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We present and analyze the �rst example of a dynami
al system that naturally exhibits attra
ting

periodi
 orbits that are unstable. These unstable attra
tors o

ur in networks of pulse-
oupled

os
illators, and be
ome prevalent with in
reasing network size for a wide range of parameters. They

are en
losed by basins of attra
tion of other attra
tors but are remote from their own basin volume

su
h that arbitrarily small noise leads to a swit
hing among attra
tors.

PACS numbers: 05.45.-a, 87.10.+e, 89.75.-k

As attra
tors determine the long-term behavior of dis-

sipative dynami
al systems, the 
on
ept of attra
tors is


entral to the analysis of many natural systems as well as

to the design of arti�
ial systems. For instan
e, the 
om-

putational 
apabilities of neural networks are 
ontrolled

by the attra
tors of their 
olle
tive dynami
s. Conse-

quently, the nature and design of attra
tors in su
h sys-

tems 
onstitute a fo
us of 
urrent resear
h [1, 2, 3℄. In

general, the state spa
e of a nonlinear dynami
al system

is partitioned into various basins of attra
tion from whi
h

states evolve towards the respe
tive attra
tors. Sin
e

states that are slightly perturbed from an attra
tor of-

ten stay 
on�ned to its vi
inity and eventually return to

the attra
tor, attra
tors are 
ommonly 
onsidered to be

stable [4℄.

In the present letter, we show that unstable attra
tors

exist and arise naturally as a 
olle
tive phenomenon in

networks of pulse-
oupled os
illators [1, 2℄, whi
h where

introdu
ed to model e.g. syn
hronization in spiking neu-

ral networks and the dynami
s of other natural systems

su
h diverse as 
ardia
 pa
emaker 
ells, populations of

�ashing �re�ies, and earthquakes (
f. [1, 2, 3, 5℄). We

identify an analyti
ally tra
table network exhibiting un-

stable attra
tors. For this network we demonstrate the

existen
e of attra
tors that are linearly unstable and are

thus separated from the volume of their own basins of

attra
tion. Su
h attra
ting yet unstable states are 
on-

sistent with a de�nition of attra
tors introdu
ed by Mil-

nor, whi
h neither presumes nor implies stability [6℄. In

some other systems su
h Milnor attra
tors might not be

un
ommon if they are strange attra
tors that display ir-

regular dynami
s [7℄. More generally, however, attra
tors

that are not stable seem to be spe
ial 
ases that have

to be 
onstru
ted arti�
ially by pre
isely tuning param-

eters. Contrary to this intuition, we report here that

unstable attra
tors with regular, periodi
 dynami
s are

typi
al in large networks and persist even if the physi
al

parameters are varied substantially.

We argue that dynami
al 
onsequen
es of unstable at-

tra
tors may persist in a general 
lass of systems of pulse-


oupled units. Su
h 
onsequen
es in
lude an ongoing

swit
hing among unstable attra
tors in the presen
e of

noise. In systems where the 
onvergen
e towards an at-

tra
tor has a fun
tional role, su
h as the solution of a


omputational task by a neural network [8℄, swit
hing

indu
es a high degree of �exibility that provides the sys-

tem with a unique advantage 
ompared to multistable

systems: It will be hard to leave a stable attra
tor af-

ter 
onvergen
e, e.g. the 
ompletion of a task. With an

unstable attra
tor, however, a small perturbation is su�-


ient to leave the attra
tor and to swit
h towards another

one.

We 
onsider a homogeneous network of N all-to-all

pulse-
oupled os
illators with delayed intera
tions. A

phase variable φi(t) ∈ [0, 1] spe
i�es the state of ea
h

os
illator i at time t. Its free dynami
s is given by

dφi/dt = 1. (1)

Whenever os
illator i rea
hes a threshold, φi(t) = 1, the
phase is reset to zero, φi(t

+) = 0, and a pulse is sent

to all other os
illators j 6= i, whi
h re
eive this signal

after a delay time τ . Depending on whether the input

ε̂ is subthreshold or suprathreshold this indu
es a phase

jump a

ording to

φj((t+ τ)+) = min{U−1(U(φj(t+ τ)) + ε̂), 1} (2)

whi
h depends on the phase φj(t + τ) of the re
eiv-

ing os
illator and the e�e
tive ex
itatory 
oupling ε̂ =
ε/(N − 1) > 0. The fun
tion U(φ) is twi
e 
ontinuously
di�erentiable, monotonously in
reasing, U ′ > 0, 
on
ave
(down), U ′′ < 0, and normalized su
h that U(0) = 0,
U(1) = 1. For many models of biologi
al systems U(φ)
represents a 'potential' of an os
illator at phase φ. For

a more detailed dis
ussion of the model see referen
es

[1, 2℄.

For su
h pulse-
oupled systems, periodi
 orbits with

groups of syn
hronized units 
onstitute relevant attra
-

tors [1, 2, 3, 5℄. For instan
e, the network des
ribed above

possesses a single global attra
tor in whi
h all os
illators

are syn
hronized with zero phase lag if the intera
tions

are instantaneous (τ = 0) [1℄. Here we 
onsider the 
ase
of delayed intera
tions (τ > 0) where multiple di�erent


luster-state attra
tors with several syn
hronized groups

of os
illators (
lusters) 
oexist [2℄. Su
h attra
tors are

http://arxiv.org/abs/cond-mat/0202438v2
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period-one orbits with all os
illators in the 
lusters rea
h-

ing threshold and sending out pulses exa
tly on
e during

ea
h period. We �nd (
f. Fig. 1a) that, although the

system 
onverges towards a periodi
 orbit from random

initial 
onditions, weak noise is often su�
ient to drive

the system away from that attra
tor su
h that su

es-

sive swit
hing towards di�erent attra
tors o

urs. This

alternating syn
hronization and desyn
hronization might

be due to stable attra
tors lo
ated 
lose to the bound-

aries of their basins of attra
tion, su
h that the noise

drives the state of the system into a neighboring basin.

In an otherwise noiseless system we tested this possibil-

ity by applying instantaneous perturbations of gradually

de
reasing strengths (down to σ = 10−8
, 
f. Fig. 1b,
).

As we did not �nd a strength for whi
h any of the per-

turbed states returned to the attra
tor, we hypothesized

that the persistent swit
hing dynami
s (Fig. 1a) is due

to attra
tors that are unstable.

In order to verify this hypothesis dire
tly, we analyze

a small network of N = 6 os
illators for whi
h instan-

taneous perturbations lead to a similar swit
hing among

attra
tors. At given parameters [9℄ this network exhibits

a set of period-one orbits that are related by a permu-

tation of phases in su
h a way, that the system may

swit
h among them (Fig. 2a, states on the periodi
 orbits

marked in red, yellow, blue). Due to their permutation-

equivalen
e these orbits have identi
al stability proper-

ties. The state of the network at time t is spe
i�ed by

φ(t) = (φ1(t), . . . , φ6(t))
T
, su
h that the orbit marked in

yellow in Fig. 2a is de�ned by the initial 
ondition [10℄

φ(0) = (0, 0, A, A, B, C)T. (3)

Here the origin of time was 
hosen su
h that os
illators 1
and 2 have just sent a signal and have been reset. More-

over, at t = 0 only these two signals (and no others)

have been sent but not yet re
eived. The numeri
al val-

ues for the parti
ular parameters 
onsidered, A ≈ 0.176,
B ≈ 0.499, C ≈ 0.747, 
an be identi�ed in Fig. 2a (or-

bit marked in yellow). This orbit indeed is periodi
,

φ(T ) = φ(0), su
h that after the period T ea
h os
il-

lator has rea
hed threshold, has sent a signal and has

been reset exa
tly on
e (for details see [11℄).

To perform a stability analysis, we de�ne a return

map by 
hoosing os
illator i = 1 as a referen
e: Let

φn,i := φi(tn) be the perturbed phases of the os
illa-

tors i at times tn > 0, n ∈ N, just after the resets of

os
illator 1, φ1(tn) ≡ 0. Thus the �ve-dimensional ve
-

tor δn = φn − (0, A, A, B, C′)T (see [12℄) de�nes the

perturbations δn,i for i ∈ {2, . . . , 6} where we 
hoose

0 < δn,2 and δn,3 < δn,4 . Following the dynami
s, the

�ve-dimensional return map is given by [13℄

δn+1 = F (δn). (4)

The linearized dynami
s of a slightly perturbed state

with split-up 
lusters is des
ribed by the Ja
obian matrix

M = ∂F (δ)/∂δ|
δ=0

. It has four zero eigenvalues

λi = 0 for i ∈ {1, 2, 3, 4} (5)

su
h that a six-dimensional state-spa
e volume a

essed

by the perturbation is 
ontra
ted onto a two-dimensional

manifold. This re�e
ts the fa
t that suprathreshold input

re
eived simultaneously by two or more os
illators leads

to a simultaneous reset and thus a syn
hronization of

these os
illators independent of their pre
ise phases. If a

single os
illator is reset by a suprathreshold input signal,

it exhibits a pre
ise lag in �ring time ∆t = τ 
ompared

to the os
illator that has sent this signal. In 
ontradis-

tin
tion, the 
on
avity of U implies that simultaneous

subthreshold input to two or more os
illators leads to

an in
rease of their phase di�eren
es, i.e. a desyn
hro-

nization of os
illators with similar phases. For the orbits


onsidered here, this is re�e
ted by the only non-zero

eigenvalue

λ5 =
(2U ′(c0)− U ′(a1))U

′(c1)U
′(c2)U

′(c3)

U ′(a1)U ′(a2)U ′(a3)U ′(a4)
> 1 (6)

where ci = τ + ai for all i (
f. [10℄). Be
ause ci > ai >
ci−1 for all i and U ′ > 0, U ′′ < 0, this eigenvalue is

larger than one, i.e. the periodi
 orbit is linearly unsta-

ble. If there is no homo
lini
 
onne
tion, this implies

that su
h an attra
tor is not surrounded by a positive

volume of its own basin of attra
tion, but is lo
ated at

a distan
e from it: Thus, every random perturbation to

su
h an attra
tor state � no matter how small � leads to

a swit
hing towards a di�erent attra
tor. Furthermore,

this periodi
 orbit indeed is an attra
tor: Right after the

perturbation o� a periodi
 orbit (e.g. the one marked

in red in Fig. 2a, whi
h is permutation-equivalent to the

yellow one) the state of the system is mapped onto a two-

dimensional manifold, re-syn
hronizing one 
luster. The

state then evolves towards a neighborhood of another

attra
tor (here: the yellow one) in a lower dimensional

e�e
tive state spa
e without further dimensional redu
-

tion. Here, forming the se
ond 
luster, suprathreshold

input leads to the last dimensional redu
tion while the

state is mapped dire
tly onto the periodi
 orbit.

In general, a periodi
 orbit is unstable, if after a ran-

dom perturbation into its vi
inity, one or more 
lusters

are not re-syn
hronized by simultaneous suprathreshold

input but desyn
hronize due to simultaneous subthresh-

old input. An unstable attra
tor results if these 
lusters

are formed through syn
hronization in a region of state

spa
e that is separated from the periodi
 orbit towards

whi
h the state then 
onverges. Roughly, unstable at-

tra
tors 
an be viewed as saddle periodi
 orbits together

with a funnel me
hanism that puts traje
tories onto its

stable manifold (for details see [11℄).

In order to further 
larify the stru
ture of state spa
e,

we numeri
ally determined the basins of attra
tion of the

three attra
tors displayed in Fig. 2a in two-dimensional
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Figure 1: Phase dynami
s of a large network (N = 100, ε = 0.2, τ = 0.15). Phases of all os
illators are plotted whenever a

referen
e os
illator has been reset. (a) Dynami
s with noise (η = 10−3), (b) deterministi
 dynami
s in response to a single phase

perturbation (arrow, σ = 10−3
), note that the system swit
hes from a six-
luster to a �ve-
luster state, (
) phase di�eren
es

from the average phase of one 
luster in response to the perturbation.

Figure 2: Small network (N = 6, ε = 0.2, τ = 0.15): (a)

Noise-free phase dynami
s in response to single perturbations

(arrows), (b) Basin stru
ture in a two-dimensional planar se
-

tion through six-dimensional state spa
e. Small red, yellow,

and blue disks represent points on the attra
tors 
olor-marked

in (a). Their basins of attra
tion are marked in the same 
ol-

ors. Medium gray areas are basins of permutation-related

attra
tors, lightest gray marks the union of the basins of all

other attra
tors.

se
tions of state spa
e. The example shown in Fig. 2b

reveals that attra
tors are surrounded by basins of at-

tra
tion of other attra
tors as predi
ted by the above

analysis. Be
ause of this basin stru
ture, noise indu
es

repeated attra
tor swit
hing among unstable attra
tors.

Figure 3: Unstable attra
tors prevail for large networks and

persist in a wide region of parameter spa
e. Inset: pu(N) for
N ≤ 128, ε = 0.2, τ = 0.15. Main �gure: Parameters with

pu(100) > 0.5 are marked in bla
k.

Starting from the orbit de�ned by (3) the system may

swit
h within sets of only six periodi
 orbit attra
tors as

is apparent from the basins shown in Fig. 2b. However,

in larger networks (
f. e.g. Fig. 1a) a 
luster 
an split

up in a 
ombinatorial number of ways and exponentially

many periodi
 orbit attra
tors are present among whi
h

the system may swit
h. The larger su
h networks are,

the higher the �exibility they exhibit in visiting di�erent

attra
tors and exploring state spa
e.

The pre
eeding analysis demonstrates the existen
e of

unstable attra
tors. To answer the question, how 
om-

mon unstable attra
tors a
tually are, we numeri
ally es-

timated the fra
tion pu(N) of state spa
e o

upied by

basins of unstable attra
tors. As an example, Fig. 3 (in-

set) displays pu(N) for ε = 0.2 and τ = 0.15. While

unstable attra
tors are absent if networks are too small

(here N ≤ 4) and 
oexist with stable attra
tors in larger

networks, the fra
tion pu(N) approa
hes one for N ≫ 1.
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More generally, we observed that pu(N) approa
hes ei-

ther zero or one in large networks, depending on the pa-

rameters. For networks of N = 100 os
illators Fig. 3

shows the region of parameter spa
e in whi
h unstable

attra
tors prevail (pu(100) > 0.5). As this region 
overs

a substantial part of parameter spa
e, pre
ise parameter

tuning is not needed to obtain unstable attra
tors. Fur-

thermore we �nd the same qualitative behavior indepen-

dent of the detailed form of U . Hen
e, the o

urren
e of
unstable attra
tors is a robust 
olle
tive phenomenon in

this model 
lass of networks of ex
itatorily pulse-
oupled

os
illators.

Unstable attra
tors persist under various 
lasses of

stru
tural perturbations. For instan
e, preliminary stud-

ies on networks with randomly diluted 
onne
tivity sug-

gest, that a symmetri
, all-to-all 
oupling is not required.

Moreover, it is expe
ted that every system obtained by

a su�
iently small stru
tural perturbation from the one


onsidered here will exhibit a similar set of saddle peri-

odi
 orbits, be
ause linearly unstable states 
an generally

not be stabilized by su
h a perturbation. Although, in

general, these orbits may no longer be attra
ting, their

dynami
al 
onsequen
es are expe
ted to persist. In par-

ti
ular, a swit
hing along hetero
lini
 
onne
tions may

o

ur in the presen
e of noisy or deterministi
, time-

varying signals. As in the original system, the sequen
e

of states rea
hed may be determined by the dire
tions

into whi
h su
h a signal guides the traje
tory. By in-


reasing and de
reasing the strength of this signal, the

time-s
ale of swit
hing may be de
reased and in
reased,

respe
tively, due to the linear instability. Interestingly,

it has re
ently been shown that 
ertain models of neural

networks are 
apable of dynami
ally en
oding informa-

tion as traje
tories near hetero
lini
 
onne
tions [14℄.

Furthermore, swit
hing among unstable states does

also o

ur in systems of 
ontinuously, phase-
oupled os-


illators [15, 16℄ that 
an be obtained from pulse-
oupled

os
illators in a 
ertain limit of weak 
oupling [17℄. In par-

ti
ular, Hansel, Mato, and Meunier show that a system

of phase-
oupled os
illators may swit
h ba
k and forth

among pairs of two-
luster states [15℄. Working in the

limit of in�nitely fast response, i.e. dis
ontinuous phase

jumps, we have demonstrated that far more 
ompli
ated

swit
hing transitions 
an o

ur in large networks if the

os
illators are pulse-
oupled.

In this Letter, we have presented the �rst example of

a dynami
al system, a network of pulse-
oupled os
il-

lators, that naturally exhibits attra
ting periodi
 orbits

that are unstable. Intriguingly, these unstable attra
tors

are lo
ated remote from the volume of their own basin

of attra
tion. We have shown that they prevail in large

networks and for a wide range of parameters. Whereas

unstable periodi
 orbits are essential for the dynami
s

of many nonlinear systems, unstable attra
ting periodi


orbits previously seemed to be ex
eptional 
ases. Our re-

sults indi
ate that in a 
lass of systems of pulse-
oupled

units unstable attra
tors are the rule rather than the ex-


eption.
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