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Prevalence of unstable attractors in networks of pulse-coupled oscillators
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We present and analyze the first example of a dynamical system that naturally exhibits attracting

periodic orbits that are wunstable.

These unstable attractors occur in networks of pulse-coupled

oscillators, and become prevalent with increasing network size for a wide range of parameters. They
are enclosed by basins of attraction of other attractors but are remote from their own basin volume
such that arbitrarily small noise leads to a switching among attractors.

PACS numbers: 05.45.-a, 87.10.4e, 89.75.-k

As attractors determine the long-term behavior of dis-
sipative dynamical systems, the concept of attractors is
central to the analysis of many natural systems as well as
to the design of artificial systems. For instance, the com-
putational capabilities of neural networks are controlled
by the attractors of their collective dynamics. Conse-
quently, the nature and design of attractors in such sys-
tems constitute a focus of current research [ﬂ, , E] In
general, the state space of a nonlinear dynamical system
is partitioned into various basins of attraction from which
states evolve towards the respective attractors. Since
states that are slightly perturbed from an attractor of-
ten stay confined to its vicinity and eventually return to
the attractor, attractors are commonly considered to be
stable |H].

In the present letter, we show that unstable attractors
exist and arise naturally as a collective phenomenon in
networks of pulse-coupled oscillators , E], which where
introduced to model e.g. synchronization in spiking neu-
ral networks and the dynamics of other natural systems
such diverse as cardiac pacemaker cells, populations of
flashing fireflies, and earthquakes (cf. [, E, E, ﬂ]) We
identify an analytically tractable network exhibiting un-
stable attractors. For this network we demonstrate the
existence of attractors that are linearly unstable and are
thus separated from the volume of their own basins of
attraction. Such attracting yet unstable states are con-
sistent with a definition of attractors introduced by Mil-
nor, which neither presumes nor implies stability [E] In
some other systems such Milnor attractors might not be
uncommon if they are strange attractors that display ir-
regular dynamics [ﬂ] More generally, however, attractors
that are not stable seem to be special cases that have
to be constructed artificially by precisely tuning param-
eters. Contrary to this intuition, we report here that
unstable attractors with regular, periodic dynamics are
typical in large networks and persist even if the physical
parameters are varied substantially.

We argue that dynamical consequences of unstable at-
tractors may persist in a general class of systems of pulse-
coupled units. Such consequences include an ongoing
switching among unstable attractors in the presence of

noise. In systems where the convergence towards an at-
tractor has a functional role, such as the solution of a
computational task by a neural network [E], switching
induces a high degree of flexibility that provides the sys-
tem with a unique advantage compared to multistable
systems: It will be hard to leave a stable attractor af-
ter convergence, e.g. the completion of a task. With an
unstable attractor, however, a small perturbation is suffi-
cient to leave the attractor and to switch towards another
one.

We consider a homogeneous network of N all-to-all
pulse-coupled oscillators with delayed interactions. A
phase variable ¢;(t) € [0,1] specifies the state of each
oscillator 4 at time ¢. Its free dynamics is given by

de; Jdt = 1. (1)

Whenever oscillator ¢ reaches a threshold, ¢;(¢) = 1, the
phase is reset to zero, ¢;(t7) = 0, and a pulse is sent
to all other oscillators j # 4, which receive this signal
after a delay time 7. Depending on whether the input
¢ is subthreshold or suprathreshold this induces a phase
jump according to

¢i((t+7)7) =min{U (U (g;(t +7)) +6), 1} (2)

which depends on the phase ¢;(t + 7) of the receiv-
ing oscillator and the effective excitatory coupling é =
e/(N —1) > 0. The function U(¢) is twice continuously
differentiable, monotonously increasing, U’ > 0, concave
(down), U” < 0, and normalized such that U(0) = 0,
U(1) = 1. For many models of biological systems U(¢)
represents a 'potential’ of an oscillator at phase ¢. For
a more detailed discussion of the model see references
I, .

For such pulse-coupled systems, periodic orbits with
groups of synchronized units constitute relevant attrac-
tors [ﬂ, E, E, E] For instance, the network described above
possesses a single global attractor in which all oscillators
are synchronized with zero phase lag if the interactions
are instantaneous (7 = 0) [[l]. Here we consider the case
of delayed interactions (7 > 0) where multiple different
cluster-state attractors with several synchronized groups
of oscillators (clusters) coexist [f]. Such attractors are
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period-one orbits with all oscillators in the clusters reach-
ing threshold and sending out pulses exactly once during
each period. We find (cf. Fig. 1a) that, although the
system converges towards a periodic orbit from random
initial conditions, weak noise is often sufficient to drive
the system away from that attractor such that succes-
sive switching towards different attractors occurs. This
alternating synchronization and desynchronization might
be due to stable attractors located close to the bound-
aries of their basins of attraction, such that the noise
drives the state of the system into a neighboring basin.
In an otherwise noiseless system we tested this possibil-
ity by applying instantaneous perturbations of gradually
decreasing strengths (down to o = 1078, cf. Fig. 1b,c).
As we did not find a strength for which any of the per-
turbed states returned to the attractor, we hypothesized
that the persistent switching dynamics (Fig. 1la) is due
to attractors that are unstable.

In order to verify this hypothesis directly, we analyze
a small network of N = 6 oscillators for which instan-
taneous perturbations lead to a similar switching among
attractors. At given parameters || this network exhibits
a set of period-one orbits that are related by a permu-
tation of phases in such a way, that the system may
switch among them (Fig. 2a, states on the periodic orbits
marked in red, yellow, blue). Due to their permutation-
equivalence these orbits have identical stability proper-
ties. The state of the network at time ¢ is specified by
o(t) = (¢1(t),...,06(t))T, such that the orbit marked in
yellow in Fig. 2a is defined by the initial condition [[L]]

¢(0)=1(0,0, A, A, B, C)". (3)

Here the origin of time was chosen such that oscillators 1
and 2 have just sent a signal and have been reset. More-
over, at t = 0 only these two signals (and no others)
have been sent but not yet received. The numerical val-
ues for the particular parameters considered, A =~ 0.176,
B =~ 0.499, C ~ 0.747, can be identified in Fig. 2a (or-
bit marked in yellow). This orbit indeed is periodic,
&(T) = ¢(0), such that after the period T each oscil-
lator has reached threshold, has sent a signal and has
been reset exactly once (for details see [[LT]).

To perform a stability analysis, we define a return
map by choosing oscillator ¢ = 1 as a reference: Let
¢n,i = ¢i(tn) be the perturbed phases of the oscilla-
tors ¢ at times ¢, > 0, n € N, just after the resets of
oscillator 1, ¢1(¢,) = 0. Thus the five-dimensional vec-
tor 8p, = ¢dn — (0, A, A, B, C")T (see [[12]) defines the
perturbations 4, ; for i € {2,...,6} where we choose
0 < 6p,2 and 65,3 < 6pa . Following the dynamics, the
five-dimensional return map is given by ]

i1 = F(5,). (4)

The linearized dynamics of a slightly perturbed state
with split-up clusters is described by the Jacobian matrix

M = 0F(6)/06|5_o- It has four zero eigenvalues
Ai =0 for i €{1,2,3,4} (5)

such that a six-dimensional state-space volume accessed
by the perturbation is contracted onto a two-dimensional
manifold. This reflects the fact that suprathreshold input
received simultaneously by two or more oscillators leads
to a simultaneous reset and thus a synchronization of
these oscillators independent of their precise phases. If a
single oscillator is reset by a suprathreshold input signal,
it exhibits a precise lag in firing time At = 7 compared
to the oscillator that has sent this signal. In contradis-
tinction, the concavity of U implies that simultaneous
subthreshold input to two or more oscillators leads to
an increase of their phase differences, i.e. a desynchro-
nization of oscillators with similar phases. For the orbits
considered here, this is reflected by the only non-zero
eigenvalue

(2U"(co) = U'(a1))U' (1)U’ (c2)U’(e3)
U'(a1)U'(a2)U(a3)U’ (aa)

A = >1 (6)
where ¢; = 7 + a; for all i (cf. [E]) Because ¢; > a; >
ci—1 for all 4 and U’ > 0, U” < 0, this eigenvalue is
larger than one, i.e. the periodic orbit is linearly unsta-
ble. If there is no homoclinic connection, this implies
that such an attractor is not surrounded by a positive
volume of its own basin of attraction, but is located at
a distance from it: Thus, every random perturbation to
such an attractor state — no matter how small — leads to
a switching towards a different attractor. Furthermore,
this periodic orbit indeed is an attractor: Right after the
perturbation off a periodic orbit (e.g. the one marked
in red in Fig. 2a, which is permutation-equivalent to the
yellow one) the state of the system is mapped onto a two-
dimensional manifold, re-synchronizing one cluster. The
state then evolves towards a neighborhood of another
attractor (here: the yellow one) in a lower dimensional
effective state space without further dimensional reduc-
tion. Here, forming the second cluster, suprathreshold
input leads to the last dimensional reduction while the
state is mapped directly onto the periodic orbit.

In general, a periodic orbit is unstable, if after a ran-
dom perturbation into its vicinity, one or more clusters
are not re-synchronized by simultaneous suprathreshold
input but desynchronize due to simultaneous subthresh-
old input. An unstable attractor results if these clusters
are formed through synchronization in a region of state
space that is separated from the periodic orbit towards
which the state then converges. Roughly, unstable at-
tractors can be viewed as saddle periodic orbits together
with a funnel mechanism that puts trajectories onto its
stable manifold (for details see [[L1])).

In order to further clarify the structure of state space,
we numerically determined the basins of attraction of the
three attractors displayed in Fig. 2a in two-dimensional
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Figure 1: Phase dynamics of a large network (N = 100, ¢ = 0.2, 7 = 0.15). Phases of all oscillators are plotted whenever a
reference oscillator has been reset. (a) Dynamics with noise (7 = 10™%), (b) deterministic dynamics in response to a single phase
perturbation (arrow, o = 1073)7 note that the system switches from a six-cluster to a five-cluster state, (c) phase differences
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Figure 2: Small network (N = 6, ¢ = 0.2, 7 = 0.15): (a)
Noise-free phase dynamics in response to single perturbations
(arrows), (b) Basin structure in a two-dimensional planar sec-
tion through six-dimensional state space. Small red, yellow,
and blue disks represent points on the attractors color-marked
in (a). Their basins of attraction are marked in the same col-
ors. Medium gray areas are basins of permutation-related
attractors, lightest gray marks the union of the basins of all
other attractors.

sections of state space. The example shown in Fig. 2b
reveals that attractors are surrounded by basins of at-
traction of other attractors as predicted by the above
analysis. Because of this basin structure, noise induces
repeated attractor switching among unstable attractors.
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Figure 3: Unstable attractors prevail for large networks and
persist in a wide region of parameter space. Inset: py (V) for
N <128, ¢ = 0.2, 7 = 0.15. Main figure: Parameters with
pu(100) > 0.5 are marked in black.

Starting from the orbit defined by () the system may
switch within sets of only six periodic orbit attractors as
is apparent from the basins shown in Fig. 2b. However,
in larger networks (cf. e.g. Fig. 1a) a cluster can split
up in a combinatorial number of ways and exponentially
many periodic orbit attractors are present among which
the system may switch. The larger such networks are,
the higher the flexibility they exhibit in visiting different
attractors and exploring state space.

The preceeding analysis demonstrates the existence of
unstable attractors. To answer the question, how com-
mon unstable attractors actually are, we numerically es-
timated the fraction p,(N) of state space occupied by
basins of unstable attractors. As an example, Fig. 3 (in-
set) displays p,(N) for e = 0.2 and 7 = 0.15. While
unstable attractors are absent if networks are too small
(here N < 4) and coexist with stable attractors in larger
networks, the fraction p, (V) approaches one for N > 1.



More generally, we observed that p,(IN) approaches ei-
ther zero or one in large networks, depending on the pa-
rameters. For networks of N = 100 oscillators Fig. 3
shows the region of parameter space in which unstable
attractors prevail (p,(100) > 0.5). As this region covers
a substantial part of parameter space, precise parameter
tuning is not needed to obtain unstable attractors. Fur-
thermore we find the same qualitative behavior indepen-
dent of the detailed form of U. Hence, the occurrence of
unstable attractors is a robust collective phenomenon in
this model class of networks of excitatorily pulse-coupled
oscillators.

Unstable attractors persist under various classes of
structural perturbations. For instance, preliminary stud-
ies on networks with randomly diluted connectivity sug-
gest, that a symmetric, all-to-all coupling is not required.
Moreover, it is expected that every system obtained by
a sufficiently small structural perturbation from the one
considered here will exhibit a similar set of saddle peri-
odic orbits, because linearly unstable states can generally
not be stabilized by such a perturbation. Although, in
general, these orbits may no longer be attracting, their
dynamical consequences are expected to persist. In par-
ticular, a switching along heteroclinic connections may
occur in the presence of noisy or deterministic, time-
varying signals. As in the original system, the sequence
of states reached may be determined by the directions
into which such a signal guides the trajectory. By in-
creasing and decreasing the strength of this signal, the
time-scale of switching may be decreased and increased,
respectively, due to the linear instability. Interestingly,
it has recently been shown that certain models of neural
networks are capable of dynamically encoding informa-
tion as trajectories near heteroclinic connections [[L4].

Furthermore, switching among unstable states does
also occur in systems of continuously, phase-coupled os-
cillators [@, E] that can be obtained from pulse-coupled
oscillators in a certain limit of weak coupling [[L7F]. In par-
ticular, Hansel, Mato, and Meunier show that a system
of phase-coupled oscillators may switch back and forth
among pairs of two-cluster states [@] Working in the
limit of infinitely fast response, i.e. discontinuous phase
jumps, we have demonstrated that far more complicated
switching transitions can occur in large networks if the
oscillators are pulse-coupled.

In this Letter, we have presented the first example of
a dyTatical Systeil, a Hetwork of pulse-coupied Oscit-

units unstable attractors are the rule rather than the ex-
ception.
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