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Networked dynamical systems, i.e., systems of dynamical units coupled via nontrivial interaction
topologies, constitute models of broad classes of complex systems, ranging from gene regulatory
and metabolic circuits in our cells to pandemics spreading across continents. Most of such systems
are driven by irregular and distributed fluctuating input signals from the environment. Yet how net-
worked dynamical systems collectively respond to such fluctuations depends on the location and type
of driving signal, the interaction topology and several other factors and remains largely unknown to
date. As a key example, modern electric power grids are undergoing a rapid and systematic trans-
formation towards more sustainable systems, signified by high penetrations of renewable energy
sources. These in turn introduce significant fluctuations in power input and thereby pose immedi-
ate challenges to the stable operation of power grid systems. How power grid systems dynamically
respond to fluctuating power feed-in as well as other temporal changes is critical for ensuring a reli-
able operation of power grids yet not well understood. In this work, we systematically introduce a
linear response theory (LRT) for fluctuation-driven networked dynamical systems. The derivations
presented not only provide approximate analytical descriptions of the dynamical responses of net-
works, but more importantly, also allow to extract key qualitative features about spatio-temporally
distributed response patterns. Specifically, we provide a general formulation of a LRT for perturbed
networked dynamical systems, explicate how dynamic network response patterns arise from the
solution of the linearised response dynamics, and emphasise the role of LRT in predicting and com-
prehending power grid responses on different temporal and spatial scales and to various types of
disturbances. Understanding such patterns from a general, mathematical perspective enables to esti-
mate network responses quickly and intuitively, and to develop guiding principles for, e.g., power
grid operation, control and design.
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2 X. Zhang and M. Timme

1 Introduction

Networked dynamical systems abound around and in us. From the circuits supporting metabolism
and gene regulation in our cells to the neural networks in our brains, from the power grids that
supply electric energy to most of our technical infrastructure to the internet that connects our
computers, all of these systems are driven externally, often by irregular, time-dependent and
spatially heterogeneous signals. How networked dynamical systems respond to such perturba-
tions, driving signals or other types of time-dependent inputs is hardly understood to date. In
this article, we offer a general introduction to the basic theory of analysing response features of
networked dynamical systems by linear response theory (LRT) and focus on applications in the
realm of power grids.

A reliable supply of electric power fundamentally underlies most aspects of modern society.
As the shares of renewable electric energy supply grow and consumer dynamics is increas-
ingly influenced by digital technologies, fluctuations impinge on power grids, making them
intrinsically driven, non-equilibrium systems, with distributed and often non-stationary response
dynamics [41]. If fluctuations become large, they may destabilise grid dynamics, affect normal
operations of parts of the grid and cause cascades of failures or even total blackouts [38, 40, 9].
To predict, control or mitigate the fluctuating and distributed responses of such networks result-
ing from input (and output) power fluctuations, we need to understand their nature in network
dynamical systems.

How can we systematically characterise fluctuating responses that are distributed across
meshed networks? How can we predict their influences and at which nodes in a network is
their impact most profound? LRT relates sufficiently small time-dependent driving signals to
time-dependent responses. The theory approximates the resulting system dynamics near some
operating point to first order in the strength of the driving signals. It has traditionally found
applications across physics, chemistry and engineering [15, 4, 13, 29, 20, 25], and recently
also in power grid models [7, 42, 14, 21, 33, 11, 37]. However, a framework of LRT uncov-
ering spatiotemporal response patterns in systems with multi-dimensional dynamics of units that
simultaneously interact via intricate network topologies is not yet well established.

In this article, we introduce a general formalism of LRT for networked dynamical systems and
demonstrate its applications in stationary and non-stationary models of power grids. Specifically,
in Section 2, we present the main ideas of the LRT for networks by first analysing the linear
responses of networked dynamical systems with the most general settings (Section 2.1) and then
boiling down step-by-step to a specific LRT which provides a direct link between the tempo-
ral and the spatial features of the dynamic network responses (Section 2.2). In Section 3, we
demonstrate the LRT for networks by applying it to two models of power grids: a stationary
model for the DC approximation of the AC power flow distributions in power grids (Section 3.1),
and a non-stationary model, the (second-order) oscillator model, commonly used to describe the
dynamics of the high-voltage AC power transmission networks (Section 3.2). The next two sec-
tions, Sections 4 and 5, focus on the extraction and the interpretation of spatiotemporal response
patterns of power grids from the LRT, as well as the analytical techniques needed therein. In
Section 4, we elaborate how distinctive steady-state response patterns emerge in three frequency
regimes (Section 4.1), how the transient spreading pattern of a perturbation entangles with the
underlying network topology (Section 4.2), and how LRT helps to estimate the long-term risk
of individual nodes from external fluctuations (Section 4.3). In Section 5, we summarise the role
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Fluctuation response patterns of network dynamics 3

of LRT in uncovering such patterns by comparing the analyses for patterns in the steady-state
response versus the transient responses (Section 5.1), the patterns in the deterministic responses
to a given perturbation versus the cumulative responses to a random signal (Section 5.2), and
the small responses close to the base operation state versus the large responses further away
(Section 5.3). In the last section (Section 6), we point out several directions for extending the
present theory for a better understanding of the response dynamics of networked dynamical
systems and for a safer and more reliable operation of future power grids.

2 Main ideas of the LRT for networks

In this section, we introduce the main ideas of the LRT framework. Section 2.1 formulates the
LRT on a general model of networks of one-dimensional dynamical units. Section 2.2 highlights
the linear operators, represented as matrices, arising in the LRT for specific network settings
and how basic information of the underlying network system such as its topology and features
defining the dynamically determined operating point enter those operators. In Section 2.2, we
also derive the explicit linear responses of the general network model of one-dimensional units
introduced in Section 2.1 and extend the results for networks of higher-order nodal dynamics.

2.1 General formulation of LRT for networked dynamical systems

We now illustrate the main idea underlying LRT by starting with a general setting of net-
worked dynamical systems where each unit’s dynamics is one-dimensional. We consider a
dynamical process involving N interacting variables, whose state is represented by a vector
x = (x1, · · · , xN ) ∈R

N . The autonomous dynamics of the N-dimensional dynamical system is
governed by

ẋ = f (x), (2.1)

where f : RN →R
N is a function that in general depends on the states x of all units and does not

explicitly depend on time. Let us consider a system that exhibits a fixed point at x = x∗ where
f (x∗) = 0, and is influenced by an external dynamic driving vector D(t) ∈R

N at the fixed point
x∗. We investigate how the system dynamically responds to D(t), i.e. how the system’s deviation
X(t) := x(t) − x∗ from the fixed point evolves in time. In general, the dynamics of the system’s
response X follows

Ẋ = f (x∗ + X) + D(t), (2.2)

where both functions f and D can be highly nonlinear so that an exact analytical solution of the
system’s response X typically does not exist or is unknown.

Important information about the response dynamics (2.2) is given by the stability operator
at the fixed point obtained from the linearisation of the function f at x = x∗, i.e. the Jacobian
matrix J with Jij := ∂fi

∂xj
|x=x∗ . The system’s response dynamics thus approximately follows the

linearised differential equation

Ẋ =JX + D(t). (2.3)

The signs of the real parts of the Jacobian eigenvalues w[�] (with � being the index) indicate
whether the fixed point x∗ is linearly stable

(
Re

[
w[�]

]
< 0

)
, unstable

(
Re

[
w[�]

]
> 0

)
or neutrally
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4 X. Zhang and M. Timme

stable
(
Re

[
w[�]

]= 0
)

in the eigendirection/eigenspace corresponding to the eigenvalue w[�].
Below, we typically focus on the dynamics near stable fixed points, where all Re

[
w[�]

]
< 0

(or marginally stable ones where one Re
[
w[�]

]= 0 if J is a Laplacian operator) to justify the
assumption that the solution X(t) of the linearised equation (2.3) reasonably well approximates
the full solution of (2.2).

Let us now focus on systems with pairwise interactions between the N units such that the
function fi(x) controlling the time evolution of unit i can be written as

fi(x) = hi(xi) +
N∑

j=1; j �=i

Kijgij(xi, xj), (2.4)

where hi denotes the intrinsic dynamics depending on the variable xi itself and the coupling
term Kijgij(xi, xj) represents the pairwise interaction between variable xi and xj with i �= j. Here,
Kij ∈R

+
0 is the non-negative coupling strength and gij is the coupling function depending on the

state of the pair of variables (xi, xj) and gij(xi, xj) �≡ 0.

Remark 2.1 Pairwise interactions (2.4) induce an interaction structure of the dynamical system
(2.1) that can be represented by a graph G(V,E) where the set of vertices V consists of N variables
x1, · · · , xN and the set of edges E consists of all node pairs with the pairwise coupling strength
being nonzero, i.e. E = {(i, j) ∈ V 2| (i �= j) ∧ (Kij �= 0)}.

The linearisation of the pairwise interaction (2.4) yields the Jacobian matrix of the response
dynamics (2.2) of the driven networked system

Jij = ∂

∂xj

⎛
⎝hi(xi) +

∑
k �=i

Kikgik (xi, xk)

⎞
⎠
∣∣∣∣∣∣
x=x∗

(2.5a)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dhi

dxi

∣∣∣∣
x=x∗

+
∑
k �=i

Kik
∂gik

∂xi

∣∣∣∣
x=x∗

for j = i

Kij
∂gij

∂xj

∣∣∣∣
x=x∗

for j �= i.

(2.5b)

It is clear that the topology of the interaction network G explicitly enters the Jacobian matrix
through the matrix of the coupling strength K ∈R

N×N with its ij-th element being defined as Kij,
which is effectively a weighted adjacency matrix of graph G.

The combination of the linearised dynamics of a general N-dimensional networked dynamical
system (2.1) near a fixed point (2.3) and the arising Jacobian matrix that explicitly depends on
the system’s topology (2.5) due to pairwise interactions (2.4) provides a general form of LRT
for networked dynamical systems. For a specific system with given forms of or constraints for
the intrinsic nodal dynamics hi(xi), coupling strengths Kij and coupling function gij(xi, xj), the
solution of the matrix equation (2.3), X(t), can be characterised by evaluating the specific spectral
properties of the Jacobian matrix J . Thereby the LRT provides a powerful tool to describe the
dynamic response of a networked system temporally and spatially at once: the solution X (t)
explicitly depends on time, and at the same time its relation to the topology-dependent Jacobian
matrix can be exploited to reveal the temporally and spatially distributed patterns of the network
response.
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Fluctuation response patterns of network dynamics 5

2.2 Arising linear operators and network topology

As discussed in the last section, the dependence of the Jacobian matrix of network response
dynamics on a weighted adjacency matrix of the underlying interaction network gives the first
hint on how temporal and spatial features of dynamic network responses are intertwined. In
this section, we further show that, under a few commonly satisfied conditions such as diffusive
coupling between units, interesting results of network response dynamics emerge. Especially,
another important graph-theoretical matrix, the Laplacian matrix, arises in the network response
dynamics (2.3), providing us with powerful tools for characterising the spatiotemporal patterns
in dynamic network responses.

Diffusive coupling is a very common type of coupling present in many physiological and
chemical systems [12, 18, 27, 5, 32], in particular also appearing in the Kuramoto model [17]
and its variations [10, 1]. A diffusive coupling function g̃ij mediating the interaction between a
pair of nodes (i, j) is characterised by its dependence on the state difference xj − xi of the node
pair, i.e. gij(xi, xj) = g̃ij(xj − xi) in (2.5). For notational simplicity, we again denote the functions
g̃ij just by gij.

Proposition 2.1 (Stability of diffusively coupled networks: a special case) A networked dynam-
ical system with evolution function (2.4) and interaction network G(V,E) is at least neutrally
stable at its fixed point x = x∗ if a) the intrinsic nodal dynamics hi satisfies dhi

dxi
|x=x∗ � 0 for all

nodes i ∈ V, b) the coupling function gij is diffusive and satisfies
dgij

d(xj−xi)
|x=x∗ � 0 for all node

pairs (i, j) ∈ E.

Proof. The diffusive form of the coupling function gij(xj − xi) yields a useful relation
∂gij
∂xj

=
− ∂gij

∂xi
= dgij

d(xj−xi)
. With this particular symmetry, the Jacobian matrix (2.5) of the system at the

fixed point x = x∗ takes the following form

Jij =
⎧⎨
⎩

−βi −
∑
k �=i

Kikγik for i = j

Kijγij for i �= j,
(2.6)

where βi := − dhi
dxi

∣∣∣
x=x∗ and γij := dgij

d(xj−xi)

∣∣∣
x=x∗ . Given that βi � 0, γij � 0 and Kij � 0 by defini-

tion, the Jacobian J is diagonally dominant:

|Jii| =
∣∣∣∣∣∣−βi −

∑
k �=i

Kikγik

∣∣∣∣∣∣= βi +
∑
k �=i

Kikγik �
∑
k �=i

Kikγik =
∑
k �=i

|Kikγik| =
∑
j �=i

∣∣Jij

∣∣ . (2.7)

According to the Gershgorin circle theorem, every eigenvalue of the Jacobian matrix lies within
at least one of the N Gershgorin discs Di(Jii, ri) = {z ∈C| |z −Jii|� ri} with ri =∑

k �=i |Jki|
in the complex plane. Relation (2.7) indicates that all N Gershgorin discs lie in the left half
of the complex plane, i.e. in {z ∈C | Re (z)� 0 }, because the centers of the discs (Jii, 0) lie on
the negative real axis and the radius of the discs ri =∑

k �=i |Jki|� |Jii|. The discs touch the
imaginary axis from the half plane {z ∈C | Re (z)� 0 } only if βi = 0. Therefore, all Jacobian
eigenvalues can only have non-positive real parts, and consequently, the networked dynamical
system is at least neutrally stable at the fixed point x = x∗. �
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6 X. Zhang and M. Timme

Remark 2.2 (Homogeneous nodal dynamics and graph Laplacian) We remark that in case of
identical intrinsic nodal dynamics at all nodes, a weighted Laplacian matrix L of the interac-
tion graph explicitly enters the linearised response dynamics of the network (2.3). Assuming
βi = β ∈R for all nodes i, we can express the Jacobian matrix as

J = −β1 −L, (2.8)

where the weighted graph Laplacian L is defined as

Lij :=
⎧⎨
⎩
∑
k �=i

Kikγik for i = j

−Kijγij for i �= j.
(2.9)

Here Kijγij is considered a weight of edge (i, j), containing the coupling strength Kij and the
linearised coupling function γij at the fixed point.

Remark 2.3 (Symmetry and linear responses in Laplacian eigenbasis) In general, the interaction
network can be directed, meaning that for an edge (i, j) the coupling strength Kij and the deriva-
tive of the coupling function γij at the fixed point, i.e. the sensitivity of the diffusive coupling
function gij(xj − xi) to a change in the state difference xj − xi, can differ from their counterparts
Kji and γji for the edge (j,i) with the opposite direction. This asymmetry leads to an asymmet-
ric weighted graph Laplacian (2.9). However, for undirected networks with symmetric strengths
(Kij = Kji) and symmetric sensitivities of coupling functions (γij = γji), or more generally, a sym-
metric combination Kijγij = Kjiγji, the weighted graph Laplacian L is symmetric. Its eigenvectors
thus form an orthogonal basis which allows us to solve for the linear network responses in (2.3)
and (2.8) by expressing the response vector X(t) in terms of the eigenvalues and eigenvectors of
the Laplacian.

We first analyse a system that is perturbed by only one sinusoidal signal with magnitude ε > 0
and frequency ω > 0 at node k, i.e. D(k)

i (t) = δikεeı(ωt+ϕ), where δik is the Kronecker delta with
δik = 1 if i = k and δik = 0 otherwise. We solve for the linear network response vector X(k)(ω, t)
governed by

Ẋ
(k) = −βX(k) −LX(k) + D(k)(t). (2.10)

Expressing the response vector in the constant eigenbasis of Laplacian

X(k)(t) =
N−1∑
�=0

c[�](t)v[�] (2.11)

and the time-dependent coefficients c[�](t) and exploiting orthogonality of the Laplacian eigen-
vectors, we obtain the ordinary differential equations

ċ[�] = (−β − λ[�]
)

c[�] + εv
[�]
k eı(ωt+ϕ) (2.12)

for the coefficients. Here, the N Laplacian eigenvalues λ[�] and eigenvectors v[�] are indexed
according to 0 = λ[0] � λ[1] � · · ·� λ[N−1]. If the graph is connected, the zero eigenvalue is
unique, such that all other eigenvalues are positive real numbers [3]. The solution of differential
equation (2.12) for the coefficients is
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c[�](ω, t) =
(

X(k)
0 · v[�]

)
e
(
−β−λ[�]

)
t + εv

[�]
k eıϕ

β + λ[�] + ıω

(
−e

(
−β−λ[�]

)
t + eıωt

)
, (2.13)

where X(k)
0 denotes the initial response vector at t = 0 given node k is perturbed. The linear

network response is thus given by (2.11) and (2.13).

Remark 2.4 (LRT for distributed arbitrary perturbations) In case perturbations with arbitrary
temporal structures are distributed across the network, that is, multiple elements of the per-
turbation vector D(t) are arbitrary time series, the linear network response can be obtained
by summing up the single-signal single-frequency response (2.11 and 2.13) over all frequency
components ω and all perturbation signals k by resorting to the linearity of the dynamics (2.3)

X(t) =
∑

k

(
X(k)

ω=0(t) +
∑
ω>0

X(k)(ω, t) dω

)
. (2.14)

Here, X(k)
ω=0(t) denotes the linear response to a constant (ω = 0) perturbation ε, which shares

the same form as X(k)(ω, t) with ω = 0 for β > 0 but not for β = 0. Moreover, the sum becomes
an integral for continuously distributed frequencies, with X(k)(ω, t) replaced by the associated
response density per unit frequency.

For systems where nodal damping vanishes (β = 0), the coefficient for the 0-th eigenmode c[0]

diverges for a constant perturbation as ω → 0, so it needs to be solved separately and takes the
form of X(k)

0 · v[0] + εv
[0]
k t, inducing a linear drift and thus unbounded growth with time. Since an

unbounded growth typically induces the approximation of the linear response to the real system
to break down, this solution would become useless in practice due to larger errors between the
approximation and the exact solution.

Remark 2.5 (LRT for higher-order nodal dynamics) In the above paragraphs, we discussed
the main ideas of the LRT for networked dynamical systems with first-order nodal dynamics.
For more general systems with second- or higher-order nodal dynamics, the straightforward
relation (2.8) between the Jacobian matrix and a weighted graph Laplacian does not hold any
more. Nevertheless, a symmetric weighted graph Laplacian still arises in the linearised response
dynamics for diffusively coupled undirected networks with symmetric coupling strengths and
symmetric sensitivities of coupling functions as discussed in Remark 2.3. If the higher-order
time derivatives of the state variables has homogeneous coefficients for individual nodes, i.e. the
response dynamics to a perturbation D(t) has the form of∑

d

κdDd
t X = −LX + D(t), (2.15)

an explicit solution of the linear responses in the eigenbasis of L can still be obtained following
the routine in Remark 2.3, if the corresponding ODEs for the time-dependent coefficients∑

d

κdDd
t c[�] = −λ[�]c[�] + D(t) · v[�] (2.16)

are solvable. Here, κd ∈R are constant coefficients and we use Euler’s notation for derivatives,
where Dd

t x denotes the d-th time derivative of variable x.
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8 X. Zhang and M. Timme

In summary, if a networked dynamical system consisting of N units

(1) has a fixed point at x = x∗,

(2) in the neighbourhood of x = x∗ the intrinsic nodal dynamics hi(xi) gives homogeneous non-

positive feedback to the respective nodes, i.e. βi := − dhi
dxi

∣∣∣
x=x∗ = β � 0 for all i, and

(3) the coupling function gij(xj − xi) is diffusive and the coupling term’s sensitivity to small

changes at x = x∗ is symmetric and non-negative, i.e. Kij = Kji and γij := dgij
d(xj−xi)

∣∣∣
x=x∗ = γji �

0 for all edges (i, j),

then i) the dynamical system is at least neutrally stable (Proposition 2.1) and ii) a symmetric
weighted graph Laplacian (2.9) arises in the network response dynamics (2.10) and enables the
expression of linear network responses in the Laplacian eigenbasis (2.11) and (2.13) (Remark 2.2
and Remark 2.3). As we will show in Section 4, the explicit dependence of the linear network
response on Laplacian eigenvalues and eigenvectors provides a powerful tool to reveal how the
dynamic responses spatially distributed across the network.

3 LRT for power grid models

We now discuss how the LRT for general networked dynamical systems introduced in Section 2
applies to stationary and non-stationary models of power grids and helps reveal static and
dynamic responses of power grid systems to external perturbations.

3.1 LRT for the DC power flow model

We first demonstrate how LRT works in a minimal model, the DC power flow model and
how it helps to compute the systemic stationary response of a power transmission network to
perturbations in power injections and withdrawals.

For common AC power grids, the full power flow analysis poses several challenges such as
possible difficulties in finding a solution in ill-conditioned cases and the existence of multiple
solutions due to the inherent nonlinearities [23]. By linearising the AC power flow equations at
an operation point, the DC power flow model1 provides a relatively simple and computational
inexpensive way to compute the power flows.

In an AC power transmission grid, the total complex power flow Sj from unit j to unit i reads

Sij = UjI
∗
ij = Uj

(
Uj − Ui

Zij

)∗
= |Uj|eıθj

(|Uj|e−ıθj − |Ui|e−ıθi
)

Rij − ıXij
, (3.1)

where Uj = |Uj|eıθj and Iij = (Uj − Ui)/Zij denote the voltage at node j and the current between
nodes j and i, respectively. Both are expressed as complex numbers to reflect the oscillating
nature of AC power generation. The asterisks in, e.g., I∗

ij indicate the complex conjugates (e.g.,
of Iij). Moreover, Zij = Rij + ıXij denotes the impedance of the transmission line (i, j) between

1The DC power flow model here must not be confused with models for high-voltage direct-current
(HVDC) transmission grids, which actually uses DC, as opposed to alternating current (AC), for the
transmission of electrical power.
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unit i and j, with Rij denoting the resistance and Xij the reactance of (i, j). The complex power flow
Sij = Pij + ıQij consists of two parts: the active power Pij that results in net energy transfer and
the reactive power Qij that returns to the source in each cycle, not doing any work, but supporting
the voltage stability of the power system [19].

The DC power flow model is based on the following assumptions on the parameters and the
operating state of the power grid systems:

Assumption 3.1 (Perfect voltage support) The voltage amplitude is constant and identical for
each node in the power grid network, |Ui| ≡ U for all i, and the management of the reactive
power is not considered.

Assumption 3.2 (Lossless lines) Transmission losses on the lines are neglected, implying that
line resistances are negligible compared to line reactances: Rij/Xij → 0 for all lines (i, j).

Assumption 3.3 (Low line loads) Loads on all transmission lines are low, that is, the voltage
angle differences between all neighbouring nodes are much smaller in magnitude than π/2 such
that sin(θj − θi) ≈ θj − θi and cos(θj − θi) ≈ 1.

With the above-mentioned assumptions in mind, the complex power flow (3.1) between
neighbouring nodes simplifies to

Sij = U2(1 − eı(θj−θi))

−ıXij
= U2

Xij

(
θj − θi

)= Pij. (3.2)

Here, the complex power flow Sij naturally reduces to the active power flow Pij since the imagi-
nary part vanishes. The equation (3.2) resembles the expression of the direct current carried by a
‘resistor’ Xij/U2 influenced by a ‘voltage drop’ θj − θi according to Ohm’s law, hence the name
‘DC power flow model’.

For an AC power grid system consisting of N units, the active power flow Pi injected at unit i
is the sum

Pi =
N∑

j=1

Pij =
N∑

j=1

Kij

(
θi − θj

)
, (3.3)

over all connected units. Equation (3.3) is the core of the DC power flow model as it yields the
pattern of power flows Kijθj across the grid network. Here, we follow the notation introduced in
Section 2.1 and define the coupling strength as Kij = U2/Xij if there exists a transmission line
between unit i and j and Kij = 0 if there is not. Denoting the nodal active power injections and
nodal voltage angles as vectors, P := (P1, · · · , PN ) and θ := (θ1, · · · , θN ), we express the linear
relation between them by a weighted graph Laplacian L introduced in Section 2.2, i.e.

P =Lθ , (3.4)

Here, L is defined similarly as in (2.9), only with γij ≡ 1 for all edges (i, j).
Assuming that the power transmission network runs at a normal operation state where the volt-

age angles θ∗ are stationary at all nodes, the fixed voltage angle differences determine a specific
power flow pattern P∗ across the network through the linear operator L such that P∗ =Lθ∗. If
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the nodal power injections are perturbed as P(t) = P∗ + D(t) by a shift vector D(t) that in general
is time dependent and reflects an increase or decrease of power generation for consumption at
some of the nodes, the nodal voltage angles θ = θ∗ + � change accordingly through L due to
the linear operation in (3.4). The response vector of the voltage angles � is given by

�(t) =L+D(t), (3.5)

where L+ denotes the Moore–Penrose inverse of the weighted graph Laplacian L.

Remark 3.1 The weighted graph Laplacian L defined in (2.9) is singular since it always has an
eigenvalue λ0 = 0 with the corresponding eigenvector v0 = (1, · · · , 1) satisfying Lv0 = 0 by con-
struction. Therefore, to compute the voltage angle shifts (3.5), we need the generalised inverse
matrix L+, which can be computed by, e.g., the singular value decomposition. Alternatively, we
can remove one dimension of the system by treating the phase θk of one of the units k as the
reference for voltage angle, i.e. by setting θi → θi − θk for all i. If the network is connected, then
the (N − 1)-dimensional Laplacian matrix is invertible and both of the matrix equations, (3.4)
and (3.5), have a unique solution, respectively.

3.2 LRT for the oscillator model of AC power grid dynamics

In this section, we discuss how LRT applies for the oscillator model of AC power grids, a widely
used model for analysing the dynamics of AC power grids, and thereby provides a way to accu-
rately determine the high-dimensional dynamic responses of an arbitrary power grid network to
fluctuating power injections and withdrawals.

The dynamics of the high-voltage AC power transmission networks is essentially captured
by an oscillator model (or second-order model) of AC power grids, of which synchronisation
in terms of networked dynamical systems have been initially studied in references [10, 28] and
[24]. This model allows for analytical understanding of the dynamics of power grids and has
yielded fruitful research results over the past decade [28, 24, 7, 42, 37]. As the name suggests,
in the oscillator model, each unit of AC power grids, a synchronous machine, is represented by
an oscillator and the power transmission lines are represented by the pairwise couplings between
the oscillators. The normal operation state of a power grid corresponds to the synchronisation of
all oscillators, where all units rotate at the same frequency �m

0 corresponding to the nominal grid
frequency �0 = 2π × 50 or 2π × 60 Hz.

For each unit in the oscillator model, a synchronous machine, any change of the angular veloc-
ity of rotation results from the imbalance of the torques acting on the rotor operated at the nominal
grid frequency. Its dynamics is governed by the so-called swing equation [16, 19]:

I θ̈m + Dmθ̇m = Tm − T e, (3.6)

where θm denotes the mechanical rotor angle deviation from the rotating reference frame �0t,
I denotes the moment of inertia of the rotor and the connected turbine, Dm denotes the coeffi-
cient of the damping torque resulting from the velocity-dependent friction at the air gap between
the rotor and the stator in the synchronous machine. Tm and T e denote, respectively, the net
mechanical torque and the counteracting electromagnetic torque acting on the rotor.

For deviations of the angular velocity θ̇m, the local frequency deviation is small compared
to the nominal grid frequency �m

0 , i.e.
(
θ̇m + �m

0

)−1 ≈ (
�m

0

)−1
, so that a torque T acting
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on the rotor can be expressed in terms of the power P of the synchronous machine as T =(
θ̇m + �m

0

)−1
P ≈ (

�m
0

)−1
P. Also introducing the effective quantities θ (t) = θm(t)/(p/2) and

�0 = �m
0 /(p/2) between the mechanical quantities and their electrical counterparts for a syn-

chronous machine with p poles per phase, we obtain the more common version of the swing
equation describing the dynamical relation between the rate of change of the electrical load angle
and the power transmission between units:

M θ̈ + D̃θ̇ = Pm − Pe. (3.7)

Here, M := I�0/(p/2)2 and D̃ := Dm�0/(p/2)2 are, respectively, the angular momentum of the
rotor operated at the nominal grid frequency and the damping coefficient of the machine. On
the right hand side of (3.7), Pm denotes the net injected mechanical power (positive when the
machine is operated as a generator and negative when operated as a motor), and Pe denotes
the electrical power injected to the grid by the synchronous machine. In the oscillator model,
we again assume perfect voltage support (Assumption 3.1) and lossless transmission lines
(Assumption 3.2), which yield Pe =∑N

j=1 Kij(θj − θi) [cf. Pi in the DC power flow model (3.3)].
Putting everything together, we obtain the governing equations of the oscillator model of AC
power grids

θ̈i = Pi − αiθ̇i +
N∑

j=1

Kij sin(θj − θi), for i ∈ {1, · · · , N} (3.8)

with the parameters Pi := Pm
i /Mi, αi := D̃i/Mi, and Kij := U2/Xij.

Proposition 3.1 (Linear stability of the oscillator model) AC power grid systems described by
the oscillator model (3.8) with underlying interaction topology G(V,E) is at least neutrally stable
at a fixed point θ∗, if all edges are not overloaded, i.e. |θ∗

j − θ∗
i |� π

2 for all (i, j) ∈ E.

Proof. At a fixed point of the system θ = θ∗, a small deviation of the oscillators’ angles � :=
θ − θ∗ follows the linear dynamics

d

dt

(
�

�̇

)
=J

(
�

�̇

)
, (3.9)

where the Jacobian matrix J ∈R
2N×2N of the 2N-dimensional dynamical system is given by

J =
(

0N IN

−L −A

)
. (3.10)

Here, L is a weighted graph Laplacian as defined in (2.9) with γij = cos
(
θ∗

j − θ∗
i

)
, A is an

N × N diagonal matrix with Aii := αi, and 0N and IN are, respectively, the N × N zero matrix
and identity matrix.

Let w = (w1, w2) ∈C
2N with w1, w2 ∈C

N be an eigenvector of J corresponding to eigenvalue
μ ∈C. By definition, we have Jw = μw, which by writing (3.9) as a second-order differential
equation implies

μ2w1 + μAw1 +Lw1 = 0. (3.11)
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Multiplying both sides of the equation above with the conjugate transpose, w†
1 of w1 from the left,

we obtain an expression of the eigenvalue μ =
(

−χ2 ±
√

χ2
2 − 4χ1χ3

)
/2χ1, with χ1 = w†

1w1 �

0, χ2 = w†
1Aw1 � 0 and χ3 = w†

1Lw1 � 0. χ2 and χ3 are non-negative since Aii = αi > 0 and L
is positive semi-definite because γij � 0 is ensured through |θ∗

j − θ∗
i |� π

2 for all (i, j) ∈ E (see
Proposition 2.1 and Remark 2.2) [cf. [22]]. Therefore, the eigenvalue always has a non-positive
real part, implying that the networked dynamical system is at least neutrally stable at the fixed
point. �

Remark 3.2 (Neutral stability and global phase shift) Connected AC power grids described
by the oscillator model (3.8) is neutrally stable at a fixed point only when the deviation � is
a global phase shift. Because (3.11) indicates that the Jacobian eigenvalue μ = 0 only when
χ3 = 0, which implies Lw1 = 0 and thus w1 lies in the Laplacian eigenspace corresponding to
the eigenvalue λ[0] = 0. For connected graphs, there is only one eigenvector v[0] = (1, · · · , 1)
corresponding to λ[0] = 0, therefore the system is only neutrally stable when all nodes undergo
a phase shift with the same magnitude. A global phase shift has no effects on the power flow
pattern in the network since pairwise phase differences across edges remain the same.

Proposition 3.2 (LRT of the oscillator model and homogeneous nodal damping) Consider an AC
power grid oscillator model with arbitrary topology (3.8) with homogeneous nodal damping αi =
α � 0 for all nodes i. Then the network-wide linear responses to arbitrary external perturbations
near a normal operation state θ∗ can be expressed explicitly in the eigenbasis of a weighted
graph Laplacian: i) The network response to time-independent distributed perturbations D∗ is

�(t) = D∗ · v[0]

(
e−αt

α2
− 1

α2
+ t

α

)
v[0] +

N−1∑
�=1

D∗ · v[�]

λ[�]

(
�

[�]
− e�

[�]
+ t − �

[�]
+ e�

[�]
− t

2η[�]
+ 1

)
v[�],

(3.12)
and ii) the network response to a single sinusoidal perturbation given by D(t) with Di(t) =
δikεeı(ωt+ϕ) is

�(k)(t) =
N−1∑
�=0

εv
[�]
k eıϕ

−ω2 + ıαω + λ[�]

⎡
⎣
(
�

[�]
− − ıω

)
e�

[�]
+ t −

(
�

[�]
+ − ıω

)
e�

[�]
− t

2η[�]
+ eıωt

⎤
⎦ v[�] (3.13)

with �
[�]
± := −α/2 ± η[�] and η[�] :=√

α2/4 − λ[�].

Proof. Vectorising the linear response �(t) of the system (3.8) to a perturbation vector D(t), we
obtain the matrix equation describing the response dynamics of the oscillator model of AC power
grids

�̈ + α ◦ �̇ = −L� + D(t), (3.14)

where α := (α1, · · · , αN ) denotes the vector of damping parameters and ‘◦’ denotes the Schur
(element-wise) product of two vectors. Let αi = α for all i, the term α ◦ �̇ reduces to a scalar
multiplication α�̇, thereby all terms involving the variable � in equation (3.14) can be expressed
as linear combinations of Laplacian eigenvectors. Because the L here is real and symmetric so
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that we can write �(t) =∑N−1
�=0 c[�](t)v[�]. Using the same trick as in Remark 2.3, we obtain

equations for the time-dependent coefficients c[�](t) given by

c̈[�] + αċ[�] + λ[�]c[�] = D(t) · v[�] for � ∈ {0, · · · , N − 1}. (3.15)

Assuming at t = 0 the AC power grid system operates normally at the fixed point θ∗, we have
initial conditions for the coefficients c[�](0) = 0 and ċ[�](0) = 0 for all �, thereby obtain explicitly
solutions for the coefficients and for the network linear responses.

For perturbations independent of time, D(t) = D∗, such as constant shifts in power injection
and consumption, the linear response of a power grid system is given by directly solving for the
coefficients in (3.15):

�(t) = D∗ · v[0]

(
e−αt

α2
− 1

α2
+ t

α

)
v[0] +

N−1∑
�=1

D∗ · v[�]

λ[�]

(
�

[�]
− e�

[�]
+ t − �

[�]
+ e�

[�]
− t

2η[�]
+ 1

)
v[�],

(3.16)

with �
[�]
± := −α/2 ± η[�] and η[�] :=√

α2/4 − λ[�]. For time-dependent perturbations D(t), such
as fluctuating power injections from renewables, we obtain the network linear response based
on the responses to each single frequency components at each perturbed nodes, as discussed
in Remark 2.4. Similarly, we let Di(t) = δikεeı(ωt+ϕ) and obtain the oscillator model’s linear
response to a sinusoidal signal at node k as

�(k)(t) =
N−1∑
�=0

εv
[�]
k eıϕ

−ω2 + ıαω + λ[�]

⎡
⎣
(
�

[�]
− − ıω

)
e�

[�]
+ t −

(
�

[�]
+ − ıω

)
e�

[�]
− t

2η[�]
+ eıωt

⎤
⎦ v[�]. (3.17)

�

Remark 3.3 (Low dissipation regime and grid eigenfrequencies) In case the dissipation in the
system is low enough such that α < 2

√
λ[�] for the �-th eigenvalue, in the solution of the linear

response (3.13) the corresponding η[�] for the same eigenmode becomes imaginary, suggesting
this mode is oscillating under-damped in the power grid system with an exponentially decay-
ing amplitude proportional to e− α

2 t, i.e., with a time constant τ = 2/α. Such intrinsic oscillation
modes can also be identified by looking at the eigenvalues of the Jacobian matrix at the fixed
point. Let w1 in (3.11) be the �-th eigenvector of the Laplacian L, we can see the correspond-
ing Jacobian eigenvalue μ[�] = −α/2 ±√

α2/4 − λ[�] = �
[�]
± , which indicates the corresponding

eigenfrequency ω
[�]
eigen := Im[μ[�]] =√

λ[�] − α2/4 of the power grid system. Since for a con-
nected networked system with N nodes has N − 1 positive Laplacian eigenvalues, it also has
a band of N − 1 eigenfrequencies if the dissipation is sufficiently low satisfying α < 2

√
λ[�] for

all N − 1 Laplacian eigenvalues.

4 Emerging network response patterns from LRT

In Section 3, we applied LRT on power grid models and obtained explicit solutions for linear
network responses to perturbations at a normal operation state. The solutions are expressed in
terms of the eigensystem of a weighted graph Laplacian. These Laplacians and thus their eigen-
systems contain information about the underlying network topology as well as the base operating
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state of the system, enabling us to understand and manipulate how complex networked systems
such as power grids collectively respond to external perturbation signals.

In this section, we focus on the dynamic responses of AC power grids to time-varying pertur-
bations based on the oscillator model (see Section 3.2) and explicate how steady-state response
patterns constituted by the set of nodal response magnitudes as well as transient response patterns
describing the spatio-temporal spreading of a perturbation in power grids are mathematically
extracted from the solution given by the LRT.

4.1 Frequency regimes of steady-state response patterns

After a transient phase characterised by a dissipation-related time constant τ = 2/α (cf.
Remark 3.3), the perturbed power grid systems reside in a second regime of network responses,
where the entire network respond periodically to perturbation signals for t � τ (see 3.12 and
3.13). We thus call the network responses for such large times steady-state responses. We
remark that the steady-state responses here are not necessarily stationary, meaning that the
nodal responses themselves can vary with time, but their characteristics, such as the ampli-
tude and the phase of sinusoidal responses, constitute network-wide response patterns that are
time-independent.

Proposition 4.1 (Steady-state response pattern for a constant perturbation) For AC power grids
with arbitrary topologies (3.8), the steady-state responses to time-independent perturbations
D(t) = D∗, i.e. with a perturbation frequency ω = 0, near a normal operation state θ∗ are
constituted by a homogeneous shift of grid frequency

δθ̇i = 1

Nα

N∑
j=1

D∗
j for i ∈ {1, · · · , N}, (4.1)

and a topology-dependent phase shift

δθ = − 1

Nα2

N∑
i=1

D∗
i 1 +

N−1∑
�=1

D∗ · v[�]

λ[�]
v[�]. (4.2)

Proof. By definition, the steady-state response patterns become clear by investigating the asymp-
totic behaviour of the responses as t → ∞. For responses to a constant perturbation vector
D(t) = D∗ (3.12), the steady-state response reads

�(t)
t→∞∼ D∗ · v[0]

(
− 1

α2
+ t

α

)
v[0] +

N−1∑
�=1

D∗ · v[�]

λ[�]
v[�], (4.3)

which consists of two characteristic patterns: i) the phases of all units drift away from the
normal operation state with a constant angular velocity

(
D∗ · v[0]

)
v

[0]
i /α, and ii) a time-

independent and unit-specific phase shift. Since v[0] = 1√
N

1, the former pattern represents the
constant homogeneous shift of grid frequency (4.1) and the latter the topology-dependent phase
shift (4.2). �

https://doi.org/10.1017/S0956792522000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000201


Fluctuation response patterns of network dynamics 15

Remark 4.1 The global grid frequency shift (4.1) is a consequence of the imbalance between
power injected into and drawn from the power grid system, which is imposed by the constant
perturbation D∗. The topology-dependent phase shifts (4.2) at all units suggest a network-
wide redistribution of power flows on the transmission lines. The first-order approximation
of the change of the load Lij := sin(θj − θi) on line (i, j), δLij = cos

(
θ∗

j − θ∗
i

) (
δθj − δθi

)
, pro-

vides an indicator for the emerging risks such as overheating for heavily-loaded lines with Lij

approaching the upper limit of its safety range.

Proposition 4.2 (Steady-state response pattern for a sinusoidal perturbation) For AC power
grids with arbitrary topologies (3.8), the steady-state responses to a sinusoidal perturbation
at node k, i.e. D(t) with Di(t) = δikεeı(ωt+ϕ), near a normal operation state θ∗ are constituted by
a homogeneous phase shift

δθi = ıεeıϕ

αωN
for i ∈ {1, · · · , N}, (4.4)

and sinusoidal responses at each node with the same frequency ω and a characteristic complex
amplitude

R(k)
i (ω) :=

N−1∑
�=0

v
[�]
k v

[�]
i

−ω2 + ıαω + λ[�]
. (4.5)

for node i.

Proof. The steady-state response to a sinusoidal perturbation at a single node k is obtained by
studying the asymptotic behaviour of the responses (3.13) has the form of

�(k)(t)
t→∞∼ ıεeıϕ

αωN
1 + eı(ωt+ϕ)

N−1∑
�=0

εv
[�]
k

−ω2 + ıαω + λ[�]
v[�], (4.6)

which is composed of a homogeneous phase shift ıεeıϕ

αωN and a driven oscillation at each node.
Each node’s angular variable θi changes at the same frequency as the perturbation frequency ω,
but with a complex amplitude

R(k)
i (ω) =

N−1∑
�=0

v
[�]
k v

[�]
i

−ω2 + ıαω + λ[�]
. (4.7)

�

Remark 4.2 (Characterisation of the steady-state response patterns to a sinusoidal perturbation)
The complex nature of the amplitude suggests shifts in the amplitude and in the phase between
the perturbation signal and the response signal, which are both topology-dependent and node-
specific. Hence, we also refer to R(k)

i as the nodal response factor of node i to a sinusoidal
perturbation at node k.

The homogeneous phase shift contributes to neither the change of grid frequency nor the
overall power flow pattern in the network, while the absolute value of R(k)

i determines the max-
imal deviation of the local grid frequency at node i caused by a perturbation at node k through
|δθ̇i| = |�̇(k)

i | = εω|R(k)
i |. If it exceeds the safety range of normal operation, the local frequency
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(a)

(b2)

(b1)

(c1)

(d1)

(c2) (d2)

FIGURE 1. Steady-state response patterns exhibit three frequency regimes. (a) Relative response strength
A∗(k)

i (see Remark 4.4 for definition) of all 80 nodes in an example power grid network across all three
frequency regimes (homogeneous bulk, resonant and localised responses). Vertical grey lines represent
the N − 1 eigenfrequencies. (b1,c1,d1) Qualitatively different dependencies of A∗(k)

i on the graph-theoretic
distance d := d(k, i) with three representative driving frequencies ω/2π ∈ {0.1, 2, 10} Hz of three frequency
regimes. The exponential dependence of A∗(k)

i on d is illuatrated in the inset of d1. (b2,c2,d2) Distinctive
response patterns for the three driving frequencies, corresponding to (b1,c1,d1). The curves in (a) are colour
coded with the distance d, and the discs in (b1-b2,c1-c2,d1-d2) are colour coded with the relative response
strength A∗(k)

i . The black square marks the perturbed node. Network settings are the same as Figure 2 in [45].

deviation may cause damage the synchronous machine and other related grid components such
as the turbine. In the rest of the subsection, we focus on the steady-state response pattern
constituted by the set of nodal response strengths

A(k)
i := ω

∣∣∣R(k)
i

∣∣∣ , (4.8)

for each node i and discuss in detail its distinctive spatial distributions in different frequency
regimes (see Fig. 1 for an example).

4.1.1 Regime of grid resonances

As suggested in Remark 3.3, the dynamics of the perturbed oscillator model of AC power grids
can be understood in comparison with the dynamics of a driven damped harmonic oscillator. For
each intrinsic under-damped oscillation mode corresponding to a non-zero Laplacian eigenvalue
λ[�] > α2/4, the oscillatory power grid system resonates if the perturbation frequency matches the
corresponding eigenfrequency ω

[�]
eigen =√

λ[�] − α2/4. Driven at frequencies close to an eigenfre-

quency ω
[�]
eigen, the network responses exhibit large amplitudes since the rationalised denominator(

ω2 − λ[�]
)2 − α2ω2 for the corresponding �-th oscillation mode is minimised. However, the
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response amplitudes vary greatly for different nodes in the network due to the factor v
[�]
k v

[�]
i . If

the system dissipation is sufficiently low such that there exist N − 1 under-damped oscillation
modes, the corresponding N − 1 eigenfrequencies form a resonance regime where the power grid
system can potentially exhibit strong distributed responses across the network (cf. Remark 3.3).

We emphasise that the spatiotemporal resonance pattern is characteristic of each perturbation
frequency within the resonance regime, of each specific network topology including the prior
perturbation base state and of each location of perturbation. Therefore, a power grid system’s
responses to real-world fluctuating perturbations containing a collection of frequency compo-
nents within the resonance regime are quite irregular both temporally and spatially, which makes
it a non-trivial task to evaluate the risks in perturbed power grids induced by network resonances
(see Section 4.3 for further discussions).

4.1.2 Homogeneous responses: The low-frequency regime

The network response pattern for lower perturbation frequencies, i.e. the ones lower than
the smallest eigenfrequency ω

[1]
eigen =√

λ[1] − α2/4, can be understood by investigating the

asymptotic behaviour of the nodal response strength A(k)
i = ω|R(k)

i | as the ω → 0.

Proposition 4.3 (Homogeneous responses at the low frequency limit) As the perturbation fre-
quency ω → 0, the steady-state response strength at each node of an AC power grid system with
an arbitrary topology (3.8) approaches a constant value, i.e.

A(k)
i

ω→0∼ 1

Nα
. (4.9)

Proof. Considering (4.5) and λ[0] = 0, we derive the asymptotic behaviour of the real part and
the imaginary part of the nodal response factor R(k)

i as ω → 0:

Re
[
R(k)

i

]
=

N−1∑
�=0

v
[�]
k v

[�]
i

(−ω2 + λ[�]
)

(−ω2 + λ[�]
)2 + α2ω2

ω→0∼ − 1

Nα2
+

N−1∑
�=1

v
[�]
k v

[�]
i

λ[�]
, (4.10)

Im
[
R(k)

i

]
=

N−1∑
�=0

v
[�]
k v

[�]
i (−αω)(−ω2 + λ[�]

)2 + α2ω2

ω→0∼ − 1

Nαω
. (4.11)

As the asymptotic behaviour of the response strength A(k)
i = ω|R(k)

i | is dominated by the
imaginary part, we have

A(k)
i = ω

∣∣∣R(k)
i

∣∣∣ ω→0∼ ω · 1

Nαω
= 1

Nα
. (4.12)

�

Remark 4.3 (Consistency with the homogeneous grid frequency shift at ω = 0) The homoge-
neous response strength at each node as ω → 0 suggests a global shift of grid frequency inversely
proportional to the network size N and the system dissipation parameter α. This result is quanti-
tatively consistent with the homogeneous grid frequency shift induced by constant perturbations,
as discussed in Proposition 4.1 with D∗

i = δik if node k is the perturbed one.

Remark 4.4 (Relative nodal response strength) The homogeneous nodal response at the low fre-
quency limit (4.9) serves as a reference value for the nodal response strengths of a sinusoidally
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driven network. Therefore, by normalising A(k)
i with its low frequency limit 1

Nα
, we define the

relative nodal response strength

A∗(k)
i := A(k)

i

lim
ω→0

A(k)
i

= NαA(k)
i , (4.13)

so that the nodal response strengths can be compared across networks with different sizes and
dissipation values.

4.1.3 Localised responses: The high-frequency regime

Similarly, we investigate the network response pattern in the high-frequency regime where ω >

ωeigen[N−1] by observing the asymptotic behaviour of the nodal response strengths A(k)
i as the

perturbation frequency becomes sufficiently large and approaches infinity.

Proposition 4.4 (Localised response patterns in the high-frequency regime) As the perturbation
frequency ω → ∞, the steady-state nodal response strength A(k)

i in an AC power grid system
with an arbitrary topology (3.8) decays as a power-law of ω with an exponent depending on the
graph-theoretic distance d between node k and i, i.e.

A(k)
i

ω→∞∼
∣∣∣�[d]

ki

∣∣∣ω−2d−1, (4.14)

where
∣∣∣�[d]

ki

∣∣∣ is a distance- and node-specific prefactor but independent on the perturbation

frequency.

Proof. To determine the asymptotic behaviour of the response strength A(k)
i = ω|R(k)

i |, we first
reduce Re[R(k)

i ] and Im[R(k)
i ] from (4.10) and (4.11) to a common denominator M(ω) and obtain

the respective numerators NRe(ω) and NIm(ω) as polynomials of ω,

M(ω) :=
N−1∏
�=0

[(−ω2 + λ[�]
)2 + α2ω2

]
, (4.15)

NRe
ki (ω) :=

N−1∑
�=0

v
[�]
k v

[�]
i

(−ω2 + λ[�]
)

Q[�](ω), and (4.16)

N Im
ki (ω) :=

N−1∑
�=0

v
[�]
k v

[�]
i (−αω) Q[�](ω) with (4.17)

Q[�](ω) :=
N−1∏

�
′=0,�′ �=�

[(
−ω2 + λ

[
�
′])2

+ α2ω2

]
. (4.18)

The asymptotic behaviour of M(ω), NRe
ki (ω) and N Im

ki (ω) as ω → ∞ is dominated by the
respective leading terms with the highest power of ω. The denominator scales asymptotically as

M(ω)
ω→∞∼ ω4N . (4.19)

For the numerators, the leading term depends on a common product Q[�](ω). As shown in
Appendix A, Q[�](ω) can be written in terms of λ[�] and other variables that are dependent on
the underlying matrix L but independent of the choice of �. Thus, we define
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Q(λ[�], ω) :=
2N−2∑
j=0

C[j]
(
λ[�]

)
ω4N−4−2j, (4.20)

where the coefficients C[j]
(
λ[�]

)
are polynomials in λ[�] of degree j. Inserting the expression of

Q(λ[�], ω) (4.20) to the numerators (4.16) and (4.17), we obtain

NRe
ki =

N−1∑
�=0

v
[�]
k v

[�]
i

2N−1∑
j=0

F[j]
(
λ[�]

)
ω4N−2−2j and N Im

ki =
N−1∑
�=0

v
[�]
k v

[�]
i

2N−2∑
j=0

G[j]
(
λ[�]

)
ω4N−3−2j,

(4.21)

where F[j]
(
λ[�]

)
and G[j]

(
λ[�]

)
are also polynomials in λ[�] of degree j and can be written in

terms of C[j]
(
λ[�]

)
as

F[j]
(
λ[�]

)=

⎧⎪⎪⎨
⎪⎪⎩

−C[j]
(
λ[�]

)
j = 0

−C[j]
(
λ[�]

)+ λ[�]Cj−1
(
λ[�]

)
1 � j � 2N − 2,

λ[�]Cj−1
(
λ[�]

)
j = 2N − 1

(4.22)

G[j]
(
λ[�]

)= −αC[j]
(
λ[�]

)
, j ∈ {0, 1, · · · , 2N − 2}. (4.23)

Considering the numerators NRe
ki (ω) and N Im

ki (ω) as the ki-th elements of numerator matrices N Re

and N Im, we can conveniently write (4.21) in a matrix form

N Re =
2N−1∑
j=0

�[j]ω4N−2−2j, N Im =
2N−2∑
j=0

�[j]ω4N−3−2j, (4.24)

with the coefficient matrices �[j] := VF [j]VT and �[j] := VG[j]VT. Here V := (
v[0], · · · , v[N−1]

)
and F [j], G[j] are diagonal matrices with F [j]

ii := F[j]
(
λ[i]

)
and G[j]

ii := G[j]
(
λ[i]

)
, respectively. By

spelling out the polynomials

F[j]
(
λ[�]

)=
j∑

m=0

f [j]
m · (λ[�]

)m
, G[j]

(
λ[i]

)=
j∑

m=0

g[j]
m · (λ[�]

)m
, (4.25)

with coefficients f [j]
m , g[j]

m ∈R, we can see the diagonal matrices F [j] and G[j] are polynomials of
a diagonal matrix � with �ii := λ[i]

F [j] =
j∑

m=0

f [j]
m �m, G[j] =

j∑
m=0

g[j]
m �m, (4.26)

so that the coefficient matrices �[j] and �[j] can be written as

�[j] = V
(

j∑
m=0

f [j]
m �m

)
VT =

j∑
m=0

f [j]
m

(V�mVT
)=

j∑
m=0

f [j]
m Lm, (4.27)

�[j] = V
(

j∑
m=0

g[j]
m �m

)
VT =

j∑
m=0

g[j]
m

(V�mVT
)=

j∑
m=0

g[j]
m Lm, (4.28)
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indicating that they are polynomials of the weighted graph Laplacian matrix L of degree j,
as V�VT ≡L. In short, the numerators N Re and N Im

ki are in fact polynomials in ω, with its
coefficient being also a polynomial in L,

N Re =
2N−1∑
j=0

(
j∑

m=0

f [j]
m Lm

)
ω4N−2−2j, N Im =

2N−2∑
j=0

(
j∑

m=0

g[j]
m Lm

)
ω4N−3−2j. (4.29)

We note that as the index j increases, the powers of ω decrease and the degrees of the polyno-
mials �[j](L) and �[j](L), i.e. the coefficients of ω, increase. For sufficiently large perturbation
frequency ω, the leading terms in the numerators which dominate the asymptotic behaviours
would be the ones with the highest degrees of ω with nonzero coefficients. We know from graph
theory that (Lm)ij �= 0 only for node pair (i, j) with the graph theoretic distance d(i, j) between
them, i.e. the length of the shortest path from j to i on the unweighted graph defined by L, sat-
isfying d(i, j) � m. Therefore, the first terms in NRe

ki (ω) and N Im
ki (ω) with the highest degrees of

ω have exactly zero coefficients, i.e. �[j] = 0 and �[j] = 0, for all j < d(k, i). Consequently, the
leading term in the numerators are

NRe
ki (ω)

ω→∞∼ �
[d]
ki ω4N−2−2d , N Im

ki (ω)
ω→∞∼ �

[d]
ki ω4N−3−2d , (4.30)

with d := d(k, i). Together with the asymptotic behaviour of the denominator (4.19), we obtain

A(k)
i = ω

∣∣∣R(k)
i

∣∣∣ ω→∞∼ ω ·
∣∣∣∣∣�

[d]
ki ω4N−2−2d

ω4N

∣∣∣∣∣=
∣∣∣�[d]

ki

∣∣∣ω−2d−1. (4.31)

�

Remark 4.5 (Localised response patterns in the high-frequency limit) Proposition 4.4 implies
that the response amplitude of the grid frequency A(k)

i decays exponentially with the graph-
theoretic distance d between the perturbed node and the responding node. The response
amplitude also decays as a power law in ω for fixed d. Visualizations of such localised response
patterns in three networks are given in Fig. 2. In the high-frequency limit, a network’s response
to the perturbation is restricted to the perturbed node, i.e.

lim
ω→∞

A(k)
i

A(k)
i

ω→∞∼ lim
ω→∞

∣∣∣�[d]
ki

∣∣∣ω−2d−1∣∣∣�[0]
ki

∣∣∣ω−1
= lim

ω→∞

∣∣∣�[d]
ki

∣∣∣ω−2d = δki, (4.32)

with δki being the Kronecker delta function.

Remark 4.6 (Localised response patterns in networks of multi-dimensional dynamical sys-
tems) We consider networks of N diffusively coupled identical units governed by n-dimensional

dynamics. Each unit i has n state variables
(

x[0]
i , x[1]

i · · · , x[n−1]
i

)
and is governed by dynamics

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ[0]
i = x[1]

i

ẋ[1]
i = x[2]

i

· · ·
ẋ[n−1]

i = f
(

x[0]
i , x[1]

i · · · , x[n−1]
i

)
+

N∑
j=1

g
(

x[0]
j − x[0]

i

)
,

https://doi.org/10.1017/S0956792522000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000201


Fluctuation response patterns of network dynamics 21

(a1) (b1) (c1)

(c2)

(c3)(b3)

(a3)

(b2)(a2)

FIGURE 2. Topological localisation of network responses. For frequencies larger than all eigenfrequencies
and across network types (row 1), the response amplitudes (4.13) decays exponentially with shortest-
path distance d (row 2) and algebraically with driving frequency ω (row 3) (cf. Proposition 4.4). Dashed
vertical lines in row 3 indicate the displayed frequency responses in row 2. Columns display graphs
and responses for a random tree (column a), the topology of the British high voltage transmission
grid (column b) and a random power grid network topology generated according to [31] (column c).
Network settings:

(
N , Ng, Pg, Pc, Kg, Kc, α

)= (
264, 24, 10 s−2, −1 s−2, 200 s−2, 20 s−2, 1 s−1

)
for column

a,
(
120, 30, 39 s−2, −13 s−2, 390 s−2, 390 s−2, 1 s−1

)
for column b, and (80, 20, 39 s−2, −13 s−2, 390 s−2,

390 s−2, 1 s−1) for column c2.

where f : RN →R and g : R→R are functions, respectively, representing the intrinsic and the
coupling dynamics of units and allowing for a stable fixed point of the system. If unit k is sinu-
soidally driven with frequency ω → ∞, we conjecture that the amplitude Ã(k)

i,m of the sinusoidal
response in state variable Dm

t xi of unit i is given by

Ã
(k)
i,m

ω→∞∼
∣∣∣�[d]

ki

∣∣∣ω−n(d+1)+m, (4.33)

where |�[d]
ki | is a distance- and node-specific prefactor but independent on the perturbation

frequency.

The response of a sinusoidally driven damped harmonic oscillator with Ã
(k)
i,m

ω→∞∼ ω−2 can be
seen as a special case of (4.33) with n = 2, d = 0 and m = 0. For networks of Kuramoto phase

2Here, in network settings, Ng is the number of power generating units with power injection Pg > 0
and the rest units are power-consuming units with Pc < 0. The transmission lines connected to generators
have capacity Kg and the rest lines have capacity Kc.
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oscillators with n = 1, (4.33) is proven to be valid [see the Supplementary of [45]]. For the
oscillator model of power grid with n = 2 and m = 1, (4.33) reduces to Proposition 4.4.

Remark 4.7 (Generalisability of the steady-state response patterns in three frequency regimes) In
the above discussions of the steady responses patterns in three frequency regimes in Section 4.1,
we do not make any assumptions on the network topology. Therefore, our results on the charac-
teristics of the homogeneous, the resonance and the localised response patterns in three regimes
hold for arbitrary network topologies. Nevertheless, the evaluation of the parameters and the
prefactors, such as �

[d]
ki in (4.14), is network and topology dependent by definition.

4.2 Topological factor of transient spreading dynamics

In the following, we focus on the transient response of AC power grids to external perturbations,
which is referred to as the network responses close to the time of perturbation and thus describes
the spatiotemporal pattern in the perturbation spreading process across the network. Particularly,
we demonstrate how to extract the role of the network topology in the spreading pattern based
on the LRT of the oscillator model.

To investigate the transient response close to the onset of perturbation at t = 0, we Taylor-
expand the linear response (3.13) at node i to a sinusoidal perturbation at node k in powers of
t as

�
(k)
i (t) =

∞∑
n=0

Dn
t �

(k)
i (0)

n! tn, (4.34)

around t = 0, which is characterised by the time derivatives of the linear response at t = 0. Here,
Dn

t := dn

dtn is Euler’s notation for differential operator. The n-th order time derivative of the linear
response at t = 0 is

Dn
t �

(k)
i (0) =

N−1∑
�=0

v
[�]
k v

[�]
i εeıϕ

−ω2 + ıαω + λ[�]

⎡
⎣
(
�

[�]
+
)n (

�
[�]
− − ıω

)
−
(
�

[�]
−
)n (

�
[�]
+ − ıω

)
2η[�]

+ (ıω)n

⎤
⎦ .

(4.35)

The transient response of a power grid network can thus be estimated by the first non-zero term
in the power series of t (4.34). Interestingly, the resulting series does not start with low powers of
t such as t0 or t1 as typical for common Taylor expansions. Instead, it typically starts with large
powers of t as the following proposition illustrates.

Proposition 4.5 (Leading-term approximation of transient response) The transient response at
node i in an AC power grid network (3.8) to a sinusoidal perturbation of frequency ω at node
k with an onset at t = 0 is approximated by the (2d + 2)-nd term in the Taylor expansion of the
linear response (3.13) around t = 0,

�
(k)
i (t) = εeıϕ(−1)d

(Ld
)

ki

(2d + 2)! t2d+2 + O
(
t2d+3

)
. (4.36)

Here d := d(k, i) denotes the graph-theoretic distance between node k and node i.
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Proof. To find out the leading term in the Taylor series of the linear response (4.34), we study
the summand of the �-th eigenmode in the derivative of the linear response Dn

t �
(k)
i (0) (4.35),

which we denote as v
[�]
k v

[�]
i εeıϕFn

(
λ[�]

)
for convenience3. In the summand, the function Fn

(
λ[�]

)
appears to be a division of two polynomials of λ[�]. In fact, it can be shown that the leading term
of Fn

(
λ[�]

)
(denoted as LT

[
Fn

(
λ[�]

)] )
, i.e. the term with the highest order of λ[�] is

LT
[
Fn

(
λ[�]

)]=

⎧⎪⎨
⎪⎩

(−1)
n−1

2

(
−ıω + n − 1

2
α

) (
λ[�]

) n−3
2 if n is odd,

(−1)
n−2

2
(
λ[�]

) n−2
2 if n is even.

(4.37)

A derivation of the result (4.37) is given in Appendix B. We note that, for n = 0 and n = 1,
Fn

(
λ[�]

)= 0, which is a consequence of the choice of initial condition: the linear response and

its first derivative are supposed to be zero at t = 0, as the responses �
(k)
i and the frequency

response �̇
(k)
i are zero at the onset of perturbation. For n � 2, (4.37) indicates a monotonic

relation between the degree of Fn

(
λ[�]

)
as a polynomial of λ[�] and the order of derivative n:

n = 2 deg
[
Fn

(
λ[�]

)] + 2.

As we have shown in Section 4.1.3, sums of the form of
∑N−1

�=0 v
[�]
k v

[�]
i Pj

(
λ[�]

)
, where Pj

(
λ[�]

)
represents a general polynomial of λ[�] of degree j, can be seen as [Pj(L)]ki, the ki-th element of
the matrix Pj(L), a polynomial of L with degree j. Applying this result to the derivatives of the
linear response (4.35), we find that Dn

t �
(k)
i (0) can be considered as the ki-th element of matrix

Fn(L), a polynomial of L. The leading term of Dn
t �

(k)
i (0) is thus given by

LT
[
Dn

t �
(k)
i (0)

]
= εeıϕLT [Fn(L)]ki , (4.38)

which contains (Lm)ki with m = n−3
2 if n is odd and m = n−2

2 if n is even. We notice that for a
given node pair (k, i) at distance d, we have (Lm)ki = 0 for all m < d because no path of length
m < d can connect nodes k and i. Therefore, all terms in the Tayler series (4.34) with the leading
term’s degree lower than d vanish. The first non-zero term in the series thus equals the leading
term of the (2d + 2)-th derivative of the linear response,

D2d+2
t �

(k)
i (0) = εeıϕLT [F2d+2(L)]ki = εeıϕ(−1)d

(Ld
)

ki
, (4.39)

because all other terms contain (Lm)ki with m < d and thus vanish. Taken together, the transient
linear response near t = 0 can be approximated as

�
(k)
i (t) =

∞∑
n=2d+2

Dn
t �

(k)
i (0)

n! tn = εeıϕ(−1)d
(Ld

)
ki

(2d + 2)! t2d+2 + O
(
t2d+3

)
. (4.40)

�

Remark 4.8 (Topological factor in perturbation spreading) The leading-term approximation of
the linear response (Proposition 4.5) provides a way to disentangle the impact of various factors
on the dynamical spreading process in power grid networks. Specifically, the impact of the spe-
cific network topology, including the interaction structure between units and the system’s base
state at t = 0, is reflected in the factor

(Ld
)

ki
in the leading-term approximation. It satisfies

3Please not that the functions Fn here and F[j] in (4.22) are different from each other though both are
polynomials in λ[�].
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(a)

(b) (c)

FIGURE 3. Transient Network Response Dynamics exhibits algebraic growth with time and exponential
decay with shortest-path distance. (a) Basic network of N = 6 units illustrates (b,c) transient algebraic
responses [colour-coded as units in (a)] to a sinusoidal perturbation at node 1 that increase like �

(k)
i (t) ∼

Cdt2d+2 as t → 0, with time independent constant Cd that depends on signal magnitude, topology, base oper-
ating state and inter-node distance d, see (4.36). Thus, responses (b) algebraically increase with time t at any
given unit and (c) at any given time, they decay nearly exponentially with shortest-path distance d = d(k, i)
between the perturbed unit k and the observed unit i. The grey dotted lines in (b) indicate the leading-term
approximations. Network settings:

(
N , Ng, Pg, Pc, Kg, Kc, α

)= (6, 3, 1 s−2, −1 s−2, 10 s−2, 10 s−2, 1 s−1).
For the perturbation signal (ε, ω/2π , ϕ) = (1, 1 Hz, 0 rad).

(Ld
)

ki
=
∑
Pd

k→i

∏
(u,v)∈Pd

k→i

Luv , (4.41)

suggesting that it can be interpreted as the product of the edge weights along a shortest path
Pd

k→i between node k and i, summed over all shortest paths. This insight provides guidelines
for manipulating the perturbation spreading dynamics in power grid networks through changing
the underlying topology. Numerical evidences show that the topological factor that revealed by
the leading-term approximation also enables a master function approach to accurately predict
threshold-crossing arrival times in power grid networks [47].

Remark 4.9 (Scaling behaviours in transient responses) The leading-term approximation of the
transient response (4.36) reveals two scaling behaviours as t → 0 (cf. Figure 3). First, the
transient response grows algebraically in time with a distance-dependent exponent: �

(k)
i (t) ∼

Cdt2d+2. Here, Cd := εeıϕ(−1)d
(Ld

)
ki
/(2d + 2)! is a time independent prefactor but depends on

signal magnitude, topology, base operating state and inter-node distance d. Second, the tran-
sient response decays nearly exponentially with distance d, since the factor t2d+2 dominates the
asymptotic behaviour of the response at large but finite distances as t → 0.

Remark 4.10 (Generalisability of the transient spreading patterns) The above discussions on the
spatio-temporal pattern of transient spreading do not involve any assumptions on the underly-
ing network topology. Thus, the form of the leading term approximation of the transient network
response (Proposition 4.5) does not depend on the specific choice of network topology. We under-
line that the evaluation of the topological factor in perturbation spreading (Remark 4.8) is indeed
topology- and node-specific, as it captures the local interaction structure and consists of all
shortest paths between the perturbed node and the responding node.
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4.3 Nodal vulnerability to unpredictable fluctuations

In Sections 4.1 and 4.2, we show how the distributed response patterns of power grid systems,
in the steady state (t → ∞) and in the transient stage (t → 0), are analytically extracted from
the LRT of the oscillator model. The response patterns are numerically proven to be highly
accurate [45, 47], but the results are valid only for given perturbation signals, hence deterministic.
Meanwhile, real-world power grid systems are perturbed by power fluctuations whose exact time
series are hardly predictable. In this section, we discuss how LRT helps to estimate network
responses to random perturbations.

As discussed in Section 4.1, power grid systems respond resonantly to perturbations with

frequencies falling in the band of network’s eigenfrequencies Ires :=
[
ω

[1]
eigen, ω[N−1]

eigen

]
, exhibiting

the most irregular network-wide spatiotemporal patterns, compared to the almost homogeneous
pattern for lower frequencies and the localised pattern for higher frequencies. Moreover, the res-
onance response pattern varies drastically for different perturbation frequencies and for different
locations of perturbation. Therefore, estimating the nodal responses for random perturbation
signals involving frequency components within Ires is a task not only of practical signifi-
cance regarding the operational safety of power grid systems, but also with a high theoretical
complexity.

Definition 4.1 (Dynamic vulnerability index (DVI) for random network resonances) In an AC
power grid system (3.8) perturbed by a random fluctuation at node k, characterised by a power

spectral density S(ω) with frequency components ω ∈ Ires =
[
ω

[1]
eigen, ω[N−1]

eigen

]
, the nodal Dynamic

Vulnerability Index (DVI) is defined as

DVI(k)
i :=

∫
Ires

S(ω)
1
2

∣∣∣∣∣
N−1∑
�=0

ıωv
[�]
k v

[�]
i

−ω2 + ıαω + λ[�]

∣∣∣∣∣ dω. (4.42)

Proposition 4.6 (DVI estimates ranking of the nodal all-time-high steady frequency responses)
Let an AC power grid system (3.8) be perturbed by a time-dependent fluctuation at node k. A ran-
dom signal time series is characterised by a power spectral density S(ω), i.e., the strength ε of its
frequency component εeı(ωt+ϕ) is frequency dependent and follows ε(ω) ∝ S(ω)

1
2 , and the corre-

sponding phase ϕ is randomly drawn from the uniform distribution on [0, 2π ), independently for
each realisation of the fluctuation time series. Suppose the fluctuation signal is composed of fre-

quency components with ω ∈ Ires =
[
ω

[1]
eigen, ω[N−1]

eigen

]
, the ranking σATH of the nodal all-time-high

steady frequency response magnitude maxt∈[0,T] |�̇(k)
i (t)| in an observation window T approaches

the ranking σDVI of the DVI defined in Definition 4.1 as the observation time window goes to
infinity, i.e.

lim
T→∞ σATH(i) = σDVI(i) for all i ∈ {1, · · · , N}. (4.43)

Proof. To analyse the steady network response, i.e. the response in a time window T → ∞,
to a perturbation signal composed of a range of frequencies, we make use of the steady-state
response of the oscillator model to a sinusoidal signal (4.6). The steady-state response �̇i(t) of
the frequency at node i to a perturbation signal εeı(ωt+ϕ) at node k is given by
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�̇
(k)
i (t)

t→∞∼
N−1∑
�=0

ıεωv
[�]
k v

[�]
i

−ω2 + ıαω + λ[�]
eı(ωt+ϕ) = ıεωR(k)

i eı(ωt+ϕ), (4.44)

which can be seen as a driven oscillation with a complex amplitude ıεωR(k)
i . Here, R(k)

i is
the response factor defined in (4.5) characterising the response strength at individual nodes
in a network. The complex amplitude gives rise to an amplitude shift

∣∣ıεωR(k)
i

∣∣ and a phase

shift arg
(

ıεωR(k)
i

)
, which both are specific to the perturbation strength ε and the perturbation

frequency ω.
As a consequence of the linear nature of LRT, the nodal frequency response to a temporally

fluctuating perturbation signal containing a spectrum of frequency components is obtained by
summing the response �̇

(k)
i (ε, ω, t) (4.44) over all frequency components (see also Remark 2.4).

Particularly, for perturbation signals which are characterised by a specific power spectral den-
sity (PSD) S(w), the strength of its frequency component εeı(ωt+ϕ) can be expressed in terms of
the frequency as ε(ω) ∝ S(ω)

1
2 while no assumptions is made on the choice of its phase ϕ. For

instance, in modern power grids integrated with renewable energies, the power fluctuations from
wind and solar energy are characterised by a power law PSD with the Kolmogorov exponent
−5/3 [[2]]. For such resonant perturbations, the nodal frequency response reads

�̇
(k)
i (S(ω), t)

t→∞∼
∫

Ires

ıcS(ω)
1
2 ωR(k)

i eı(ωt+ϕ)dω. (4.45)

Here, c is a scaling factor between the power distribution over frequencies of a specific signal
and the (normalised) PSD. Independent of the specific realisation of the fluctuation signal, the
largest possible magnitude of the frequency response (4.45) is reached only when the involved
frequencies are finite in number and non-resonant to each other4 so that all oscillating responses
for each frequency component ω (4.44) would eventually align. The largest possible magnitude
of frequency response time series is given by the sum over ω of the magnitude of each fre-
quency response |ıcS(ω)

1
2 ωR(k)

i |. For finite time series with M data points and time step �T ,
its frequency components ωn = 2πn

M�T with n ∈ {1, · · · , M
2

}
given by discrete Fourier transform

are apparently resonant to each other. However, for time series with a fixed sampling rate, the
longer the observation time window T , the smaller the frequency interval �ω = 2π/T and thus
the more frequency components exist within the given interval of interest Ires. As T approaches
infinity, the order of the resonant frequencies {ωn} becomes sufficiently high so that the align-
ment of the phases can be attained at a finite rate [8]. Therefore, as T → ∞, the all-time-high
frequency response approaches the sum of the frequency-specific response magnitudes, which is
proportional to the DVI given in (4.42):

lim
T→∞ max

t∈[0,T]

∣∣∣�̇(k)
i (S(ω), t)

∣∣∣= ∫
Ires

cS(ω)
1
2

∣∣∣ıωR(k)
i

∣∣∣ dω = c DVI(k)
i . (4.46)

4In this specific context, we adopt the definition of resonance between frequencies in ergodic theory.
The frequencies, as elements of a vector ω, are called resonant to each other if there exists a nonzero integer
vector m · ω = 0. Otherwise the frequencies are called non-resonant to each other.
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If one only considers the relative ranking of the all-time-high frequency response of nodes in a
given network, but not their absolute values, the overall scaling factor c in (4.46) does not play a
role in the ranking and we finally arrive at

lim
T→∞ σATH(i) = σDVI(i) for all i ∈ {1, · · · , N}. (4.47)

�

Remark 4.11 (Generalisation of DVI and convergence time) The DVI defined in (4.42) provides
a measure to estimate the relative nodal risk from the power grid network resonances induced
by a unpredictable perturbation signal and thus helps to identify the most vulnerable nodes
in networks with arbitrary topologies exhibiting particularly strong resonant responses. The
integration interval of the frequencies in DVI is chosen to be the band of eigenfrequencies Ires

for a specific network so that its irregular resonance patterns are covered, however it is not a
must. In principle, any frequency range can be chosen for DVI to estimate the relative strength
of the all-time-high responses in the specific frequency range. However, one should note that
the timescale for the ranking of all-time-high responses to converge to the ranking given by DVI
(in 4.46 and 4.47) depends on the chosen frequency range. For instance, the convergence time
would be longer if lower frequencies are included in the integration interval of DVI.

5 Role of LRT in uncovering response patterns

In the previous section, we elaborated how network-wide dynamic response patterns of power
grid systems can be extracted from the explicit solution of nodal responses given by the LRT of
the oscillator model (see Section 3). In this section, we summarise and compare the role of LRT
in revealing different categories of the dynamic response patterns, such as the patterns emerging
on different timescales, and in responses to perturbations with different levels of randomness and
magnitude.

5.1 Transient versus steady-state responses

As discussed in Sections 4.1 and 4.2, power grid transmission networks exhibit distinctive
spatiotemporal response patterns on different timescales. The transient spreading pattern (see
Section 4.2) of an external perturbation signal in a normally operating power grid network
appears close to the time of impact t = 0. It is characterised by a set of points in time, at
which the impact arrives at individual units in the network. To a large extent, the topologi-
cal dependence of the arrival times can be captured by a topological factor which arises from
the leading-term approximation of the linear response. The steady-state response patterns, in
contrast, emerge as t → ∞ (see Section 4.1), where the nodal responses to a sinusoidal perturba-
tion converge to sinusoidal oscillations as well, but with various amplitudes. Consequently the
set of the nodal response amplitudes, a time-invariant but frequency-dependent feature of the
oscillating responses, constitute the steady-state response patterns characterising three frequency
regimes. The time scale separating transient from steady-state regimes is not a universal con-
stant but intricately depends on several factors including network size N and network topology,
damping constant α, and the specific node location we are interested in within the network.

Both transient and steady-state response patterns have been revealed and characterised through
asymptotic analyses of the explicit solution of the linear nodal responses (3.13). The solution

https://doi.org/10.1017/S0956792522000201 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000201


28 X. Zhang and M. Timme

depends explicitly on time while the dependence on the network topology is implicit, embedded
in the eigenvalues and eigenvectors of the weighted graph Laplacian matrix L. Through asymp-
totic analyses, either with respect to time t or the perturbation frequency ω, the lengthy solution
of the linear nodal response is reduced to one term per eigenmode that dominates the asymp-
totic behaviour as the variable t or ω approaches its corresponding limit (see Proposition 4.4 and
Proposition 4.5). As the contribution of each eigenmode contains the ‘overlap factor’ v

[�]
i v

[�]
k of

the perturbed node k and the responding node i, the powers of the Laplacian eigenvalue
(
λ[�]

)m

that is involved in the dominating term in each eigenmode � translate to elements of the power of
the Laplacian matrix (Lm)ki through the summation over all N eigenmodes � ∈ {0, · · · , N − 1}.
Furthermore, with the help of the result from graph theory that (Lm)ki ≡ 0 if m ∈N0 is smaller
than d(k, i), the shortest path distance between node k and i, the dependence of the nodal
linear responses on graph-theoretic distance emerges. In this way one obtains the asymptotic
spatiotemporal response patterns that depends explicitly on distance.

A major difference between the patterns we uncover in steady-state responses and in tran-
sient responses is, the asymptotic behaviours of the steady-state response patterns are exact, in
the sense that the higher order terms are negligible at the observed limits of the perturbation
frequency ω (see Section 4.1). Meanwhile, the contribution of the higher order terms are not
negligible in the patterns in transient responses: the leading-term approximation of the response
exhibits a diverging error as the perturbation spreads further and the arrival time grows larger.
Numerical simulations show that the higher order terms accounts for about 10% of the actual
arrival time of perturbations [47], which is significant in predicting the perturbation spread-
ing behaviour in real-world power grid systems. However, by means of numerical techniques,
we can still use the topological factor proposed in Remark 4.8 to estimate the contribution
of higher order terms O(2d + 3) in the Taylor series (4.36) in a specific network ensemble
and give accurate predictions for the actual arrival times of the impact of a perturbation [47].
Related recent works [43, 30] studied transient propagation of perturbations in networked sys-
tems consisting of one-dimensional dynamical units. One main finding is a similar scaling of
the unit’s state variables xi(t) (or their deviations from a base state) with time t as xi(t) ∼ td

where d is the shortest-path distance between perturbed node and the node i the response in
measured at.

5.2 Responses to deterministic perturbations versus responses to unpredictable
perturbations

The power grid response patterns we discuss in this article can be classified into two categories:
the ones emerging in the deterministic responses to a given perturbation signal, such as the tran-
sient responses (Section 4.2) and the steady-state responses (Section 4.1) to a given signal, and
the ones that estimate the cumulative impact of an unpredictable signal on a power grid network,
such as the DVI measuring the nodal risk of network resonances (Section 4.3). Both categories
of power grid response patterns are discovered based on the explicit solution of the linear nodal
responses (3.13) that derived from the LRT.

Looking more closely, one finds that the estimated patterns in the cumulative responses can
be seen as a result built upon the deterministic steady-state linear responses with one more
dimension, i.e. the specific properties of the perturbation signals. At its core, the steady-state net-
work frequency responses �̇ (4.44) to a single-frequency sinusoidal oscillation Dk(t) at a given
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node k is a mapping fG,θ∗ : R→R
N with fG,θ∗ depending on the underlying network topology

G and network’s base state θ∗ prior to perturbations. The fluctuating nature of the perturba-
tion signal adds another dimension to the responses: the amplitude of Dk is no longer a given
constant ε, but becomes further dependent of the frequency ω through the PSD S(ω) of the sig-
nal, i.e. ε(ω) = S(ω)

1
2 . In this way, the unknown or unpredictable temporally detailed features

of the perturbations are integrated into the LRT framework for networked dynamical systems,
which extends standard LRT statements and enables us to estimate features of network responses
beyond the deterministic realm of systems driven with known signals.

We emphasise that, due to the intrinsic irregularity of fluctuating perturbation signals, the
errors of the estimates for the associated responses appear to be significantly higher than the ones
for the deterministic responses [compare [45] and [46]]. In a finite signal time series characterised
by a PSD function, the contained frequencies are finite in number in the considered frequency
interval (such as the resonance regime Ires), and apparently resonant to each other, which leads
to a deviation in the ranking of the all-time-high nodal responses to the ranking given by indices
computed a priori (such as the DVI discussed in Section 4.3). Additionally, realistic perturbation
signals do not follow exactly the characteristic PSD, such that randomness also exists in the
amplitudes of the frequency components. Nevertheless, compared to the deterministic patterns
which gives only a posteriori information of network responses, estimates such as the DVI given
by the extended LRT may provide a useful guiding tool for risk assessments in real-world power
grid systems.

5.3 Small responses versus large responses

As the name suggests, LRT provides the linear approximation of a system’s response to a per-
turbation close to a fixed point of a networked dynamical system. Therefore, the solution given
by LRT intrinsically deviates from the actual system responses due to the neglected higher order
terms in the system’s collective nonlinear dynamics. As the system being driven further and fur-
ther away from the fixed point, the responses typically increase and so do the estimation error
of the LRT. However, the range of validity of the LRT, as well as how its error grows with the
perturbation, is usually nontrivial and system-dependent.

For the oscillator model of power grid networks, the error of the solution given by LRT
(3.12 and 3.13) follows the same trend and grows with an increasingly stronger perturbation
signal. However, numerical evidence shows that the error increases mildly with the magnitude
of the perturbation until it blows up close to a bifurcation point [45]. In the linearised dynam-
ics of the oscillator model at a fixed point θ∗ (3.14), the deviation of the nonlinear coupling

terms sin(θj − θi) for all edges (i, j) ∈ E to their values sin
(
θ∗

j − θ∗
i

)
at the fixed point are repre-

sented by the first-order approximations cos
(
θ∗

j − θ∗
i

) (
�j − �i

)
, vectorised as the term −L�

in (3.14). For power grid systems working at a stable operation state without any transmission
line overloaded (|θ∗

j − θ∗
i |� π

2 for all edges (i, j) ∈ E, see Proposition 2.1), the linear approxima-
tion breaks down only when the system is driven far enough from the fixed point θ∗ and goes
close to the point where one of the lines (i, j) is fully loaded, i.e. sin(θj − θi) = 1. In this regime,
the linear approximation diverges from the actual state of the system and the error grows explo-
sively. As elaborated in an article by [22], when one of the transmission line is fully loaded,
the power grid system reaches a bifurcation point where the initial stable fixed point is lost and
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the oscillating units in the system becomes desynchronised. Therefore, the LRT of the oscillator
model of the power grid systems, together with all of the derived response patterns, are generally
valid as long as none of the lines become overloaded and the entire system becomes unstable
[see [45] for quantitative results of the LRT errors].

6 Conclusions and outlook

6.1 Conclusions and discussions

In this work, we systematically discuss how LRT may shed light on the spatio-temporal response
patterns emerging in networked dynamical systems under time-dependent perturbations. We
exemplify a full analysis for model dynamics of power grid systems which are inevitably exposed
to fluctuating power injections from renewable energy sources. Beyond previous works, we inte-
grate and present all details required for a full mathematical analysis, specifically demonstrate
how to evaluate the generally intricate, multiple-sum expressions determining spatio-temporal
response patterns in a useful way and highlight how different results interconnect, for instance
between transient and long-term dynamics or between different types of perturbations and across
topologies. We introduce the main ideas of LRT and its general requirements for applicability on
system settings (cf. Section 2). We explicate various aspects of application to models of power
grid systems, such as i) the solution of linear responses of the stationary DC power flow model
and of the dynamic oscillator model of AC power grids (cf. Section 3), and ii) how it helps to
identify dynamic patterns in network-wide responses which provide theoretical guidelines for
power grid design, control and risk assessments.

Although LRT has been widely used as a powerful tool in analysing various response dynam-
ics of many complex networked dynamical systems, the works presented in this article provide
a fresh methodological angle to approach the problem. For power grid systems, LRT has been
used to estimate, e.g. quadratic performance measures for the network’s overall excursion away
from synchrony [36, 37, 26, 6] and the variance of the frequency response increment distribution
[11]. For connectome dynamics in brain, LRT has also been used to analytically estimate the
covariance of Gaussian linear model of the stochastically perturbed system [35], which links the
structural and the functional connectivities between brain regions [44, 39].

The work presented in this article approaches the dynamic network responses in a way differ-
ent from the above-mentioned works: instead of quantifying the stochastic features of the overall
or distance-specific responses directly based on the linear responses, we start from explicating the
deterministic solution of network-wide responses to a single-frequency signal and using methods
from graph theory and asymptotic analysis to extract spatiotemporal response patterns. These
may be interpreted in a physically intuitive way. Specifically, the three frequency regimes of
steady-state response patterns (Section 4.1) and the master curve of transient perturbation spread-
ing (Section 4.2) are entirely deterministic. Especially, the former work on fluctuation-induced
network resonances can be seen as a direct generalisation of the classical resonance phenomenon
of a single driven damped harmonic oscillator to oscillators interacting on networks. The emerg-
ing pattern constituted by the estimations of the all-time-high nodal response magnitudes to a
irregularly varying perturbation (Section 4.3), is also a straightforward result derived from the
spatial patterns in the network-wide responses to a deterministic (periodic) signal.
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6.2 Challenges and future work

Future work regarding the response theory for networked dynamical systems may follow several
directions.

First, exact analytical solutions, and even many asymptotic results of the linear responses of
general networked dynamical systems, as well as the response patterns emerging from these
solutions, remain unknown to date. Applying the LRT presented in this work on a networked
dynamical system, we employed several conditions on the system’s dynamics (see Section 2)
to explicate a full analysis without too many notational and other complications. The conditions
include homogeneous nodal dynamics, a diffusive coupling term gij(xj − xi) and the evenness of

the coupling function’s sensitivity
dgij

d(xj−xi)
to small changes in the difference of nodal states xj −

xi, such that a symmetric weighted Laplacian matrix arises in the linearised response dynamics
of the system at the fixed (operating) point (2.10). The presence of a symmetric Laplacian matrix
in the linearised dynamics ensures the option to express the linear responses in the Laplacian
eigenbasis, which plays a critical role in linking the response at a specific node to the graph-
theoretic distance to the perturbation. Thereby it is also critical in uncovering the topological
structure of the dynamical response patterns across the network. However, for many networked
dynamical systems, such as the third-order model of power grid dynamics including the voltage
dynamics [19], such preconditions are not fulfilled. One way to overcome this theoretical barrier
and to extend LRT to such networks of dynamical systems is to transform the system’s state
variables to another coordinate system where the Jacobian matrix J in (2.3) is diagonal or almost
diagonal (such as in the Jordan normal forms of J ). In this way, explicit solutions for linear
responses can be obtained in the new coordinate system where dynamic response patterns can be
identified in similar ways presented in this work.

Second, one could use LRT to develop strategies to control the impact of fluctuations on
networked dynamical systems such as power grids. So far, we gained insights into the spa-
tiotemporal structure of the responses across networks and developed indices to estimate the
nodal risks against external fluctuations. The next step towards more reliable and more robust
power grid systems would be to utilise the obtained understanding to develop countermeasures
against the risks, e.g. to suppress the potentially dangerous responses such as network resonances
and to slow down the spreading of the impact of a sudden drop of injected power. A potential
way to achieve such tasks could be to manipulate discovered response patterns by changing the
interaction structure of the power grid.

Third, research on how different classes of network topologies potentially impact response pat-
terns through their specific characteristics of their eigensystems. Progress in this direction seems
hard, because one would need to be able to characterise, e.g., eigenvectors of graph ensembles
such that they directly help to extract useful information from complex expressions like (4.5) or
even (3.13) specifically for that ensemble.

Fourth, the LRT per se could be extended by considering also the higher-order approximations
of the system’s responses, cf. [34]. In the current work, we demonstrated that many features of
collective response patterns of networked dynamical systems with nonlinear couplings, such as
the oscillator model of power grids, are dominantly captured by the first-order (i.e. linear) approx-
imation of the system’s responses, yet nonlinear effects may also play a role for other systems
with certain forms of the intrinsic nodal dynamics or the interaction dynamics between nodes,
specifically if we ask for the loss of solutions near operating states [34]. Therefore, it would be
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desirable if the contributions of the higher-order approximations of the system’s responses can
be estimated. An open question also here is how such nonlinear effects depend on the interaction
topology of the network.

We conjecture that general network dynamical systems, also beyond power grids, similarly
respond in characteristic ways to external input signals, making the systems non-equilibrium and
often non-stationary, and to be described by non-autonomous deterministic or stochastic evolu-
tion equations. Several of the analysis steps presented above hint that the key methodological
tools are either readily transferable to more general systems’ settings or may be adapted to such
settings. Candidate classes of systems include networks of multi-dimensional units, with discrete
or hybrid dynamics, with delayed interactions or with spatially or temporally correlated stochas-
tic inputs. Application areas may range from gene regulatory networks and metabolic circuits
in cell biology to the controlled self-organised dynamics of engineered systems with feedback,
from complex mechatronic systems to swarms of autonomous aerial vehicles.
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Appendix A. Proof of Equation 4.20

Proposition A.1 Given ω > 0, α > 0 and 0 = λ[0] < · · · < λ[N−1] as defined in Subsection 3.2,
the product Q[�](ω)

Q[�](ω) :=
N−1∏

�
′=0,�′ �=�

[(
−ω2 + λ

[
�
′])2

+ α2ω2

]
, (A1)

that appears in the numerators of the real part and of the imaginary part of the nodal response
strength (4.8) explicitly depends on λ[�] and can be expressed as

Q(λ[�], ω) =
2N−2∑
j=0

C[j]
(
λ[�]

)
ω4N−4−2j, (A2)

with the coefficient C[j]
(
λ[�]

)
is a polynomial of λ[�] with degree j.
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Proof. To prove the proposition, we first rewrite the factors in Q[�](w) by ordering the terms
according to the degree of ω:

Q[�](w) =
N−1∏

�
′=0,�′ �=�

[
ω4 +

(
α2 − 2λ

[
�
′])

ω2 +
(

λ

[
�
′])2

]
=:

N−1∏
�
′=0,�′ �=�

3∑
m=1

rm

(
λ

[
�
′])

ω2(3−m).

(A3)
According to the distributivity of multiplication over addition, it is clear from (A3) that each term
in Q[�](w), a polynomial of ω with degree 4N − 4, can be seen as the product of three factors:∏

�
′∈s1

r1

(
λ

[
�
′])

ω4,
∏

�
′∈s2

r2

(
λ

[
�
′])

ω2 and
∏

�
′∈s3

r3

(
λ

[
�
′])

, where sets s1, s2, and s3 have a :=
|s1|, b := |s2| and c := |s3| elements, respectively, and together form a partition P�(a, b, c) of the
set of the indices of the N − 1 eigenmodes S� := {0, ..., N − 1}\{�}. Here a, b, c ∈N0 and satisfy

a + b + c = N − 1. Since r1, r2 and r3 are polynomials of λ

[
�
′]

with degree 0, 1 and 2, a term
in Q[�](w) with ω4a+2b would have a coefficient involving a multiplication of 2b + c Laplacian

eigenvalues λ

[
�
′]

with �′ ∈ S�. Denoting j = b + 2c, we can write the coefficient of the term with
degree 4a + 2b = 4N − 4 − 2j as

C[�]
j =

∑
a+b+c=N−1

b+2c=j

∑
P�(a,b,c)

∏
p∈s2

(
α2 − 2λ[p]

) ∏
q∈s3

(
λ[q]

)2
, (A4)

which is a sum over all possible partitions P�(a, b, c) satisfying a + b + c = N − 1 and b +
2c = j.

In the following, we show that the coefficient C[�]
j is a polynomial of λ[�] with degree j, i.e.

deg
[
C[�]

j

(
λ[�]

)]= j. For convenience of notation in the proof, we define the sum of coefficients

involving both r2 and r3 over s2 ∈ (S�
b

)
and s3 ∈ (S�\s2

c

)
, i.e. all possible partitions P�(a, b, c) of S�

as

Y [�]
b,c :=

∑
s2∈(S�

b ),s3∈(S�\s2
c )

∏
p∈s2

(
α2 − 2λ[p]

) ∏
q∈s3

(
λ[q]

)2
. (A5)

Here,
(S�

b

)
denotes all possible b-subsets of S�. Similarly, we define the sum of the coefficients

over all possible partitions of S := {0, ..., N − 1} as

Yb,c :=
∑

s2∈(S
b),s3∈(S\s2

c )

∏
p∈s2

(
α2 − 2λ[p]

) ∏
q∈s3

(
λ[q]

)2
. (A6)

In case b = 0 or c = 0, the corresponding product is omitted. It is clear that Yb,c, including special
cases Yb,0 and Y0,c are constants independent of λ[�]. Using definition (A5) and (A6), we can write
C[�]

j in A4 as
∑

a+b+c=N−1,b+2c=j Y [�]
b,c . To prove Equation (A1), we only need to prove Y [�]

b,c is a
polynomial of λ[�] with degree j = b + 2c, i.e.

deg
[
Y [�]

b,c

(
λ[�]

)]= b + 2c. (A7)
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Now we show (A7) in three steps. All subproofs are given by mathematical induction.

Step 1: First, we show that the sum of r2-related factors over s2 ∈ (S�
b

)
is a polynomial of λ[�]

with degree b. That is, deg
[
Y [�]

(b,0)

(
λ[�]

)]= b.

(a) For b = 1, we have Y [�]
1,0 = Y1,0 − (

α2 − 2λ[�]
)
, which is a polynomial of λ[�] with

degree 1 since Y1,0 is a constant independent of λ[�].

(b) If the statement holds for b = n − 1, i.e. deg
[
Y [�]

n−1,0

(
λ[�]

)]= n − 1, then for b = n

we have Y [�]
n,0 = Yn,0 − (

α2 − 2λ[�]
)

Y [�]
n−1,0, satisfying deg

[
Y [�]

n,0

(
λ[�]

)]= n.

Step 2: Second, we show that the sum of r3-related factors over s3 ∈ (S�
c

)
is a polynomial of λ[�]

with degree 2c. That is, deg
[
Y [�]

(0,c)

(
λ[�]

)]= 2c.

(a) For c = 1, we have Y [�]
0,1 = Y0,1 − (

λ[�]
)2

, which is a polynomial of λ[�] with degree 2
since Y0,1 is a constant independent of λ[�].

(b) If the statement holds for c = n − 1, i.e. deg
[
Y [�]

0,n−1

(
λ[�]

)]= 2n − 2, then for c = n

we have Y [�]
0,n = Y0,n − (

λ[�]
)2

Y [�]
0,n−1, satisfying deg

[
Y [�]

0,n

(
λ[�]

)]= 2n.

Step 3: Finally, we show that the sum of coefficients involving both r2 and r3 over s2 ∈ (S�
b

)
and

s3 ∈ (S�\{s2}
c

)
, i.e. all possible partitions P�(a, b, c), is a polynomial of λ[�] with degree

j = b + 2c. That is, equation (A7).

(a) For b = 1, c = 1, we have Y [�]
1,1 = Y1,1 − (

α2 − 2λ[�]
)

Y [�]
0,1 − (

λ[�]
)2

Y [�]
1,0 , which is a

polynomial of λ[�] with degree 3 since deg
[
Y(1,1)

(
λ[�]

)]= 0, deg
[
Y [�]

(0,1)

(
λ[�]

)]= 2

and deg
[
Y [�]

(1,0)

(
λ[�]

)]= 1.

(b) If the statement holds for b = m − 1, c = n − 1, i.e. deg
[
Y [�]

m−1,n−1

(
λ[�]

)]= m +
2n − 3, then for b = m, c = n we have

Y [�]
m,n =Ym,n − (

α2 − 2λ[�]
)

Y [�]
m−1,n − (

λ[�]
)2

Y [�]
m,n−1

=Ym,n − (
α2 − 2λ[�]

) (
Ym−1,n − (

λ[�]
)2

Y [�]
m−1,n−1

)
− (

λ[�]
)2
(

Ym,n−1 − (
α2 − 2λ[�]

)
Y [�]

m−1,n−1

)
.

Taking into account that Ym,n, Ym−1,n and Ym,n−1 all have degree 0, we can easily
see that deg

[
Y [�]

m,n

(
λ[�]

)]= m + 2n, meaning the statement also holds for b = m and
c = n. �

Appendix B. Proof of Equation 4.37

Proposition B.1 The function

Fn

(
λ[�]

)
:= 1

−ω2 + ıαω + λ[�]

⎡
⎣
(
�

[�]
+
)n (

�
[�]
− − ıω

)
−
(
�

[�]
−
)n (

�
[�]
+ − ıω

)
2η[�]

+ (ıω)n

⎤
⎦ ,

(B1)
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that appears in the n-th order derivative of the linear response at t = 0 (4.35) has a leading term
with respect to λ[�]

LT
[
Fn

(
λ[�]

)]=
⎧⎨
⎩ (−1)

n−1
2
(−ıω + n−1

2 α
) (

λ[�]
) n−3

2 if n is odd,(−λ[�]
) n−2

2 if n is even.
(B2)

Here �
[�]
± := −α/2 ± η[�], η[�] :=√

α2/4 − λ[�] with α > 0, 0 = λ[0] < · · · < λ[N−1] and ω > 0,
n ∈N, n � 2.

Proof. Using the relation �
[�]
+ �

[�]
− = λ[�], we rewrite the function under study as

Fn

(
λ[�]

)= λ[�]fn−1
(
λ[�]

)− ıωfn
(
λ[�]

)+ (ıω)n

−ω2 + ıαω + λ[�]
, (B3)

with

fn
(
λ[�]

)
:= 1

2η[�]

[(
�

[�]
+
)n −

(
�

[�]
−
)n]

. (B4)

It is clear from (B3) that the leading term of Fn

(
λ[�]

)
depends on the leading term of fn

(
λ[�]

)
as

LT
[
Fn

(
λ[�]

)]= LT
[
λ[�]fn−1

(
λ[�]

)− ıωfn
(
λ[�]

)+ (ıω)n
]

LT
[−ω2 + ıαω + λ[�]

] , (B5)

= 1

λ[�]
LT

[
λ[�]fn−1

(
λ[�]

)− ıωfn
(
λ[�]

)]
. (B6)

Please note that
(
�

[�]
+
)n

and
(
�

[�]
−
)n

in fn
(
λ[�]

)
are a complex conjugate pair, since η[�] is

imaginary under the low dissipation of power grid systems (see Remark 3.3). Therefore, we

have
(
�

[�]
−
)n =

(
�

[�]
+
)n

which leads to fn
(
λ[�]

)= Im
(
�

[�]
+
)n

/
√

λ[�] − α2/4. Now proving (B2)

boils down to determining the leading term of
(
�

[�]
+
)n

. In the following, we use mathematical

induction to show that leading term of the real part and the imaginary part of
(
�

[�]
+
)n

follows

LT
[
Re

(
�

[�]
+
)n]=

⎧⎨
⎩ (−1)

n+1
2 n

2α
(
λ[�]

) n−1
2 if n is odd,(−λ[�]

) n
2 if n is even;

(B7)

LT
[
fn
(
λ[�]

)]= LT

⎡
⎣ Im

(
�

[�]
+
)n

√
λ[�] − α2/4

⎤
⎦=

⎧⎨
⎩
(−λ[�]

) n−1
2 if n is odd,

(−1)
n
2 n

2α
(
λ[�]

) n−2
2 if n is even.

(B8)

(a) For n = 2 and n = 3, we can easily verify (B7) and (B8) by spelling out
(
�

[�]
+
)n

:

LT

[
Re

(
�

[�]
+
)2
]

= LT
[−λ[�] + 1

2α2
]= −λ[�],

LT

[
Re

(
�

[�]
+
)3
]

= LT
[

3
2αλ[�] − 1

4α2 − 1
4α3

]= 3
2αλ[�],

LT
[
f2
(
λ[�]

)]= LT [−α] = −α, LT
[
f3
(
λ[�]

)]= LT
[−λ[�] + α2

]= −λ[�].
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(b) Now we show that (B7) and (B8) hold for n + 1 if they hold for n, no matter n is odd or

even. The leading term of Re
(
�

[�]
+
)n+1

and fn+1
(
λ[�]

)
can be expressed in terms of the leading

term of Re
(
�

[�]
+
)n

and fn
(
λ[�]

)
as following

LT

[
Re

(
�

[�]
+
)n+1

]
= LT

[(− 1
2α
)

LT
[
Re

(
�

[�]
+
)n]− LT

[
fn
(
λ[�]

)] (
λ[�] − 1

4α2
)]

, (B9)

LT
[
fn+1

(
λ[�]

)]= LT
[
LT

[
Re

(
�

[�]
+
)n]+ (− 1

2α
)

LT
[
fn
(
λ[�]

)]]
. (B10)

In case n is odd, we have

LT

[
Re

(
�

[�]
+
)n+1

]
= LT

[
(−1)

n+3
2 n

4α2
(
λ[�]

) n−1
2 + (−λ[�]

) n−1
2
(
λ[�] − 1

4α2
)]

= (−λ[�]
) n+1

2 , and (B11)

LT
[
fn+1

(
λ[�]

)]= LT

[
(−1)

n+1
2 n

2α
(
λ[�]

) n−1
2 − 1

2α
(−λ[�]

) n−1
2

]

= (−1)
n+1

2 n+1
2 α

(
λ[�]

) n−1
2 (B12)

In case n is even, we have

LT

[
Re

(
�

[�]
+
)n+1

]
= LT

[(−λ[�]
) n

2
(− 1

2α
)+ (−1)

n
2

n

2
α
(
λ[�]

) n−2
2
(
λ[�] − 1

4α2
)]

= (−1)
n+2

2 n+1
2 α

(
λ[�]

) n
2 , and (B13)

LT
[
fn+1

(
λ[�]

)]= LT

[(−λ[�]
) n

2 + (−1)
n+2

2 n+1
2 α

(
λ[�]

) n−2
2

]
= (−λ[�]

) n
2 . (B14)

The results (B11, B12, B13, B14) agree with the statement (B7) and (B8).
Combining results (B6) and (B8), we arrive at the leading term of Fn

(
λ[�]

)
as

LT
[
Fn

(
λ[�]

)]= 1

λ[�])
LT

[
(−1)

n−1
2 n−1

2 α
(
λ[�]

) n−1
2 − ıω

(−λ[�]
) n−1

2

]

= (−1)
n−1

2
(−ıω + n−1

2 α
) (

λ[�]
) n−3

2 if n is odd, and (B15)

LT
[
Fn

(
λ[�]

)]= 1

λ[�])
LT

[
(−1)

n−2
2
(
λ[�]

) n
2 − ıω(−1)

n
2 n

2α
(
λ[�]

) n−2
2

]

= (−λ[�]
) n−2

2 if n is even. (B16)

�
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