉〈x j〉 + (Ĵ−1)i j, (C.17)

where the last equations follows from (C.9), (C.12) and (C.13). Thus, using the definition of
the correlation matrix (C.5) and assuming that temporal and statistical averages are the same,
we have that the matrix

Ĵ = C−1 (C.18)

of effective coupling strengths between the variables is given by the inverse of the correlation
matrix of the data.
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