PHYSICAL REVIEW E 93, 022138 (2016)

Quantifying group specificity of animal vocalizations without specific sender information
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Recordings of animal vocalization can lack information about sender and context. This is often the case
in studies on marine mammals or in the increasing number of automated bioacoustics monitorings. Here,
we develop a framework to estimate group specificity without specific sender information. We introduce and
apply a bag-of-calls-and-coefficients approach (BOCCA) to study ensembles of cepstral coefficients calculated
from vocalization signals recorded from a given animal group. Comparing distributions of such ensembles
of coefficients by computing relative entropies reveals group specific differences. Applying the BOCCA to
ensembles of calls recorded from group of long-finned pilot whales in northern Norway, we find that differences
of vocalizations within social groups of pilot whales (Globicephala melas) are significantly lower than intergroup

differences.
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I. INTRODUCTION

Large-scale acoustic monitoring of wildlife through acous-
tic recording stations becomes a more and more common
approach in many places of the world [1-4]. Although the
amounts of data generated through automated recordings are
huge, data available for a specific species of interests might be
scarce. In this setting there is no additional information about
the sender, i.e., the (individual) animal that produced the sound.
These restriction also applies to recordings of marine mam-
mals, vocalizing out of sight of the observer (i.e., under water).
In the presence of these challenges there is an increasing need
for fast but robust methods to infer biologically and ecologi-
cally relevant information on the basis of acoustic signals. In
this contribution, we propose an ensemble-based approach to
quantify group-specific differences of animal vocalizations.

As a test data set for studying the validity of the ap-
proach we use vocalizations of long-finned pilot whales
(Globicephala melas), recorded in northern Norway [5]. In
a multidimensional aquatic environment it is important to
recognize group members for offspring care, protection against
predators, and cooperative social and feeding behavior. The
existence of vocal cultures and dialects has been suggested
by observer-based analysis of variations in call type usage
of killer whales [6,7] and sperm whale codas [8]. Less is
known about the vocalizations of long-finned pilot whales,
especially about the population living in the northeast Atlantic.
Long-finned pilot whales in the northwest Atlantic produce
typical dolphin sounds, such as clicks, buzzes, grunts, and a
variety of pulsed calls including whistles [9,10]. In a previous
study [5] it has been found that calls are complex with different
structural components, such as elements and segments, and
one-fifth of the calls we observe are biphonal with a lower
(LFC) and an upper frequency component (UFC) [5,10,11]. In
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total about 140 different call types have been found through
observer-based audiovisual classification [5].

There are several approaches to the automatic processing
of cetacean vocalizations (calls) [12-17] or sound in gen-
eral [18,19]. Most of them consist in capturing the temporal
changes of selected sound features and training different clas-
sifiers to categorize and classify single call types. We, however,
test whether one can study the communication of whales
without categorizing and classifying single calls and without
considering the temporal changes of the signals. Instead we
propose and apply an automated analysis method, the bags-
of-calls-coefficients approach (BOCCA) to ensembles (also
called bags in a machine learning context) of calls, recordings,
and sound features. Additionally, we refuse to focus only
on a low-dimensional subset of selected sound features that
seem relevant to the human observer, since they might be
irrelevant for the sensory processing system of the animals.
In more detail, we work with ensembles of all available
features as computed through a cepstral decomposition of the
sound signal [20]. Cepstral coefficients have been proposed as
features for speech recognition [20] and in this context term
cepstral decomposition is used in analogy to the common
spectral decomposition, with the dependent variable called
quefrency in analogy to frequency. Computing distributions of
cepstral coefficients for each ensemble allow us to quantify
group specificity in a statistical significant way. This approach
is conceptually related to the bag-of-words approach [21].

This article is organized as follows: In Sec. II we present
BOCCA, a new method to detect group specificity of
animal vocalizations using ensembles of sounds and relative
entropies. In the following two sections we demonstrate the
relevance of this approach by applying it to quantify the group
specificity of vocalizations of long-finned pilot whales. In
more detail, Sec. III provides all details concerning the data
set of recordings and a conventional observer-based analysis
approach [overlap of call usage (OCU)]. We then present the
results of the BOCCA and compare it to results of the OCU
approach by computing similarity rankings in Sec. IV. We
summarize the results and discuss further applications of the
BOCCA in Sec. V.
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FIG. 1. How to construct ensembles (bags-of-calls) for inter- and
intragroup comparisons.

II. ENSEMBLE-BASED IDENTIFICATION OF
GROUP SPECIFICITY

A. Constructing ensembles for intra- and intergroup
comparisons

To compare group-specific differences in vocalizations, we
construct ensembles of calls (bags-of-calls), each representing
a sample of recordings from one group of whales. The detailed
procedure of constructing bags-of-calls is described as follows
(see Fig. 1 for an illustration): Suppose we have N; recordings
of calls of whale group i and N; recordings of group j. An
ensemble E;(n) of n calls is drawn through random number
generators of all calls that have been recorded for group i. We
then randomly draw a second ensemble E;(n) consisting of
n of N; recordings of the second group j, with j #i. For
each pairwise comparison of groups, the size of the ensembles
n is adjusted according to the smaller number of available
recordings, i.e., to the largest integer smaller than half of the
smaller number of available recordings, n = L%min(N,-,N D1
We then compare groups i and j by comparing properties of
the ensembles E;(n) and E;(n). In order to check whether
the resulting differences can be attributed to the difference
in group, we also compare pairs of two random ensembles
drawn from the same group, using the N; —n or N; —n
remaining recordings (i.e., recordings not used for the previous
comparison of two different groups). In other words, we
generate additional ensembles E;(n) of size n using now
only the recordings that are not part of ensemble E;(n). The
differences in distribution within group i are then estimated
by comparing properties of E;(n) and E;(n).

B. Computing cepstral coefficients

Several features have been proposed and studied in order to
characterize bioacoustic signals [22]. Bias can be introduced
by selectively choosing features that the observer considers
to be relevant. We try to reduce this bias by completing
the previous findings with a study based on (relatively)
unselected features, i.e., cepstral coefficients [20], often used
in speech processing. Unlike so-called hand-crafted features,
they are computed for any arbitrary input signal, without
requiring knowledge about the sounds under study. The only
bias inherent to cepstral coefficients is the choice of the
representation (FFT based) and the choice of the window
lengths. Mel cepstral coefficients [23], often used to describe
human vocalizations, project cepstral coefficients onto the Mel
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FIG. 2. Examples for spectrograms, i.e., visualizations (color
coding or gray scale) of the temporal evolution of the power spectral
density) (left) and cepstrograms (right) for two vocalizations of
long-finned pilot whales. Loosely speaking, a line in the cepstrogram
(representing large values of c(g,) is shifted upwards, whenever two
lines in the spectrogram approach each other. The color coding (gray
scale) of the cepstrograms refers to In (c(q,t)/max[c(g,t)]) with t =
0,...,T and T being the length of the calland g = 1, ...,128 being
the index of each cepstral coefficient. Spectrograms are computed
with a window length of w = 512, allowing us to estimate 5 spectral
coefficients and % = 128 cepstral coefficients for each time step.

scale [24] to emphasize the frequencies most relevant for
human communication. We, however, do not project onto the
Mel scale, since frequencies that are most relevant for humans
might not be a priori suitable for analyzing communication of
animals. In more detail, we compute the coefficients

IIJ:{X(I)}IIZ)}
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2
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c(g,t) = H]—'{ log <

of the power cepstrum as features. Here 7 denotes the Fourier
transform and the normalization factor gy = max(F{x(¢)})
where t =0, ...,T is given by the maximum of the power
spectral density of each cut recording of length 7.

For a discrete time signal x(#,) with t, =ty + nA¢, with
At = 1/48000 the discrete Fourier transforms are realized
using a Hanning window of w time steps and an overlap of
w — 1 time steps. For a given window length w, we obtain w /4
cepstral coefficients c(q,t), where g = 1,2, ...,w/4 denotes
the index of each quefrency. Adapting suitable window lengths
for computing spectrograms (heat maps of the power spectral
density with respect to frequency and time instance), we obtain
a high-resolution in quefrency space, i.e., in the example
shown below we work with w/4 = 128 cepstral coefficients.
This resolution is relatively large compared to human speech
processing, using 13 cepstral coefficients and their temporal
derivatives. Figure 2 shows a visualization of the coefficients
Cq.1» in form of a cepstrogram in comparison to the typical
spectrograms. Due to the second Fourier transformation,
peaks in the cepstrum indicate the (reciprocal) difference
between peaks in the spectrum. Loosely speaking, a line
in the cepstrogram [representing large values of c(g,?)] is
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FIG. 3. Four examples for distributions of cepstral coefficients

¢i(q,1): (a), pai (b), p7.i, (C) ps7.i, and (d) pgs,; estimated for groups
i ={B,D,F,G,H,I}.

shifted upwards (towards larger ¢), whenever two lines in the
spectrogram (representing high values of the power spectral
density) approach each other.

C. Comparing distributions of cepstral coefficients

For each ensemble E;(n) representing group i, we compute
g time series of cepstral coefficients {c;(¢,#)} and then estimate
the distributions p; , of each data set, with g = 1,2, ...,128
as specified above. Proposing that properties of the ensemble
E;(n) are represented by the distribution p,;, we then ask
in how far the 128 distributions estimated for ensemble
E;(n) differ from the distributions of another ensemble E;(n).
Figure 3 shows four examples for distributions of cepstral
coefficients estimated for ensembles of calls recorded from
different groups of whales. For some coefficients, in particular
for coefficients with smaller g [e.g., Fig. 3(a)], the differences
between distributions are noticeable by visual inspection,
whereas many higher-order coefficients, representing small-
scale fluctuations in the spectrum have more similar distribu-
tions. To quantify this observation, we use common measures
for the difference in distribution, such as the (symmetrized)
Kullback Leibler divergence D(py.illpg,;) [25], also called
relative entropy and the Hellinger distance [26]. The (discrete)
Kullback Leibler (relative entropy) divergence

Pq.ik
D(pq,,»npq,j):Zln( . )pq,,»,k, )
k

Pq.jk

with k referring to the k-th bin of the distribution p,;, is a
nonsymmetric measure for the difference of two distributions..
Note that D(p, ;|| py, ;) is only defined if both distributions are
normalized such that )", p,; = 1 and if p,,; ; = 0 implies
Dq,j,x = 0 for all k. Here we use a symmetrized version of the
Kullback Leibler divergence,

S(pq.illpq.j) = D(pq.illpq.;) + D(pg. il Pg.i)s 3)

to quantify the difference between distributions p,; and p,_;
of the g-th coefficient, representing group i and group j.
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Similarly, one can compute S(p, ;|| pg,;) to measure intragroup
differences by comparing the distributions p,; and P, ;
referring to ensembles of equal size drawn from recordings
of the same group i, as explained above. We tested whether
the resulting group differences are sensitive to the measure we
use for comparing the distributions and obtained very similar
results using the Hellinger distance [26].

To summarize and quantify the difference between inter-
and intragroup comparisons we introduce the quantity

vij = Y [S(Pg.illpg.j) = S(pg.ill pg.)]. )
q

Intergroup differences are larger than intragroup differences
if v;; is positive and vice versa if v;; is negative. Since
smaller cepstral coefficients reflect large-scale structures in
spectra, differences in distributions of small coefficients can
be considered to be more relevant, whereas differences in
higher-order coefficients can be due to small scale fluctuations
and noise. Therefore, we additionally introduce a linearly
weighted summary index

1
wij =y 5 15PaillPe.p) = S(py.illPg.)] )
q

as a second measure for comparing inter- and intragroup
differences.

To test whether calculated values of v;; and w;; are
statistically significant we estimate confidence intervals for
both coefficients by comparing randomly generated ensembles
E,(n). In more detail, we construct m such ensembles by
randomly drawing n recordings from all available recordings
(not sorted by group) without repetition. Any 3-tuple of the
resulting randomly generated not group specific ensembles E,,
E, ., and E,~ can serve to simulate a comparison of inter- and
intragroup differences. Two random ensembles, e.g., E, and
E,», are interpreted as representing the same group, whereas
the third one (E,-) is assumed to represent a different group. For
each 3-tuple of random ensembles, we compute the coefficients
Vypr, Uppr and wy,, wy,». We then use the distributions of g(m) =
ka;()l a(k) values for each coefficient [with a(k) referring to
triangular numbers] to estimate confidence intervals according
to Student’s distribution.

III. OBSERVATIONS AND RECORDINGS OF
LONG-FINNED PILOT WHALES IN NORTHERN NORWAY

A. Ethics statement

All observations and recordings reported in this contri-
bution were made in the Vestfjord in northern Norway (see
GPS coordinates in Table I). In general, no permission is
needed for noninvasive research on marine mammals along the
Norwegian coast. To ensure that we conducted our research
according to Norwegian ethical laws, we asked the Animal Test
Committee (Forsksdyrutvalget) of Norway for permission, and
they confirmed that our studies do not require any permission
(approval paper ID 6516).

B. Encounters and recordings

We encountered six groups of long-finned pilot whales in
the Vestfjord in northern Norway (Table I). Sound recordings
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were made using one or two Reson TC4032 hydrophones
(frequency response 5 Hz—120 kHz, omnidirectional), which
were lowered directly at approximately —18 m into the
water from a 7-m Zodiac boat, when in close proximity
(less than 50 m) to the whales. Sound was amplified with
a custom-built Etec amplifier (DK) and recorded with
different mobile recording devices; in 20062008 we used
an Edirol-R09 (Roland) with a sampling frequency of
48 kHz, and in 2009-2010 we used a Korg MR-1000 with a
sampling frequency of 192 kHz. GPS coordinates were taken
at the beginning and end of an encounter, and notes of the
whales’ behavior were continuously taken during recordings.
Recordings lasted as long as the whales were within a 500
m range of the boat, and as soon as they moved out of range
and the signals became weak, we stopped the recordings and
moved closer to the whales. At first sign of disturbance of
the whales, we ceased the studies and waited 30 min before
resuming our studies. If the whales were repeatedly disturbed,
then we terminated the field encounter. In most cases, however,
the whales became quickly habituated to the presence of our
boat and data collection was possible for longer periods.

C. Overlap in call usage

In this section we access group specificity using audiovi-
sual (human) observer-based categorization and classification.
Studying six groups of long-finned pilot whales in the
Vestfjord, in northern Norway we found a complex and flexible
vocal repertoire [5]. See the Supplemental Material [27] for
examples of the recorded pilot whale sounds. Using a total of
32:54 h of observation time and 17:32 h of sound recordings in
99 recording sessions, 4582 recorded calls were categorized
to more than 140 different types using classic audiovisual
observer categorization and classification [5]. Comparing each
of the six different recorded groups of pilot whales (group B,
D, F, G, H, and J), we find that each group vocalized between
seven (group F) and 54 (group H) different call types. Figure 4
illustrates the usage of call types among different groups of
whales, based on all calls classified into 140 call types. OCU
(see Fig. 4) between two groups is quite common (30 of 140
call types). Seven call types are shared among three groups and
only one call type is shared between four groups. Group B and
group J have the highest call type overlap (N = 12), and group
F and group G, as well as group G and group J, have only one
call type overlap. Using the OCU as a measure for similarity
in vocalizations we can later compare it to the similarity of
groups obtained through BOCCA (see Figs. 6 and 7).

IV. QUANTIFYING GROUP SPECIFICITY OF
LONG-FINNED PILOT WHALES WITH BOCCA

A. The data set used for BOCCA

Basis of the bag-of-calls-and-coefficient analysis are short
recordings that have been cut automatically or manually from
continuous data, such that each of them contains one call of
a long-finned pilot whale. To test whether vocalizations are
group specific we only use call types of very good quality.
Vocalizations of this quality originated only from utterances
close to the boat and therefore ensure that only group members
uttered these calls. To achieve arandomized sample of different
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FIG. 4. Overlap in call usage. (a) Observations of calls within
different groups of pilot whales. Note that call type numbering is
arbitrary and does not reflect similarity in call structure, i.e., call i
and i + 1 do not necessarily have to be similar in structure. Panels (b)
and (c¢) show a similarity network and its adjacency matrix estimated
by the OCU approach. Here the distance between edges in the network
and the entries of the matrix represent the number of shared call types.

group activities and group members, we use long recordings
per group (ranging from 23 min to 5:14 h, mean: 2:55 h). In
total, we use 1056 nonoverlapping calls, selected from the 4582
calls according to the quality of the sound files (high signal-to-
noise ratio, no boat noise). Note that this selection of mostly
nonconsecutive calls (31 min long in total) is conceptually
similar to a (random) sampling from all available recordings
(17:32 h). The duration of the cut recordings containing one
call each varies between 0.14 s and 6.27 s. The total length of
all recordings used for this intra- and intergroup comparison
was 31 min and 23 s. All recordings used in this part of the
study have a sampling interval At = 1/48 000 s.

B. Drawing ensembles of calls for inter- and intragroup
comparison

Using BOCCA, we estimated group specificity on the basis
of ensembles (or bags) of calls. Each ensemble of  calls E;(n)
was drawn through random number generators from all calls
that have been recorded for group i, withi = B,D,F,G,H,J.

For each ensemble E;(n) representing group i, with we
compute time series of the g-th cepstral coefficient for each
ensemble with ¢ = 1,2, ...,128 and then estimate the distri-
butions p, ; of each data set. Constructing ensembles E;(n) of
calls and computing the features c, ,, we can then do pairwise
comparisons of ensembles of calls uttered by two different
groups i and j by comparing the distributions p,; and p, ;.
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FIG. 5. Symmetrized Kullback-Leibler indicate differences in distribution of cepstral coefficients. The blue (dark) solid lines represent
intragroup comparisons, whereas the red (gray) dotted and orange (light gray) dashed lines represent intergroup comparisons. Each panel shows
the result for the pairwise comparison of two groups as indicated in each panel’s legend. The number of calls in ensembles created for pairwise
group comparisons was chosen to be the same for inter- and intragroup comparisons.

C. Comparing distributions through relative entropies divergences S(pg,illpg,;) (see Fig. 5). To relate the obtained
similarity measures to a null model, we computed also
intragroup comparisons. Therefore, we constructed ensembles

of calls of equal size £;(n), E;(n) from the same group, and

Differences between distributions are quantified by com-
puting relative entropies, i.e., symmetrized Kullback-Leibler
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computed distributions of coefficients for these ensembles p, ;
and p, ;. Intragroup comparisons are also quantified using
symmetrized Kullback-Leibler divergences.

Visual inspection of KL-divergences depending on the
cepstral coefficients, as displayed in Fig. 5, yields that inter-
group differences are clearly larger than intragroup differences
for 10 of 15 comparisons, i.e., when comparing groups B
and D, groups B and D, groups B and G, groups B and
H, groups D and F, groups D and G, groups D and H,
groups F and G, groups F and H, and groups F and J. More
attention to detail is needed to interpret the results of the
comparison between groups B and J, groups D and J, groups
G and H, groups G and J, and groups H and J. Comparing
groups G and H [Fig. 5 (m)], we found large difference in
distributions for the first coefficients than for higher-order
coefficients. The smaller coefficients (c,, ..., c¢79) reflect
large-scale structures in the spectrum, whereas higher-order
coefficients capture fluctuations on a small scale, e.g., noise.
Thus, the results displayed in Fig. 5(m) indicate that the
intergroup difference of group G and group H is larger than
intragroup differences concerning the more relevant large scale
structures in the spectrum. Comparing groups B and J, there
are many coefficients (especially in the vicinity of ¢4 and cs)
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for which we found intergroup differences to be larger than
intragroup differences and similarly for groups H and J. In the
comparison of groups D and J, the intergroup differences [blue
line in Fig. 5(i)] are about one order of magnitude larger than
the intragroup differences of group D (red line). However, they
are in the same order of magnitude as the intragroup differences
of group J (orange line) for small ¢, whereas the difference
was again larger for higher-order coefficients. More precisely,
there are 12 of 128 coefficients for which the intragroup
difference of group J exceed the intergroup difference, whereas
116 of 128 coefficients indicate that the intergroup difference
is larger. Summarizing, one can therefore conclude that the
overall intergroup difference between groups J and D is larger
than group J’s intragroup difference. Additionally, we repeat
all comparisons using not the symmetrized Kullback-Leibler
divergence but the Hellinger distance [26] as a measure for
the similarity of distributions and obtain qualitatively and
quantitatively very similar results.

D. Evaluating indices for group specificity

The example of the comparison of group J and group D
indicates that the interpretation of Fig. 5 has to be done

groups

similarity Sij

B D F G H J
groups

FIG. 6. Quantifying inter- and intragroup differences using BOCCA. (a) Numbers of calls in ensembles for pairwise group comparisons.
Intergroup differences are larger than intragroup differences if the coefficients v;; (c) and w;; (b) are positive. Each comparison is done twice,
calculating either intragroup difference of the group with more recordings or less recordings. Confidence Intervals [orange (light gray) shaded
areas] are estimated by comparing randomly generated, not group-specific, ensembles and assuming that the resulting values follow Student’s
distribution. To test whether the similarity of groups B and J is due to recordings made during the common encounter of groups B and J, we
repeat the analysis excluding all calls of group J that were recorded during the common encounter [plotted as green triangles in (b) and (c)]. The
inverse of the weighted coefficients s;; = 1/w;; is expressed as the distance between edges in the network (d) and as entries of the network’s

adjacency matrix (e).
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FIG. 7. Comparing the results of OCU and BOCCA. (a) Ranking pairs of groups according to their similarity allows to compare the OCU
(y axis) and BOCCA (x axis). Points on the diagonal represent pairs of groups which have the same similarity ranking according to both
approaches. Two results (red squares and blue points) are obtained due to the asymmetry of BOCCA with respect to the group that is chosen to
estimate the intragroup similarity. (b) The minimal number of swaps needed to transform the ranking according to the OCU approach into the
BOCCA ranking is 9. We compare this to r, the number of swaps needed for sorting random vectors of 15 different integers. Estimating the
distributions p(r) using either 10°, 10%, and 10° samples of random vectors, we find that the minimal number of swaps (rgOCCA-OCU = 9)

is lower than than 94% of all calculated values of r.

with care. Therefore, we additionally quantify inter- and
intragroup differences by computing the newly introduced
group difference indices v;; and w;; (see Fig. 6). As shown
in Fig. 6, v;; and w;; are larger than zero, indicating that
intergroup differences are larger than intragroup differences
for all pairwise comparisons. Each coefficient v;; and wy;
can be evaluated in two different ways: with respect to the
intragroup difference of group i and with respect to the
intragroup difference of group j. Note that the number of
calls in the respective ensembles n = L%min(Ni,N ;)] is the
same for inter- and intragroup comparisons.

For all but one of the 15 group comparisons (between group
B andJ), the values of v;; and w;; are also clearly larger than the
confidence bounds estimated using random ensembles of sizes
n. Since group B has been only observed while traveling and
milling with group J (see Table I), we test whether the measured
similarity in vocalization could be influenced by the fact that
the recordings are made at the same location. Therefore, we
repeat the comparison of group B and group J but exclude
all recordings of group J that are made during the common
encounter of group B and J (July 3rd, 2010). These additional
results are shown as two single points (green triangles) in Fig. 6
and they are in the same order of magnitude as the previous
comparison of groups J and B. Consequently, we conclude
that features of the vocalizations of groups B and J are very
similar, as far as we can estimate on the basis of cepstral
distributions.

Using the inverse of the weighted coefficients s;; = 1/w;;
as a measure for the similarity in vocalization, we visualize the
results of all comparisons in terms of a network with s;; being
the adjacency matrix (see Fig. 6). The distance between edges
in this network corresponds to the values of s;;, e.g., a high

similarity in vocalizations of groups B and J is represented by
a small distance between edges B and J.

E. Comparing results from BOCCA and the conventional OCU

Comparing the adjacency matrices obtained through OCU
[Fig. 4(c)] and BOCCA [Fig. 6(e)], one can see that the
structures of both matrices are very similar. To quantify this,
we rank all pairs of groups by their similarities as estimated
by OCU and BOCCA [see Fig. 7(a)], i.e., starting with the
most similar groups (J and B) on rank 1 and finishing with the
least similar groups (B and F) on rank 15. The most similar
groups (J and B and then D and J) are ranked identically
by both methods, independently of the group that is used as a
reference for intragroup similarity (blue circle and red square).
Moreover, the similarity between groups D and H as well as
between B and F are ranked equally by OCU and BOCCA. All
other group comparisons are relatively close to the diagonal,
which indicates a similar ranking by both methods. We also
estimated the possibility of obtaining two rankings which are
so similar by chance. This is done by calculating the numbers
of swaps r needed to sort random vectors of 15 integers into a
specific ranking (the BOCCA ranking). We then estimate the
distributions p(r) from 103, 10*, and 10° samples of random
vectors [see Fig. 7(b)]. One can see that minimal number of
swaps needed to transform the ranking of BOCCA to the OCU
ranking rgocca—ocu = 9 is smaller than the maxima of the
distributions p(r). Integrating the distributions of p(r), we
find that 94% of all randomly created rankings need more
swaps than rgocca—ocu to be transformed into each other.
Consequently, BOCCA produces results that are comparable
to the observer-based OCU of 4582 calls, although only
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1056 calls of high sound quality are included in the BOCCA
analysis.

V. CONCLUSIONS

Many approaches to analyzing whale vocalizations focus
on the automated categorization and classification of single
sounds, such as types of calls and whistles [12-15,17,28].
Group-specific usage of vocalizations is then discussed by
comparing the repertoire (which sounds are used) and whether
there are variations of sounds. In the first part of this
contribution we follow this well-established approach by
conducting an observer-based categorization and classification
of all recorded sounds.

To study group-dependent differences in vocalization, we
propose and test a new automated method, the BOCCA.
The main idea of this approach is that we omit separating
and sorting vocalizations into call types and instead compare
ensembles of vocalizations produced by each group. Investi-
gating ensembles of calls rather than identifying individual call
types is conceptually similar to the bag-of-words model [21]
used in text analysis. In the original bag-of-words model a
text is represented as the bag (multiset) of words disregarding
grammar and even word order but keeping multiplicity. We
investigate group-specific vocalizations by comparing ensem-
bles i.e., bags of calls, that contain calls of a specific group of
whales. Comparing the statistical properties of all features
computed for each ensemble circumvents the necessity to
establish subjective vocal categories or select specific acoustic
features. Conceptually similar, using histograms of sound
features, has been suggested to attribute bird songs to bird
species [29]. Note that the way the ensembles of calls are con-
structed (choosing only high-quality sounds and additionally
applying a random sampling to data from several recording
sessions per group) implies that calls within an ensemble
most likely originate from different behavioral contexts and
that the temporal correlation of calls is destroyed due to the
random sampling. Additionally, we did not select specific
(hand-crafted) features but used all information contained in
the cepstral coefficients [20,29] of sounds. Furthermore, we
can even neglect the temporal ordering of these features and
each group is well represented by their statistical distributions
estimated for each ensemble of sounds. We then quantified
differences in vocalization among six groups of pilot whales
by computing differences in distribution. To reason whether
the calculated differences in distribution were relevant, we
introduced two types of coefficients that summarize the
relation between inter- and intragroup differences.

Intergroup differences were significantly larger than intra-
group differences for all but 1 of 15 intergroup comparisons.
However, we also noticed that it is very relevant to estimate
confidence intervals through randomly constructed ensembles
of a given ensemble size in order to take into account potential
finite-sample effects. Interestingly, groups B and J, the two
groups with no significant difference in vocalizations, have
also been observed traveling and milling together. One possible

PHYSICAL REVIEW E 93, 022138 (2016)

explanation for their similarity in vocalization is that they
are related or that they are subgroups of a bigger group.
The common encounter of groups B and J allowed us also
to estimate the effect that a similar acoustic environment
could have on the similarity of two groups: Even if calls
recorded from group J during the common encounter are
excluded from the analysis, we still find the same results
when comparing ensembles of calls from groups B and J.
Since the calls of group J used for this later comparison
were recorded on a different day at a different location, we
can conclude that the effect of the different acoustic environ-
ments on the computed similarity of vocalizations is rather
negligible.

Both observer-based classification of calls and the bag-of-
calls model yield similar results concerning group specificity.
Ranking pairs of groups according to their similarity, BOCCA
mostly reproduced the ordering of OCU approach which
relies on observer-based classification. This is surprising,
since BOCCA used less than 25% of the number of calls
which were considered in the OCU analysis. Consequently,
it is possible to distinguish groups of pilot whales auto-
matically by simply comparing ensembles of calls without
referring to individual properties of single calls. Knowing that
quantifiable group-specific vocalization of long-finned pilot
whales exist, future work might focus on testing whether
clustering approaches (as successfully used in other scientific
context, see, e.g., Refs. [30-32]) can confirm these findings
or reveal more insight. In total, we consider the bag-of-calls-
and-coefficients approach to be a valid method for specifying
difference and concordance in acoustic communication in
the absence of exact knowledge about signalers, as it is
common observing marine mammals under natural conditions
or analyzing data generated through automated acoustic
monitoring.
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APPENDIX: DETAILS ON ENCOUNTERS, RECORDINGS,
AND BEHAVIOR

Table I presents details on all encounters, sound-recordings,
and behavioral observations.
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TABLE I. Group sizes are estimated by visual observation on site, whereas the number of photo ID’s refer to animals identified a posteriori
from pictures taken. During each encounter several recordings were made (number of recording sessions). Summing the duration of these
recording sessions yields the total duration of recordings presented here. The dates in the second column of the table are given in the format

‘day/month/year’.
Date and Estimated Photo  Observation  Sound recordings = Number of recording
Group location [N/E] group size ID’s time [h:min] sessions Behavior
B 03/07/2010 45 43 05:33 03:17 19 Slow traveling,
68°04.870'/14°25.130’ socializing
D 10/08/2009 100 60 04:42 01:07 7 Milling,
68°06.532'/14°32.771 slow traveling,
socializing
11/08/2009 100 60 04:11 02:25 15 Milling,
68°10.997'/15°29.205 slow traveling,
socializing,
foraging,
resting
F 28/06/2007 20 9 00:50 00:23 3 Milling,
68°04.517'/14°49.436' boat friendly
G 14/07/2008 7 4 02:10 7 00:49 Milling,
68°07.612'/14°40.562' socializing,
boat friendly
H 22/05/2009 50 32 04:00 02:45 19 Milling,
68°08.578'/14°31.581" socializing,
resting
24/05/2009 50 22 02:00 01:20 9 Milling,
68°01.636'/14°38.966' resting
J 13/07/2009 60 17 05:48 03:10 19 Milling,
68°01.053'/14°23.519’ resting
socializing,
boat friendly
08/06/2010 60 19 01:40 01:06 9 First fast
68°08.540'/15°09.330’ traveling
-avoided boat,
later
calmed down
slow traveling,
03/07/2010 n/a 4 02:00 01:08 3 Traveling
68°04.870'/14°25.130' and milling
with group B

[1] O. Boebel, H. Klinck, L. Kindermann, and S. E. D. E. Naggar,
Bioacoustics 17, 18 (2008).

[2] National ecological observatory network, Boulder, CO (2015)
[http://data.neoninc.org/].

[3] Scaled Acoustic BIODiversity platform [http://sabiod.univ-
tln.fr/].

[4] S. Van Parijs, C. Clark, R. Sousa-Lima, S. Parks, S. Rankin,
D. Risch, and I. Van Opzeeland, Mar. Ecol. Progr. Ser. 395, 21
(2009).

[5] H. Vester and K. Hammerschmidt, Vocal repertoire of long-
finned pilot whales in northern norway (unpublished).

[6] J. K. B. Ford and A. B. Morton, Can. J. Zool. 69, 1454 (1991).

[7] V. B. Deecke, L. G. Barrett-Lennard, P. Spong, and J. K. B.
Ford, Naturwissenschaften 97, 513 (2010).

[8] L. Rendell, S. L. Mesnick, M. L. Dalebout, J. Burtenshaw, and
H. Whitehead, Behav. Genet. 42, 332 (2012).

[9] L. S. Weilgart and H. Whitehead, Behav. Ecol. Sociobiol. 26,
399 (1990).

[10] L. Nemiroff and H. Whitehead, Bioacoustics 19, 67 (2009).

[11] H. Yurk, Vocal culture and social stability in resident killer
whales (orcinus orca), Ph.D. thesis, The University of British
Columbia, 2005.

[12] V. B. Deecke, L. G. Barrett-Lennard, P. Spong, and J. K. B.
Ford, The Structure of Stereotyped Calls Reflects Kinship and
Social Affliation in Resident Killer Whales (Orcinus orca)
(Springer, Berlin Heidelberg, 2010), Vol. 97, pp. 513-518.

[13] V. B. Deecke, J. K. B. Ford, and P. Spong, J. Acoust. Soc. Am.
105, 2499 (1999).

[14] V. B. Deecke and V. M. Janik, J. Acoust. Soc. Am. 119, 645
(2006).

[15] J. C. Brown and P. J. O. Miller, J. Acoust. Soc. Am. 122, 1201
(2007).

022138-9


http://dx.doi.org/10.1080/09524622.2008.9753749
http://dx.doi.org/10.1080/09524622.2008.9753749
http://dx.doi.org/10.1080/09524622.2008.9753749
http://dx.doi.org/10.1080/09524622.2008.9753749
http://data.neoninc.org/
http://sabiod.univ-tln.fr/
http://dx.doi.org/10.3354/meps08123
http://dx.doi.org/10.3354/meps08123
http://dx.doi.org/10.3354/meps08123
http://dx.doi.org/10.3354/meps08123
http://dx.doi.org/10.1139/z91-206
http://dx.doi.org/10.1139/z91-206
http://dx.doi.org/10.1139/z91-206
http://dx.doi.org/10.1139/z91-206
http://dx.doi.org/10.1007/s00114-010-0657-z
http://dx.doi.org/10.1007/s00114-010-0657-z
http://dx.doi.org/10.1007/s00114-010-0657-z
http://dx.doi.org/10.1007/s00114-010-0657-z
http://dx.doi.org/10.1007/s10519-011-9513-y
http://dx.doi.org/10.1007/s10519-011-9513-y
http://dx.doi.org/10.1007/s10519-011-9513-y
http://dx.doi.org/10.1007/s10519-011-9513-y
http://dx.doi.org/10.1007/BF00170896
http://dx.doi.org/10.1007/BF00170896
http://dx.doi.org/10.1007/BF00170896
http://dx.doi.org/10.1007/BF00170896
http://dx.doi.org/10.1080/09524622.2009.9753615
http://dx.doi.org/10.1080/09524622.2009.9753615
http://dx.doi.org/10.1080/09524622.2009.9753615
http://dx.doi.org/10.1080/09524622.2009.9753615
http://dx.doi.org/10.1121/1.426853
http://dx.doi.org/10.1121/1.426853
http://dx.doi.org/10.1121/1.426853
http://dx.doi.org/10.1121/1.426853
http://dx.doi.org/10.1121/1.2139067
http://dx.doi.org/10.1121/1.2139067
http://dx.doi.org/10.1121/1.2139067
http://dx.doi.org/10.1121/1.2139067
http://dx.doi.org/10.1121/1.2747198
http://dx.doi.org/10.1121/1.2747198
http://dx.doi.org/10.1121/1.2747198
http://dx.doi.org/10.1121/1.2747198

VESTER, HAMMERSCHMIDT, TIMME, AND HALLERBERG

[16] J. C. Brown and P. Smaragdis, Brown and Smaragdis: JASA
Express Lett., EL221, 2009.

[17] A. B. Kaufman, S. R. Green, A. R. Seitz, and C. Burgess, Int. J.
Compar. Psychol. 25, 237 (2012).

[18] G. Guo and S. Z. Li, IEEE Trans. Neur. Netw. 14, 209 (2013).

[19] H. Kim, N. Moreau, and T. Sikora, IEEE Trans. Circuits Syst.
Video Technol. 14, 716 (2004).

[20] B. P. Bogert, M. J. R. Healy, and J. W. Tukey, in Proceedings of
the Symposium on Time Series Analysis, edited by M. Rosenblatt
(Wiley, New York, 1963), pp. 209-243.

[21] Z. Harris, Word 10, 146 (1954).

[22] L. Schrader and K. Hammerschmidt, Bioacoustics 6,307 (1996).

[23] R. Plomp, L. C. W. Pols, and J. P. van de Geer, J. Acoust. Soc.
Am. 41, 707 (1967).

[24] S. S. Stevens, J. Volkman, and E. B. Newman, J. Acoust. Soc.
Am. 8, 185 (1937).

PHYSICAL REVIEW E 93, 022138 (2016)

[25] S. Kullback and R. A. Leibler, Ann. Math. Statist. 22, 79
(1951).

[26] E. Hellinger, J. Crelle 136, 210 (2009).

[27] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.93.022138 for examples of pilot whale
sounds.

[28] A. D. Shapiro and C. Wang, J. Acoust. Soc. Am. 126, 451
(2009).

[29] F. Briggs, R. Raich, and X. Z. Fern, in Ninth IEEE International
Conference on Data Mining (IEEE, 2009), pp. 51-60.

[30] A. K. Charakopoulos, T. E. Karakasidis, P. N. Papanicolaou, and
A. Liakopoulos, Phys. Rev. E 89, 032913 (2014).

[31] A. i. Charakopoulos, T. E. Karakasidis, P. N. Papanicolaou, and
A. Liakopoulos, Chaos 24, 024408 (2014).

[32] P. Wadewitz, K. Hammerschmidt, D. Battaglia, A. Witt, F. Wolf,
and J. Fischer, PLoS ONE 10, e0125785 (2015).

022138-10


http://dx.doi.org/10.1109/TCSVT.2004.826766
http://dx.doi.org/10.1109/TCSVT.2004.826766
http://dx.doi.org/10.1109/TCSVT.2004.826766
http://dx.doi.org/10.1109/TCSVT.2004.826766
http://dx.doi.org/10.1080/00437956.1954.11659520
http://dx.doi.org/10.1080/00437956.1954.11659520
http://dx.doi.org/10.1080/00437956.1954.11659520
http://dx.doi.org/10.1080/00437956.1954.11659520
http://dx.doi.org/10.1121/1.1910398
http://dx.doi.org/10.1121/1.1910398
http://dx.doi.org/10.1121/1.1910398
http://dx.doi.org/10.1121/1.1910398
http://dx.doi.org/10.1121/1.1915893
http://dx.doi.org/10.1121/1.1915893
http://dx.doi.org/10.1121/1.1915893
http://dx.doi.org/10.1121/1.1915893
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1515/crll.1909.136.210
http://dx.doi.org/10.1515/crll.1909.136.210
http://dx.doi.org/10.1515/crll.1909.136.210
http://dx.doi.org/10.1515/crll.1909.136.210
http://link.aps.org/supplemental/10.1103/PhysRevE.93.022138
http://dx.doi.org/10.1121/1.3132525
http://dx.doi.org/10.1121/1.3132525
http://dx.doi.org/10.1121/1.3132525
http://dx.doi.org/10.1121/1.3132525
http://dx.doi.org/10.1103/PhysRevE.89.032913
http://dx.doi.org/10.1103/PhysRevE.89.032913
http://dx.doi.org/10.1103/PhysRevE.89.032913
http://dx.doi.org/10.1103/PhysRevE.89.032913
http://dx.doi.org/10.1063/1.4875040
http://dx.doi.org/10.1063/1.4875040
http://dx.doi.org/10.1063/1.4875040
http://dx.doi.org/10.1063/1.4875040
http://dx.doi.org/10.1371/journal.pone.0125785
http://dx.doi.org/10.1371/journal.pone.0125785
http://dx.doi.org/10.1371/journal.pone.0125785
http://dx.doi.org/10.1371/journal.pone.0125785



