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Wind Power Persistence 
Characterized by Superstatistics
Juliane Weber1,2, Mark Reyers3, Christian Beck4, Marc Timme5, Joaquim G. Pinto6, 
Dirk Witthaut1,2* & Benjamin Schäfer4,5*

Mitigating climate change demands a transition towards renewable electricity generation, with wind 
power being a particularly promising technology. Long periods either of high or of low wind therefore 
essentially define the necessary amount of storage to balance the power system. While the general 
statistics of wind velocities have been studied extensively, persistence (waiting) time statistics of 
wind is far from well understood. Here, we investigate the statistics of both high- and low-wind 
persistence. We find heavy tails and explain them as a superposition of different wind conditions, 
requiring q-exponential distributions instead of exponential distributions. Persistent wind conditions 
are not necessarily caused by stationary atmospheric circulation patterns nor by recurring individual 
weather types but may emerge as a combination of multiple weather types and circulation patterns. 
This also leads to Fréchet instead of Gumbel extreme value statistics. Understanding wind persistence 
statistically and synoptically may help to ensure a reliable and economically feasible future energy 
system, which uses a high share of wind generation.

The 2 °C target of the Paris agreement1 requires a rapid decarbonization of the energy sector2,3. The most prom-
ising technologies to reach this goal are wind and solar power generation, which have shown a remarkable 
development in the last decade4–7, paving the way to a fully renewable energy supply8,9. However, integrating the 
specifically important wind power generators9 into the power system comes with a large challenge: Wind power 
generation is strongly modulated by weather conditions and thus strongly fluctuates on time scales from seconds 
to weeks or even decades10–13.

A variety of technical measures is currently being developed to cope with these fluctuations in the power 
system. Virtual inertia14, batteries15–17, or smart grid applications18,19 might balance the grid for seconds, minutes 
or a few hours. For time periods of many minutes or several hours, pumped hydro storage is capable of providing 
back-up power20. However, it remains unclear how to act when low wind conditions persist for several days or 
weeks.

Long periods characterized by a persistent and quasi-stationary blocking high pressure weather system (which 
may endure several weeks) lead to sustained low-wind velocities and thus constitute extreme weather events21, 
posing a substantial challenge to the operation of highly renewable power systems. During these periods, the 
power demand must be entirely satisfied by other renewable generators, backup power plants22 or long-term 
electricity storage, which is not yet available at that scale23. Not the average power output of wind farms, but the 
extreme event statistics is essential when dimensioning the necessary backup options9,24–26. It is assumed that 
these extreme events without renewable generation occur rarely, but a clear quantitative understanding is missing.

In addition, periods with continuously high-wind power generation have also striking impacts on electricity 
grids and markets. A high-wind power feed-in already led to negative electricity prices27 and lead to transmission 
grid congestion28,29. In future highly renewable energy systems, these high-wind periods determine the potential 
for new applications such as Power-to-Heat or Power-to-Gas30 or the occurrence of surplus electricity and the 
need of curtailment31–33. Again, the question arises: How long can these periods last and how likely do they occur?

To answer these questions, we need to investigate and understand the statistics of long periods with very low 
or very high power generation by wind22. While the statistics of wind velocities34,35, its increment statistics36–38 and 

1Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation 
(IEK-STE), 52428, Jülich, Germany. 2Institute for Theoretical Physics, University of Cologne, Köln, 50937, Germany. 
3Institute for Geophysics and Meteorology, University of Cologne, Köln, 50937, Germany. 4Queen Mary University 
of London, School of Mathematical Sciences, Mile End Road, London, E1 4NS, UK. 5Chair for Network Dynamics, 
Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical University of 
Dresden, 01062, Dresden, Germany. 6Institute of Meteorology and Climate Research, Karlsruhe Institute of 
Technology, Karlsruhe, Germany. *email: d.witthaut@fz-juelich.de; b.schaefer@qmul.ac.uk

OPEN

https://doi.org/10.1038/s41598-019-56286-1
mailto:d.witthaut@fz-juelich.de
mailto:b.schaefer@qmul.ac.uk


2Scientific Reports |         (2019) 9:19971  | https://doi.org/10.1038/s41598-019-56286-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

the associated power generation13,39 have been explored extensively, the persistence of wind40,41 and its extreme 
event statistics42 are less studied and far from well understood.

In this article, we investigate the persistence (waiting time) statistics of low- and high-wind situations in 
Europe. We thus analyze the duration of periods where wind velocities v constantly stay below or above a certain 
limiting value. The study is carried out for various locations in Europe and complemented with an analysis of 
aggregated power generation for individual countries and a detailed synoptic analysis. We mainly focus on the 
statistical analysis of the wind data and its interconnection with the synoptic system. Overall, we demonstrate 
how non-standard statistics are necessary to describe waiting time persistence distributions. Further, we argue 
that dynamical large-scale weather conditions43 contribute to local persistence statistics. This might impact future 
energy modelling by requiring additional storage capacity.

Results
Wind persistence statistics.  Extreme wind conditions represent a major challenge for the operation of 
future highly renewable power systems. The aggregated wind velocity statistics follow a well-known Weibull dis-
tribution34,44, which can be used to derive the probability for situations with low and high-wind power generation, 
see Fig. 1a. In contrast, much less attention has been paid towards the temporal patterns of wind. Especially the 
probability of long durations with low-wind power are of central importance to assess the reliability of renewable 
power systems and to plan necessary backup infrastructures9,22,35.

Here, we analyze the persistence statistics of wind velocities and wind power using publicly available wind data 
sets provided by the EURO-CORDEX consortium45 with high temporal and spatial resolution. In particular, we 
use wind speeds from the ERA-Interim Reanalysis data set46 which is downscaled to a high spatial and temporal 
resolution using the regional model RCA447. The wind velocity time series covers a grid all over Europe for a time 
frame of 31 years from 1980–2010 with 3-hour time resolution. The simulations have a horizontal resolution of 
0.11°, such that local orographic effects and the impact of large-scale atmospheric dynamics are captured real-
istically. ERA-Interim Reanalysis are widely used as boundary conditions for EURO-CORDEX regional climate 
model simulations, also for wind energy applications, see e.g.48,49. We therefore conclude that this data set forms 
a reliable basis to identify periods of potentially high and low wind speeds associated with strong and weak 
synoptic-scale pressure gradients, respectively.

We identify continuous intervals of the wind time series where velocities are below <v 4 m/s because most 
wind turbines start generating power at this wind speed50 and classify them as periods with low wind, see Fig. 1 
panel a for an illustration of the procedure and a comparison between aggregated (panel b) and persistence statis-
tics (panel c). Analogously, we record the duration of intervals of constant high-wind velocities ≥v 12 m/s as a 
typical value of the rated wind speed50. While some locations, such as Alpha Ventus (Fig. 1b) have a high average 
wind velocity, the chosen thresholds are based on the rated power of typical wind turbines50. Since locations with 
an abundance of wind return a small number of persistent events with v 4 m/s< , we mainly analyze low-wind 
speed statistics for low-wind locations (e.g. continental regions) and high-wind speed statistics for high-wind 
locations (e.g. offshore wind farms). Complementary analysis is shown in Supplementary Note 2. Altering the 
time resolution or introducing a maximum cut-off wind speed has little influence on the statistics (Supplementary 
Note 6).

Intuitively, persistence statistics should follow an exponential distribution. It arises naturally if the events that 
cross the threshold, e.g. of <v 4 m/s, follow a Poisson process51–53. In this case, the statistics of the waiting time 
or persistence d are described by the probability density function

Figure 1.  Extracting wind persistence statistics from trajectory data. (a) The downscaled ERA-Interim data at 
Alpha Ventus46 provide a trajectory of wind velocities with a 3-hour resolution. (b) The aggregated wind 
velocities approximately follow a Weibull distribution. The blue curve reports the recorded data and the red 
curve depicts the most-likely Weibull distribution, with shape parameter α ≈ .2 36 and scale parameter 
β ≈ .9 66. (c) If the wind velocity drops below a threshold of =v 4 m/s (dashed red line in panel (a)), we count 
the full period until it crosses the threshold again as low-wind duration and gather these events for our 
persistence statistics. For high-wind speeds, we analogously employ an upper threshold of v 12 m/s=  (not 
shown). Note that the plots and thresholds use the velocity scaled up from 10 m to a typical hub height of 100 m, 
using a power law, see Methods for details. While the mean velocity in panel (b) is close to the upper threshold, 
we note that here we are using data from an offshore wind farm location, with typically high wind velocities. 
Most wind turbines reach their rated power at =v m s12 / 50 so that higher velocities still lead to the maximum 
power output.
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λ λ λ| = −p d d( ) exp( ), (1)e e e

for a fixed exponential decay constant λe, which may assume different values as we discuss below.
When analyzing persistence statistics, the tails of the distribution are of special interest, because they deter-

mine the likelihood of extreme events. We use the kurtosis κ, the normalized 4th moment of the distribution as a 
measure of how heavy-tailed the data are54, see Methods for a formal definition of the kurtosis. An exponential 
distribution has a kurtosis of κ = 9exp  such that a larger value κ > 9 indicates heavy tails.

Do wind persistence statistics follow a simple exponential distribution or do they display heavy tails? Indeed, 
analyzing the downscaled ERA-Interim data reveals heavy tails, i.e. many locations in Europe display a kurtosis 
much larger than 9, see Fig. 2. The strongest heavy tails in terms of kurtosis are observed for the statistics of 
low-wind states in the countries around the Mediterranean sea. In particular, this includes most parts of the 
Iberian Peninsula, Southern France, Italy, large parts of the Balkan, Greece and parts of Northern Africa.

Investigating individual locations, we find that the persistence statistics of low or high-wind is not 
well-approximated by exponential distributions, see Fig. 2(c,d). A maximum likelihood estimate for an expo-
nential distribution at a representative on-shore location far from the coast (the wind farm Harthaeuser Wald, 
German: “Harthäuser Wald”, in South-Western Germany) strongly underestimates the likelihood of very long 
durations. Similarly, the likelihood of very long high-wind situations is underestimated for a typical off-shore 
location (the wind farm Alpha Ventus in the North Sea). Interestingly, the low-wind periods at Harthaeuser Wald 
are much shorter than the high-wind periods at Alpha Ventus. We generally observe this trend of high-wind peri-
ods persisting longer than low-wind periods also at other locations, see Supplementary Note 2. Further analysis 
of different locations in Europe including a map indicating their position is given in Supplementary Note 1. The 
pronounced tails can be interpreted as a consequence of long-range correlations in the time series, leading to high 
wind states being followed by further high wind states, see also41,55 and Supplementary Note 7 for a correlation 
analysis.

We conclude that a refined statistical analysis is necessary to capture the tails of the persistence statistics.

Superstatistics.  Wind persistence statistics do not follow exponential distributions but require a refined 
statistical description. To appropriately describe the observed heavy tails, we consider q-exponentials as a gener-
alization of exponential distributions56,57. These generalized q-distributions have recently been used to describe 
waiting times in rainfall statistics58, non-Gaussian diffusion processes59 or fluctuations in the frequency of the 
power grid60. q-exponentials are characterized by a q-parameter that determines the tails of the distribution and 
indicates heavy tails for q 1> . In addition, a shape parameter λq gives the decay rate so that the probability den-
sity reads61

λ λ λ| = − 
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which becomes an exponential in the limit q 1→ . The kurtosis of q-exponential distributions is given as
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and allows for arbitrarily large values, as it diverges at q 1 26
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= = . 38, see also Supplementary Note 4 for an 
illustration.

Analyzing the persistence statistics, we indeed observe that q-exponentials are a better fit to the data than 
exponentials, see Fig. 3 for low-wind states of several locations in Europe. High-wind states display similar statis-
tics (Supplementary Note 2) and q-exponentials are a better fit to the data than exponentials, based on likelihood 
analysis (Supplementary Note 6). An important property of q-exponentials is that for >q 1 and large arguments, 
the distribution follows a power law with exponent q1/(1 )− :

p d d d( ) , as (4)q
1

1∼ → ∞.−

Hence, in particular the tails, i.e., the essential extreme event statistics, are well-captured using q-exponentials.
Next, we exploit that q-exponentials are not an arbitrary distribution with heavy tails but allow a deeper 

insight into the system’s statistical properties, using superstatistics56,57.
Suppose our data consists of samples drawn from different exponential distributions with different decay 

constants λe. If the decay constants λe are distributed following a χ2-distribution λg( )e , then the integral

p d g p d( ) ( ) ( )d (5)e e e
0∫ λ λ λ= |

∞

yields a q-exponential distribution (2). That is, superimposing multiple exponentials leads to q-exponentials, if 
the constants λe are distributed accordingly. Notably, the exact distribution of the decay constants λe is of minor 
importance for q-values close to one. Hence, the q-exponential estimates reported in Fig. 3 arise generically for 
any sharply peaked distribution g( )eλ 56,57.

Can the observed q-exponentials in the wind persistence be explained using superstatistics? The wind data 
was recorded under very different atmospheric conditions, for example certain parts were recorded during a 
strong western circulation, while other periods were recorded during a large scale blocking situation over Europe. 
To understand the observed persistence statistics as a superposition of individual distributions, we disaggregate 
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the data into chunks with approximately homogeneous atmospheric conditions. In particular, we classify the 
large-scale atmospheric conditions according to a circulation weather type (CWT) approach62. CWTs describe 
the characteristics of the near-surface flow in terms of direction and intensity based on mean sea level pressure 
(MSLP) field around a reference point62. For our study we use MSLP data from ERA-Interim and the refer-
ence point is located in Central Europe at 10° East and 50° North (near Frankfurt/Main). For this domain, the 
CWT directions are classified either as one of the eight cardinal and intercardinal directions (North, North-East, 
East,...) or a cyclonic/anti-cyclonic CWT, neglecting mixtures of cyclonic and directional CWTs. The strength 
of the flow is quantified using the f-parameter, which estimates the gradient of the instantaneous MSLP field 
around the reference point, and can thus be used as a proxy for the large-scale geostrophic wind (see Methods for 
details). Typical values for the f-parameter for Central Europe are 5 to 50 hPa/1000 km, see63. Notably, assigning 

Figure 2.  European wind persistence statistics are heavy-tailed for low- and high-wind velocities. The kurtosis 
of the persistence statistics for low-wind (a) and high-wind (b) states is shown. A kurtosis of 30 or greater is 
depicted as white. If the data were following an exponential distribution, the kurtosis should be 9κ =  so that a 
kurtosis above this value indicates heavy tails. We show the persistence statistics for two specific locations: c: 
Harthaeuser Wald is analysed for low-wind velocities v 4 m/s< , while d: Alpha Ventus is used for high-wind 
velocity analysis ≥v 12 m/s. All analysis is based on the downscaled ERA-Interim data from 1980–201046. The 
blue curves give the data and the red curves depict the most-likely exponential fits. In both cases, the 
exponential fit underestimates the tails of the distribution, which crucially determine the extreme event 
statistics. Maps were created using Python 2.7.12: https://www.python.org/.
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instantaneous weather types via f-parameters and CWT directions, allows a dynamical description of the synoptic 
state. Using this approach, we decompose the data based on the dominant CWT direction or the f-parameter. 
Alternatively, we simply use the different recording years.

Indeed, disaggregating the data into small chunks of coherent f-parameters, leads to a lower kurtosis in 
the individual chunks and therefore better approximations by exponentials, see Fig. 4(a–c). Hence, for a given 
f-parameter, the waiting process is better approximated by a Poisson process than it was when using measure-
ments from the full period of interest. We also quantify this statement further by comparing the result to an 
alternative decomposition based on the recording year and to a plain Poisson distribution (Fig. 5). The distri-
bution conditioned on the f-parameter has a smaller Wasserstein distance64 to any of the 1000 randomly drawn 
Poissonian realizations than the distribution conditioned on the recording year. Furthermore, disaggregat-
ing the data according to the flow direction of the CWTs instead of the f-parameters does not reproduce the 
q-exponential equally well, see Supplementary Note 4. These surprising results will be examined in more detail 
in the synoptic section below.

As a consistency check of the superstatistical approach, we explicitly carry out the superposition of the indi-
vidual exponential distributions found for different f-parameters, see Fig. 4(d). Superposition and q-exponential 
agree very well for the persistence of high-wind situations at the off-shore wind farm Alpha Ventus. The agree-
ment is not as good for low-wind situations at Harthaeuser Wald, where the superposition only partly explains 

Figure 3.  Distributions are not strictly exponential but better described by q-exponentials for low-wind. Wind 
persistence statistics (blue) is shown with the most-likely exponential (red) and q-exponential distributions 
(orange) for 9 selected locations, based on the downscaled ERA-Interim data46. The q-values are determined by 
using the kurtosis of the data, see Eq. (10) in Methods. Note that the maximum q-value derived this way is 

= .q 1 2max . We report the uncertainty of q as a single standard deviation, determined via bootstrapping, see 
Methods. See also Supplementary Note 1 for a map of the locations.
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the shape of the distribution. Finally, the λe distribution approximately follows a log-normal distribution, a com-
monly observed distribution in superstatistics56,57, see Fig. 4(e).

We conclude that the heavy-tailedness of the full persistence statistics is at least partly explained as a result 
of the superposition process. Hence, the results support the idea of q-exponentials arising from a superposition 
of different conditioned distributions and highlight the importance of large-scale atmospheric conditions. Next, 
we investigate whether the persistence of aggregated wind power generation can also be described in terms of 
q-exponentials.

Power generation.  Not only the wind velocities, but also wind power generation time series exhibit 
extremely long periods of persistent low or high values. To show this, we analyze aggregated wind power genera-
tion time series documented in the renewables.ninja dataset v.1.1 obtained for the period 1980–201665, see Fig. 6. 
This analysis has three benefits: It directly discusses wind power instead of wind velocity, which have an approxi-
mately fixed relationship P v3∼ 50. Thereby, our statistical analysis becomes more applicable to the energy sector. 
Secondly, we consider wind power generation of whole countries instead of single locations and therefore refer to 
the importance of high- and low-wind power output in entire power systems. Furthermore, we verify early results 
by using the independent renewables.ninja dataset.

As before, the duration d of periods, where the generation is constantly lower or higher than a reference value, 
is recorded. Specifically, for each country all generation above the 75th quantile is classified as high power and 

Figure 4.  Persistence statistics approximately follows exponentials for homogeneous pressure. High-wind 
velocity statistics >v 12 m/s are analyzed for Alpha Ventus, based on the downscaled ERA-Interim data46, 
conditioning the statistics on small bins of homogeneous f-parameters (in units of hPa per 1000 km). (a–c) 
Plotting both the most-likely exponential and q-exponential distributions for small, conditioned subsets, we 
notice that the q-exponential distributions are very close to the exponential ones. The q-value is determined by 
using the kurtosis of the data, see Eq. (3). Note that the maximum q-value derived this way is q 1 2max = . . On 
average, the q-value is closer to 1 than in the unconditioned Fig. 3. (d) Combining the independent exponential 
distributions into one super-exponential approximates the q-exponential distribution. (e) The histogram of the 
individual λe parameters is approximated by a log-normal distribution, a typical distribution often seen in 
superstatistics. We report the uncertainty of q as a single standard deviation, determined via bootstrapping, see 
Methods. See also Supplementary Note 4 for detailed discussion and analysis of Harthaeuser Wald.
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generation below the 25th quantile as low power. Again, we observe heavy-tailed distributions, i.e., a kurtosis 
higher than the expected value of κ = 9exp  both for periods of high power generation (panels (a) and (c)), as well 
as for low power generation (panels (b) and (d)). These observations are connected to the superstatistical 
approach by computing the q-parameter using Eq. (3) and solving for q.

The Balkans, the Mediterranean, UK and Scandinavia show particularly heavy tails for low power genera-
tion, leading to the highest q-values, i.e., the most pronounced power laws in low-wind generation persistence 
statistics. Therefore, periods without wind generation have to be expected to last longer than based on a simple 
Poissonian statistics. Interestingly, Italy and Ireland display no heavy tails for high-power generation. We finally 
note that the observed q-values are very similar to the ones recorded for the wind velocity persistence statistics 
based on the downscaled ERA-Interim data set (comparing Figs. 3 and 6).

Concluding, we also observe heavy tails in the wind power generation on a country-scale. Therefore, extreme 
events such as long periods with low wind speeds have to be considered when dimensioning energy storage and 
storage needs are likely to be higher than based on simple exponential estimates, see also Supplementary Note 8. 
We proceed with a synoptic view on these long waiting times.

Synoptic analysis.  Disaggregating the data using the f-parameters, a proxy for the pressure gradient 
(Fig. 4), approximates the superstatistical q-exponentials, while a separation of the data according to the flow 
direction of the CWTs does not reproduce the shape of the persistence distributions (Supplementary Note 4). 
This can be attributed to the intermittency of the atmospheric flow66,67 and indicates that both, prolonged calms 
and strong-wind situations do occur for different and non-stationary CWTs in contrast to the naive expectation 
that high-wind periods occur solely for westerly CWTs and low-wind-periods solely for anti-cyclonic CWTs. 
Furthermore, high-wind periods may be distinctly longer than low-wind periods, based on the analysis of dura-
tion distributions shown in Fig. 3 and Supplementary Note 2. This seems unexpected, as surface cyclones, which 
are associated with high wind speeds, usually pass Europe within only a few days due to their typical propagation 
velocity68, while atmospheric blocking events, which may cause long-lasting calms, can have a lifetime of up to 
several weeks69. We perform a synoptic analysis of selected high- and low-wind periods to examine these findings.

Analyzing the downscaled ERA-Interim data set, all high-wind periods at Alpha Ventus that persist for more 
than 100 hours occur in the winter half year (October to March), except from one event (September 2004). On 
the other hand, low-wind periods at Harthaeuser Wald of 100 hours and more arise throughout the year. Hence, 
for the analysis we simply select the three longest periods of the high-wind situations at Alpha Ventus (referred 
to as HP1, HP2, and HP3), while for Harthaeuser Wald we choose the two most persistent low-wind situations 
(both in winter) and the longest period that occurred in summer (LP1, LP2, and LP3). The precise periods are 
noted in the Methods.

HP1 and HP3 display similar synoptic patterns, characterized by a pronounced mid-tropospheric trough over 
the North Atlantic and strong mean sea level pressure gradients over Western Europe (see Fig. 7). Accordingly, 
both periods are dominated by south-westerly CWTs (including some mixed classes). Snapshots at instantaneous 
points in time of HP1 reveal that a recurrent trough over the North Atlantic is existent throughout this period, 
though its amplitude varies (see Supplementary Note 5). Due to the trough, various strong and quasi-stationary 
surface steering cyclones develop between Iceland and the UK, with core pressures of partly below 960 hPa. 
Hence, Alpha Ventus is continuously at the foreside of a rotating low pressure field (Fig. 7a,c), which is reflected 

Figure 5.  Data subsets with homogeneous pressure approximate Poissonian statistics. High-wind velocity 
persistence statistics, ≥v 12 m/s, is analyzed at Alpha Ventus, based on the downscaled ERA-Interim data from 
1980–201046. Three different data sets are compared: First, the original data, consisting of 31 years of 
measurements is split into 31 equally sized data sets, based on the year it was recorded (Data: Year). 
Alternatively, the data is split based on approximately homogeneous f-parameter (Data: f-parameter). Finally, 
this is compared to an artificial Poissonian process with return times as estimated from the exponential 
distribution, generating an equal number of data points (Poisson). The q-values of the full sets are indicated by 
colored lines at the sides, both for the real data as well as the Poissonian process. The full data q-value is larger 
than the q-values of most subsets. Furthermore, splitting the data arbitrarily according to calendar years leads to 
more values at large q than if the data is conditioned on the f-parameter. Conditioning on the f-parameter 
approximates the Poisson distribution much better than yearly conditioning, when computing the Wasserstein 
distance64 of the distributions. The box plot gives the median as a black line, the 25% to 75% quartile as a yellow 
box and minimum and maximum value as the whiskers.
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by the moderate standard deviations in the MSLP fields over Western Europe and the UK (Fig. 7d,f). Snapshots 
for HP3 show similar pressure patterns (not shown). A different picture is revealed for HP2, which is character-
ized by a zonal mid-tropospheric flow, with Alpha Ventus being located at the southern flank of a stretched band 
of low surface pressure, with extended high pressure further south (Fig. 7b). The high standard deviation in the 
MSLP field near the UK (Fig. 7e) suggests that several synoptic systems (i.e. primarily lows) pass over the British 
Isles towards Northern Europe within the period. Snapshots indicate that the cyclones rapidly migrate along a 
north-easterly track towards Scandinavia (Supplementary Note 5). As a result, Alpha Ventus is permanently in 
the sphere of influence of alternating surface lows and highs during HP2, whereat the pressure gradients remain 
strong. In this case, nearly half of the CWTs detected in HP2 are anti-cyclonic, otherwise westerly but also north-
erly CWTs occur. A common characteristic of the three high-wind periods analyzed here is the clustering of 
strong surface cyclones70.

Low-wind situations, i.e., long calms, are similarly associated with predominantly but not exclusively anti-
cyclone weather types, see Fig. 8. For example, the summer event LP1 (Fig. 8a) exhibits a strong Azores High 
and extended ridge towards Central Europe. Accordingly, pressure gradients are weak at Harthaeuser Wald. A 
standard deviation of nearly zero suggests that the high pressure conditions are very stable and persist for the 
majority of the period (Fig. 8d). An atmospheric blocking over Central Europe is present during LP2 (Fig. 8b). 

Figure 6.  European wind power generation persistence statistics are heavy-tailed. European maps are shown 
with wind power generation data aggregated per country, based on the renewables.ninja data65. An output is 
classified as high in panels (a and c) if it is above the 75th quantile and as low in panels (b and d) if it is below the 
25th quantile. Panels (a and b) give the kurtosis of the power persistence statistics. In addition, the q-parameter 
is computed based on Eq. (3) and displayed in panels (c and d). A high kurtosis consequently implies large q-
values. Dark colors indicate a high kurtosis or q-value respectively. Note that = .q 1 2 is the maximum q-value, 
while we only plot the kurtosis up to 24. Heavy tails and high q-parameters are especially prevalent for low 
power output and around the Mediterranean. This analysis used aggregated data of off- and onshore wind 
generation per country. Distinguishing does not change the heavy tails significantly, see Supplementary Note 3. 
Maps were created using Wolfram Mathematica 11: https://www.wolfram.com/mathematica/.
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The associated stable surface high exhibits very weak gradients near Harthaeuser Wald. The standard deviation of 
the MSLP field is low (Fig. 8e) and aside from anti-cyclonic mainly mixed anti-cyclonic/southerly CWTs occur in 
the period. During LP3, cold upper-level air lies over Eastern Europe (Fig. 8c). Below, a cold high pressure centre 
forms at the surface, which persists for several days. As Harthaeuser Wald is located at the western flank of the 
cold high, LP3 is dominated by southerly and anti-cyclonic CWTs. Again, pressure gradients and the standard 
deviation are low at Harthaeuser Wald (Fig. 8f), hence conditions for a long low-wind period are fulfilled.

In summary, situations with persistent high or low wind speed conditions are not necessarily linked to recur-
ring individual CWTs, which might be an explanation for our finding that superstatistics regarding the direction 
of the CWTs is not straightforward and provides mixed results.

Discussion
In a fully renewable power system, the operation of storage, backup and sector coupling technologies will be cru-
cially determined by periods of both low and high power feed-in by renewable generators22,27,71. Long, persistent 
periods of extremely low wind output are especially problematic, as most scenarios of highly renewable power 
systems use a high share of wind energy9,72. Complementary, long periods with high wind velocities determine 
how large back-up battery options or Power-to-Gas storage have to be dimensioned to not waste wind electric-
ity30. Here, we have analyzed the persistence (waiting time) statistics of wind power, highlighting several interest-
ing statistical observations.

Persistence statistics of wind velocities and wind power generation do not follow exponential distributions 
as intuitively expected52, but display heavy tails (Fig. 2). Therefore, long periods of high-wind power output and 
periods of low-wind power output occur more often than based on simple Poissonian statistics.

While not perfect, a better description of the wind persistence statistics is found in q-exponentials (Fig. 3), 
which are based on superstatistics, enjoying recent attention in time series analysis58–60. We have revealed a super-
position of several, atmospheric conditions as a potential mechanism giving rise to q-exponentials, in particularly 
when conditioning with respect to the f-parameter. The so derived q-exponentials allow a deeper insight into 
the underlying local dynamics than for example stretched exponentials would73,74. Modeling wind persistence 
statistics as q-exponentials does not only provide a good fit but also reveals a scaling law for the heavy tails, 
based on the q-value, going beyond previous investigations40. Furthermore, our findings imply that the extreme 
event statistics of wind persistence is governed by Fréchet distributions, instead of Gumbel statistics61, altering 
risk estimates, see e.g.75 for a detailed discussion. This is particularly remarkable as our finding could change an 
often used paradigm of extreme value statistics in wind engineering76. Energy storage capacities grow substan-
tially when including the observed heavy tails in the analysis (Supplementary Note 8). Hence, future research 

Figure 7.  High-wind periods are associated with different CWTs. The three columns illustrate the large scale 
atmospheric conditions as obtained by ERA-Interim during three extremely long high-wind periods: (a,d) 
HP1 in November-December 2006, (b,e) HP2 in October 1983 and (c,f) HP3 in January-February 1990. 
The contours show the average mean sea level pressure (MSLP) in hPa while the shading shows the 500 hPa 
geopotential height in meters (upper row, (a–c)), and the standard deviation of MSLP (lower row, (d,e)), 
respectively. The magenta dot shows the location of Alpha Ventus. Maps were created using Python 2.7.12: 
https://www.python.org/.
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on storage dimensioning should include our statistical findings to save costs due to failures caused by too small 
back-up systems.

Not only wind velocity persistence statistics are heavy-tailed but also wind power generation persistence 
statistics are. In particular, the duration of periods with low-wind power generation displays heavy tails. This 
demonstrates that our analysis is robustly applicable to countries as well as to individual locations and to different 
data sets. Using European (Fig. 6) and in the future global data allows us to identify regions with particularly high 
risk of extremely long waiting times.

Our results are based on the well-established ERA-Interim reanalysis dataset46,48,49, downscaled using the 
established RC4 regional model. Alternative regional models are expected to yield the same results, based on 
previous comparisons of regional models49,77.

A synoptic analysis revealed that long low-wind periods are typically associated with very stable synoptic 
patterns such as blocking but also atmospheric ridges. In contrast, the synoptic conditions can be much more 
dynamic during high-wind periods, i.e., the instantaneous weather type changes over time. A clustering of sur-
face cyclones led to high-wind periods lasting longer than three weeks, thus more persistent than the observed 
low-wind periods. The direction of the large scale geostrophic wind changed during both low- and high-wind sit-
uations, particularly for the latter, such that considering the persistence of a single CWT in terms of its direction 
is not a suitable predictor for the duration of a low or high-wind period.

Concluding, we emphasize the role of persistence (waiting time) statistics when analyzing wind statistics, 
in particular based on its role for future energy systems. The presented superstatistical approach offers a new 
perspective on how to analyze wind data and a coherent framework to understand wind persistence statistics as 
a superposition of homogeneous wind and weather conditions. In particular, scaling of heavy tails and extreme 
event statistics are quantitatively determined by q-exponential distributions, which should be helpful for forecasts 
of extreme weather events or in dimensioning backup options in future energy systems, complementing existing 
analysis78,79. We also complement the observations of q-exponential distributions of wind turbulence80 by inves-
tigating spatially large scale systems (European continent) and longer time scales.

However, many open questions remain. The emergence of heavy tails was modelled by using superpositioned 
f-parameters. If the time series of a given location were sufficiently long, the data could be split both for homo-
geneous f-parameter and individual CWT directions. The analysis could also be re-done for groups of related 
CWTs. Furthermore, frequency and persistence of CWTs may be affected by climate change, which is projected 
to change the temporal statistics of wind power generation29,35,63. While the current analysis focused on Europe, 
future work should consider other regions in the mid-latitudes to observe global scale atmospheric patterns 
influencing wind velocities and local CWTs. Furthermore, the extreme value statistics studied here could also be 
applied to waiting times of extreme wind gusts on longer time periods.

Figure 8.  Low-wind periods are associated with different CWTs. The three columns illustrate the large scale 
atmospheric conditions as obtained by ERA-Interim during three extremely long low-wind periods: (a,d) LP1 
in August 2008, (b,e) LP2 in November-December 1991 and (c,f) LP3 in December 1989-January 1990. The 
contours show the average MSLP in hPa while the shading shows the 500hPa geopotential height in meter 
(upper row, (a–c)), and the standard deviation of MSLP (lower row, (d,e)), respectively. The magenta dot shows 
the location of Harthaeuser Wald. Maps were created using Python 2.7.12: https://www.python.org/.
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Finally, our results already show that not only average wind velocities or their increments but additional mete-
orologic information, such as dynamically changing CWT directions and f-parameters, have to be included when 
analyzing wind statistics, and should be used in energy system analysis and design43.

Material and Methods
Computing wind speed at turbines.  The downscaled ERA-Interim data provides a fine grid over Europe 
with wind speeds at 10 meters above the ground. Since the hub height of wind turbines is typically around 100 
meters above ground48, the near-surface wind velocities have to be extrapolated to a higher altitude. Assuming 
wind velocities increase algebraically with height81, we use the following power law formula of the wind speed 
v(z) at height z:

=v z v z z z( ) ( )( / ) , (6)0 0
1/7

with =z 10 m0
46 and z 100 m= .

Kurtosis and fitting q-exp.  Given M measurements of the quantity xi with μ and σ being the mean and 
standard deviation of the distribution, respectively, the kurtosis is given as the normalized 4th moment by
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Contrary to some notations of the kurtosis as “peakedness”, the kurtosis should be seen as a measure for the 
heavy tails of a distribution54. Some studies may apply the excess kurtosis, which is obtained by subtracting the 
kurtosis of a Gaussian distribution κ = 3Gauss ,

κ κ= − .3 (8)Excess

For the exponential distribution, the kurtosis is given as

κ = .9 (9)exp

A kurtosis higher than nine, 9κ > , points to heavy tails, i.e., increased likelihood of very large values.
To re-iterate, the kurtosis of q-exponentials is given by
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Searching for an adequate description of the recorded wind persistence statistics, we compute the best-fitting 
q-exponential distribution as follows. First, we compute the kurtosis and then determine the value of the resulting 
q via Eq. (10). Next, we perform a maximum likelihood analysis to find the most likely value for λq. This ensures 
that especially the tails of the distributions are fitted accordingly, as the q-parameter determines the power-law 
scaling of the q-exponential.

Assigning weather conditions.  To determine the circulation weather type (CWT), ERA-Interim data46 of 
the atmospheric conditions over Europe were considered. Specifically, instantaneous daily mean sea level pres-
sure (MSLP) fields around a reference point in Central Europe (10° East and 50° North near Frankfurt/Main, 
Germany) were used. The CWT classes consist of eight directional weather types (e.g. ‘North’, ‘South-West’, ‘West’, 
etc.) and two rotational weather types (‘Cyclonic’ or ‘Anti-cyclonic’), depending on the dominant part of the flow. 
Of special interest for the current analysis is the f-parameter, which estimates the gradient of the instantaneous 
MSLP field at the reference point:
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with ∂
∂
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x

 and ∂
∂

p
y
 being the zonal and meridional pressure gradients, respectively. This parameter can thus be used 

as a proxy for the large-scale geostrophic wind: Large f-parameters indicate higher pressure gradients, and thus 
typically higher wind speeds, see35,63,82 for details.

While the downscaled ERA-Interim data set uses a 3-hour resolution for the wind speed45, the avail-
able weather data63 assigns one f-parameter and one CWT per day. Hence, we assume the weather type and 
f-parameter to be identical for all 3-hour intervals during one day, when comparing with the wind speed.

Typically, low- and high-wind episodes endure several days and may feature more than one (typically related) 
CWTs. This means that a high-wind situation can include multiple days with potentially different CWT or 
f-parameters. In these cases, we use the dominant CWT (using the first occurring one in cases of ties) and com-
pute the average f-parameter of the period.

Superstatistics.  The following formula illustrates how a superposition of ordinary exponentials, given a 2χ
-distribution of the exponents, leads to a q-exponential:
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is the 2χ -distribution, with Gamma function Γ. In the general statistical mechanics formalism, E is the energy and 
β a fluctuating inverse temperature parameter56,57,61. For our application to persistence statistics, we identify 

=E d and β λ= e.

Artificial poissonian.  Let us explain the procedure leading to Fig. 5 in more detail. The downscaled 
ERA-Interim data at Alpha Ventus for the 31 years consists of 90584 velocity measurements. To generate artificial 
data, we first approximate the persistence statistics of these wind data with an exponential distribution, see Fig. 2. 
Then, we simulate a Poisson process with a rate given as the estimated exponential decay rate and a total of 90584 
data points are generated to have an equal number of artificial and real “measurements”. Next, the real data is split 
into 31 evenly sized data packages. First, the separation is done based on that each package has an approximately 
homogeneous f-parameter. Since some f-parameters are more likely to occur, the intervals of the f-parameters are 
not homogeneous. As an alternative, we split the data based on the year of recording the data. Finally, the artifi-
cial Poissonian data is also split into 31 packages. For all packages, we compute the persistence statistics and the 
kurtosis and q-value thereof.

Uncertainties of parameters.  To estimate the uncertainty of our stochastic estimates, we make use of 
bootstrapping83,84: Given a number of measurements …x x x( , , , )N1 2 m

, in our case duration values, we can compute 
stochastic quantities such as the kurtosis or perform exponential fits. Instead of doing this only once for the full 
data set using each values only once, we draw randomly Nm entries from our measurements, allowing for dupli-
cates. With this new set of measurements 

  x x x( , , , )N1 2 m
…  we again compute the kurtosis, find the best exponen-

tial fit etc. This procedure is repeated Nb times so that we obtain a mean kurtosis and a mean exponential fit but 
also a standard deviation of the kurtosis estimate and so on. The uncertainties of the q-values are all included 
explicitly in the figures. Overall, the relative errors are of the following order: ΔλE ~ 1–2%, Δλq ~ 2–8%, 
Δκ ≈ Δq ~ 2–5%.

Selecting persistent events for synoptic analysis.  When performing the synoptic analysis, we chose 
the following high pressure (HP) and low pressure (LP) events: For Alpha Ventus the periods are 13 November 
to 08 December 2006 (609 hours: HP1), 10 October to 28 October 1983 (435 hours; HP2), and 29 January to 16 
February 1990 (432 hours; HP3). For Harthaeuser Wald we selected the periods 21 August to 30 August 2008 
(210 hours; LP1), 25 November to 05 December 1991 (255 hours; LP2), and 29 December 1989 to 07 January 1990 
(237 hours; LP3).

Data availability
Raw data for the wind velocity analysis are available from the ESGF Node at DKRZ at https://esgf-data.dkrz.de/
projects/esgf-dkrz/. Wind power generation data are available at https://www.renewables.ninja/. All data that 
support the results presented in the figures of this study are available from the authors upon reasonable request.
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