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Link failures repeatedly induce large-scale outages in power grids and other supply networks. Yet, it
is still not well understood which links are particularly prone to inducing such outages. Here we
analyze how the nature and location of each link impact the network’s capability to maintain a stable
supply. We propose two criteria to identify critical links on the basis of the topology and the load
distribution of the network prior to link failure. They are determined via a link’s redundant capacity and
a renormalized linear response theory we derive. These criteria outperform the critical link prediction
based on local measures such as loads. The results not only further our understanding of the physics of
supply networks in general. As both criteria are available before any outage from the state of normal
operation, they may also help real-time monitoring of grid operation, employing countermeasures and
support network planning and design.
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The robust operation of physical distribution and supply
networks is fundamental for economy, industry, and our
daily life. For instance, a reliable supply of electric power
fundamentally underlies the function of most of our
technical infrastructure [1–6]. In periods of high loads,
the breakdown of a single element of the grid, such as a
transmission line, can cause a global cascade of failures
implying large-scale outages with potentially catastrophic
consequences [3,7–15]. Periods of extreme loads are
expected to become more likely in future grids, as power
from renewable sources, such as wind turbines, is often
generated far away from the consumers (e.g., off shore) and
moreover strongly fluctuating [2,16–18]. It is thus crucial
to understand which factors limit the robustness of supply
networks and, in particular, to identify those links that are
indispensable for network operation; compare also
Refs. [5,19–24]. Are there simple characteristics in the
physics of complex supply networks to identify which of
their links are critical?
Many approaches to identify critical transmission lines in

power grids or critical links in other supply networks
fundamentally rely, for instance, on large-scale numerical
simulations of detailed models that, after a local break-
down, emulate the future dynamics of large parts of the
network [19,25–27]. Here, we propose a complementary
approach to predict a priori which links are critical in the
sense that their failure yields a larger-scale malfunction
(outage) in the network. We identify two concepts that
reveal, prior to any outage, how the network topology
jointly with the load distribution influences which links are

critical: The first relies on the link’s redundant capacity
which we quantify, the second originates from a renormal-
ized linear response theory we derive. Based on these
theoretical insights, we propose two network-based criteria
to identify critical links. A statistical evaluation suggests
that the new measures predict critical links much more
reliably than standard loads or flows.
Loads, flows, and critical links.—To obtain insights into

mechanisms underlying large-scale outages and to pin
down how the structure of a network determines its
vulnerability, we base our analysis on a dynamic model
of ac power grids [23,28–30]. Simpler generic models of
supply networks and more complex load flow models of
engineering yield qualitatively the same results [31]. The
model describes the dynamics of the voltage phase angles
θjðtÞ of all units j ¼ 1;…; N, while the voltage magnitudes
are approximately constant on the relevant time scales.
Denoting by ϕjðtÞ ¼ θjðtÞ −Ωt the difference to the
reference phase oscillating with the grid’s cycle frequency
Ω, e.g., Ω ¼ 2π × 50 Hz, the equations of motion read

d2ϕj

dt2
¼ Pj − α

dϕj

dt
þ
XN
i¼1

Kij sinðϕi − ϕjÞ; ð1Þ

where Pj is the effective demand or supply (of a consumer
or sinkwhere Pj < 0 or a producer or sourcewhere Pj > 0,
respectively) of unit j, α is a damping constant, and the link
capacities Kji ¼ Kij ≥ 0 are proportional to the suscep-
tance of the transmission line ði; jÞ.
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The power flow

Fij ¼ Kij sinðϕi − ϕjÞ ð2Þ

from unit i to j is then determined via the units’ phase
difference such that the (relative) load is given by
Lij ¼ Fij=Kij ¼ sinðϕi − ϕjÞ. Stable stationary operation
is then given by a synchronized (“phase-locked”) solution
with fixed phase differences ϕi − ϕj [1,30,51–59].
How can we identify which links are critical? The load

distribution of a given supply network in normal stationary
operation may serve as a first hint. Because of the
distributed nature of sources and sinks and the topology
of the network, some links are much more loaded than
others (Fig. 1). Intuitively, rerouting the load of a highly
loaded link should be harder than that of a less loaded one
[60,61]. It has been shown that attacks on highly loaded
links on average have more severe consequences than
random failures (see, e.g., [9,12]).
Interestingly, whether or not the failure of a particular

link induces network desynchronization is often not pre-
dictable by local measures such as the load. Single link

failures may have completely distinct consequences for
global network operation, largely independent of load: For
instance, whereas the failure of one highly loaded link [link
1 in Fig. 1(a)] may cause a desynchronization of phases and
thus a large-scale outage [see Fig. 1(b1)], the failure of a
less and only moderately loaded link (link 2) may still
induce large-scale outage [Fig. 1(b2)]. This notwithstand-
ing, the failure of a third link (link 3) that is more highly
loaded than link 2 is uncritical to network operation
[Fig. 1(b3)]. So predicting outages based on a link’s load
alone may have substantial limitations.
In what follows, we classify all links of a network into

“critical” ones, those whose failure induces long-term
desynchronization and thus a nonfunctional network state,
and “stable” ones, those whose failure leaves the network
functional. In particular, we integrate the equations of
motion (1) numerically starting from a stationary state of
normal operation (phase locking). As it turns out, which
links are critical depends jointly on the global topological
structure of a network and its collective dynamics, in
particular, on the link’s location within the grid topology
and the entire grid’s load distribution.
Quantifying network redundancy.—For a supply net-

work to remain stable, it needs sufficient options for
rerouting the (directed) flow Fab originally assigned to a
failing link ða; bÞ. Therefore, a sufficient degree of redun-
dancy of the remaining network matters to reliably detect
critical links. How much redundancy is sufficient?
To identify critical links, we quantify the redundancy as

follows: If the link ða; bÞ fails, the (directed) flow Fab has
to reroute over alternative paths in the network. However,
the links along these paths have only a limited residual
capacity Kij − Fij to take over this flow. We define the
redundant capacity Kred

ab of a link ða; bÞ as the maximum
flow that can be transmitted from unit a to b over the
residual network excluding link ða; bÞ (see [31] for an
algorithm to determine it). The redundant capacity is
approximately given by

Kred
ab ¼

X

a→b
paths

min
ði;jÞ∈a→b

ðKij − FijÞ; ð3Þ

that is, the minimum residual capacity across the links ði; jÞ
on a path a → b, summed over different alternative paths
a → b in the residual network which do not share a
“bottleneck,” i.e., a link ði; jÞ where the minimum in (3)
is attained. If there is only one such path, then the
expression becomes exact. We thus propose to consider
the ratio of the actual flow and the redundant capacity as a
measure to predict critical links as

jFab=Kred
ab j > h ⇒ predicted to be critical;

jFab=Kred
ab j ≤ h ⇒ predicted to be stable; ð4Þ

where h is a threshold value that can be optimized for any
given specific prediction. Figure 2 illustrates that
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FIG. 1. Limits to predicting critical links by local measures.
(a) Stationary loads in a coarse-grained model of the British
power grid. For three links ða; bÞ the loads Lab ¼ Fab=Kab are
indicated. (b) The load does not necessarily indicate whether a
local failure causes a desynchronization and thus a major
malfunction. (b1) A highly loaded link [labeled “link 1” in panel
(a)] induces desynchronization and is thus critical. (b2) Moder-
ately loaded link “2” still induces desynchronization and thus is
also critical. (b3) In the same network, even a more heavily
loaded link “3” does not yield desynchronization and leaves the
network fully functional. Accordingly, link 3 is highly loaded but
noncritical (stable). We analyze critical links for test networks
based on the topology of the British transmission grid [10,28]:
Transmission lines have a capacity K0 ¼ 15 s−2, except for lines
connecting to generator nodes which have doubled capacity. Ten
nodes are randomly chosen as generators (□; Pj ¼ þ11P0) and
the others as consumers (∘; Pj ¼ −P0), with P0 ¼ 1s−2, model-
ing a heavily loaded grid. Other test grids exhibit qualitatively the
same phenomena [31].
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predictions based on redundant capacity (4) may work even
for links where load-based predictions fail.
Flow rerouting in linear response.—Alternatively, we

analyze how general alterations of the capacity of a single
link modify the global operation of a network. Consider a
small perturbation κij of the network capacities at a single
link ða; bÞ such that K0

ij ¼ Kij þ κij with κab ¼ κba ¼ κ
and κij ¼ 0 for all other links. This perturbation induces a
change ϕj → ϕ0

j of the steady state phases of the network.
Expanding the perturbed steady state [ϕ̈0

j ¼ _ϕj
0 ¼ 0 in

Eq. (1)] to first order in the response ξj ≔ ϕj
0 − ϕj yields

X
i

Kij cosðϕi − ϕjÞðξi − ξjÞ ¼ −
X
i

κij sinðϕi − ϕjÞ:

ð5Þ
During normal operation, we can assume that jϕi − ϕjj ≤
π=2 for all links [59] and use (2) to obtain the identity

Kij cosðϕi − ϕjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

ij − F2
ij

q
≕ ~Kij. This quantity char-

acterizes the available capacity that the network may use to
respond to perturbations in terms of the network topology
and the original flows. We define the Laplacian matrix [62]
Λij ≔ − ~Kij þ δi;j

P
n
~Kin; using the Kronecker symbol

(δx;y ¼ 1 if x ¼ y and δx;y ¼ 0 otherwise). With the
vectorial components qi ¼ ðδi;a − δi;bÞ, Eq. (5) reads Λξ ¼
κLabq: This equation is linear but depends nonlinearly on

the system’s unperturbed state variables ϕi. Using the
Moore-Penrose pseudoinverse T ≔ Λþ yields the phase
responses

ξ ¼ κLabTq: ð6Þ
Thus, the power flow (2) in the perturbed network is to first
order in κ given by

F0
ij ¼ ðKij þ κijÞ sinðϕi − ϕj þ ξi − ξjÞ
¼ Fij þ κηij←ab; ð7Þ

where we have defined the link susceptibility ηij←ab ≔
Lab × ½ ~KijðTjb − Tja − Tib þ TiaÞ þ ðδiaδjb − δjaδibÞ�. So
if capacities are perturbed slightly, Eq. (7) tells us, to
leading order in the perturbations κ, which flows increase,
which decrease, and how much.
Even for perturbations κ that are not small, this linear

response argument reliably predicts where the flow is
rerouted [31]. To predict the magnitude of the flow change
also for a total link failure, we self-consistently renormalize
the linear response by replacing κ ≔ −Fab=ηab←ab, thereby
ensuring that the flow of the defective link vanishes:
F0
ab ¼ 0. From this renormalized linear response theory,

the modified estimates for the rerouted network flows read

F00
ij ¼ Fij −

ηij←ab

ηab←ab
Fab: ð8Þ

The F00
i;j do, of course, depend on the considered link ða; bÞ,

that for clarity does not explicitly appear as an index.
Related measures are used in engineering where they are
referred to as line outage distribution factors [63].
As the rerouted total flows on each link must not be

larger than the respective link capacities, we propose the
predicted maximum load maxði;jÞjF00

ij=Kijj as a discrimi-
nating feature between critical and stable links:

max
ði;jÞ

jF00
ij=Kijj > h ⇒ predicted to be critical;

max
ði;jÞ

jF00
ij=Kijj ≤ h ⇒ predicted to be stable: ð9Þ

In addition, every link whose breakdown disconnects the
network is predicted to be critical.
This renormalized linear response theory not only well

identifies which links are critical, based on criterion (9), it
also predicts the value of the expected maximum load
across the network [Fig. 3(a)].
Load and topology coact.—The response (6) and thus

the susceptibility η are directly proportional to the load Lab
of a link. The load does determine its relevance, but other
collective characteristics of the network are equally
important.
For heavy loads, some of the responsive capacities ~Kij

tend to zero and the associated network becomes weakly
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FIG. 2. Redundant capacity indicates flow rerouting options.
(a) Ratio between flows and redundant capacities (color coded),
with the three links from Fig. 1 indicated by arrows. (b) Dominant
rerouting paths. (b1),(b2) For the two links (1, heavily loaded)
and (2, moderately loaded), the flows to be rerouted are larger
than the redundant capacity. The bottlenecks on the rerouting
path are indicated by dashed red arrows. Thus, jFab=Kred

ab j > 1
and these links are critical. (b3) For link 3, whereas more heavily
loaded than link 2, the flow to be rerouted is smaller than the total
available redundant capacity. Thus, jFab=Kred

ab j < 1 and the link is
stable.
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connected. The second eigenvalue λ2 of the Laplacian Λ,
which measures the algebraic connectivity, becomes small
(while λ1 ≡ 0, independent of the network and operating
state) [62]. Then the pseudoinverse T ¼ Λþ is dominated
by 1=λ2, and the response is given by

ξ ≈
κLab

λ2
ðv2 · qÞv2; ð10Þ

up to terms of the order of 1=λ3. Here, v2 denotes the
eigenvector associated with λ2. Thus, the response is
specifically also determined by two intrinsically collective
properties of the load distribution: the inverse algebraic
connectivity 1=λ2 and the overlap ðv2 · qÞ, which is large for
links connecting different components of the network
[31,64]. Direct numerical simulations confirm these theo-
retical predictions [Figs. 3(b) and 3(c)].
Quality of critical link predictions.—The two proposed

classifiers (4) and (9) enable the prediction of critical links
with high accuracy. To test the performance, we generate
400 random network realizations, varying the generator
positions, thereby analyzing 66 000 links in total. A
quantitative assessment of the different classifiers is pro-
vided by a receiver operating characteristic (ROC) curve
(Fig. 4), displaying the fraction of correct predictions of
critical links (the sensitivity) as a function of the fraction
of false alarms (the false positive rate) when the discrimi-
nation threshold h is varied. We see that the two classifiers
introduced in this Letter closely approach the perfect
operating point (0,1) with almost no false alarms and

almost perfect sensitivity (Fig. 4). The total number of
incorrect predictions, including false alarms and missed
critical links, is as small as 395 (0.6%) for the ratio (4) and
920 (1.4%) for the linear response measure (9). Thus, it is
possible to reduce the incorrect predictions based on loads
(3149, 4.7%) and flows (2937, 4.5%) by a factor of more
than 7, thereby drastically improving performance. Other
macroscopic quantifiers such as those based on the area
under the ROC curve confirm this view. A similar improve-
ment is found for other test grids with different topologies
and parameters [31].
The residual prediction errors indicate collective non-

linear effects in the grid. False alarms occur when the
collective rerouting is significantly more efficient than
assumed by the predictors. This occurs primarily when
the flow change is strongly nonlinear, such that the linear
response (9) is no longer appropriate or when the rerouted
flow jFabj in the redundant capacity measure (4) is large. In
addition, this measure misses some critical links when there
are several independent rerouting paths, as it assumes that
all paths are used equivalently which is not always satisfied
[31]. Hence, classifier (9) is preferable when jFabj is large,
while (4) is preferable when the load of all other edges is
close to one.
Discussion.—In summary, we link the overall network

topology with the load distribution resulting from the
collective network dynamics and present nonlocal relations
to identify a network’s response to link failures. On this
basis, we propose two network-based strategies to identify
critical links by (i) quantifying the redundant capacity of
the network and (ii) estimating the flow rerouting through
developing a renormalized linear response theory. The
analysis suggests that the two proposed predictors are well
suited to identify critical links. In particular, they provide a
substantial improvement of the quality of predicting critical
links compared to predictions based on local measures such
as a link’s load. We emphasize that the quality of prediction
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FIG. 3. The renormalized linear response theory predicts
critical links. (a) The renormalized linear response not only
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Eq. (10). Networks and parameters are as in Fig. 2.
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is evaluated by statistical measures whereas the predicting
measures are derived from insights about the topological
connectivity and the nonlinear dynamics of the networks.
By construction, the proposed criteria readily generalize

to other network topologies, to the physics of generic linear
supply networks, and to complex load flow models as
standard in engineering [31]. For network operation, the
proposed predictors may provide key hints for initial
analysis, because they suggest which links require special
attention, e.g., in detailed large-scale simulations of power
grid engineering. In particular, our insights about collective
influences indicate that the weak spots of a network are not
necessarily given by the most heavily loaded elements
(cf. [9,12]) and that network-based rather than local
measures provide suitable guidelines for the security
assessment of real-world power grids (cf. [19]).
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