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How neurons process their inputs crucially determines the dynamics of biological and artificial neural
networks. In such neural and neural-like systems, synaptic input is typically considered to be merely
transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report
pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs.
Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing
on single-neuron responses and the performance of associative-memory tasks in artificial neural networks.
First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach
is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of
dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both
numerically and analytically. We find that dendritic nonlinearities maintain network convergence and
increase the robustness of memory performance against noise. Interestingly, an intermediate number of
dendritic branches is optimal for memory functionality.
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I. INTRODUCTION: NONADDITIVE DENDRITIC
INPUT PROCESSING IN NEURAL NETWORKS

Information processing in artificial and biological neural
networks crucially depends on the processing of inputs in
single neurons (e.g., Ref. [1]). The dendrites, branched
protrusions of a biological nerve cell or the input prepro-
cessing compartments of formal neurons, constitute the
main input sites. Traditionally, dendrites are modeled as
passive, cablelike conductors that integrate incoming pre-
synaptic signals linearly or sublinearly and propagate the
change in voltage to the cell body or soma, where it is
subject to nonlinear transformations [2]. Accordingly, the
input preprocessing in formal neurons is usually assumed
to be a linear or sublinear summation.
Single-neuron experiments, however, demonstrate the

occurrence of strongly supralinear dendritic amplification.
Biophysically, this supralinear amplification is caused by
action potentials generated in the dendrite of the neuron.
Such dendritic spikes are mediated by voltage-dependent

ion channels such as sodium, calcium, and N-methyl-D-
aspartate (NMDA) channels [3–7]. In particular, dendritic
spikes may emerge if sufficiently synchronous inputs are
received by the same branch of a dendrite. The many inputs
to the dendrites can thus be processed nonadditively,
depending on their spatial and temporal distribution
[5,8]. These features of input processing imply crucial
deviations from the classical assumptions on linear den-
dritic input processing as modeled, e.g., by cable equations.
It has been recently shown that dendritic spikes are present
and prominent all over the brain (e.g., Ref. [9]).
A number of theoretical studies already highlighted the

importance of nonlinear, spiking dendrites for the input
processing in single neurons: Simulations of neuron models
with detailed channel density and morphology showed
dendritic spike generation in agreement with neurobiolog-
ical experiments [3,4,6,8,10]. Further, firing-rate models
have been developed [11] that reproduce the response
properties of detailed models to diverse stimuli and behave
like multilayered feed-forward networks of simple-rate
neurons [5,8,10]. Two- and multilayer feed-forward net-
works of binary, deterministic neurons have been studied
using statistical physics methods [12–14]. In particular, the
so-called committee machine may be seen as a neuron
model incorporating a layer of dendrites with steplike
activation functions, i.e., without analogous signal
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transmission [15,16]. Neurons in biological networks receive
time-dependent, noisy input at high rates, which often makes
a statistical description of the response properties of single
neurons necessary. In Ref. [17], the authors derived such a
description for linear and quadratic dendritic summation
together with some numerical results for a biologically
plausible, sigmoidal dendritic nonlinearity. The propagation
of dendritic spikes in branched dendrites with steplike
activation functions has been studied in Ref. [18], providing
the somatic input as a numerical solution to a high-
dimensional system of nonlinear equations.
To date, there is no efficient statistical description for

neurons with biologically plausible, sigmoidal dendritic
nonlinearities. In biological systems, neurons form com-
plex, recurrent networks. Thus, a description that allows
one to analytically study networks of neurons with multiple
nonlinear dendrites is especially desirable.
Recent single-neuron experiments investigated the role

of active dendrites in detecting specific spatiotemporal
input patterns [4,19,20]. Theoretical studies showed that
nonlinear dendrites improve the ability of single neurons
and ensembles of single neurons to discriminate and learn
different input patterns [21–24]. Besides trivially multiply-
ing the single-neuron abilities to detect input patterns, a
network of neurons can store, retrieve, and complete
spatiotemporal patterns aided by its recurrent dynamics:
It can function as an associative-memory device [13,25,26].
Yet, the impact of nonlinear dendrites on associative-
memory networks is unknown.
So far, only a few studies have considered the impact of

nonadditive dendrites on network dynamics. Selectivity
and invariance of network responses to external stimuli and
their intensity were analyzed in a firing-rate model [27,28].
References [28–30] proposed that NMDA-receptor-
dependent dendritic nonlinearities play a crucial role in
working memory, i.e., in the formation of persistent activity
in unstructured networks. Nonlinear, multiplicative den-
dritic processing arising from spatial summation of input
across the dendritic arbor was similarly shown to enable
spontaneous and persistent network activity [31]. Dendritic
spikes were suggested to work as coincidence detectors and
provide a neuronal basis for temporal and spatial contexts
in biological networks [32,33]. References [34,35] studied
networks of bursting neurons, where the bursts facilitate the
emergence of patterns of coordinated neuronal activity and
can be explained by dendritic spikes. Further, it was shown
that nonlinear dendrites can enable robust propagation of
synchronous spiking in random networks with biologically
plausible substructures [36] and in purely random networks
[37]. Finally, dendritic spikes were related to so-called
sharp-wave ripples in the hippocampus that are important
for long-term memory consolidation [38].
Networks of binary neurons with linear input summation

have been intensively investigated in statistical physics
(“Hopfield networks” [13,25,26]), and extensions to different

nonlinear and nonmonotonic transfer functions exist
(cf., e.g., Refs. [39–43]). While all of these studies assumed
point neurons, neural networks of arborized neurons with
nonadditive coupling have not been studied in comparable
setups. Hopfield networks are paradigmatic models for
associative memory that may, in particular, contribute to
solving two important conundrums in neuroscience: how
biological neural networks achieve a high memory capacity
and how they can work so reliably under the experimentally
found noisy conditions. The incorporation of nonadditive
dendrites into these models may therefore (1) shed light on
the impact of these features on memory capacity and robust-
ness and, at the same time, (2) allow us to understand the
underlying mechanisms due to their analytical tractability.
In the first part of this article, we describe the response

properties of single neurons in the presence of biologically
plausible dendritic nonlinearities in a statistical framework.
In the second part, we employ the results and study the
effect of nonlinear dendrites on associative-memory net-
works. We consider networks of the Hopfield type, as this
standard model for associative memory lends itself to
analytical treatment and allows us to concisely work out
the effects of nonlinear dendritic enhancement. We find that
dendritic nonlinearities improve pattern retrieval by effec-
tively reducing the thresholds of neurons and by increasing
the robustness to noise. The improvement is strongest for
intermediate numbers of dendritic branches. We quantify
these effects and illustrate our analytical findings with
numerical simulations.

II. RESULTS

A. Basic model for neurons with nonadditive dendrites

Consider an extended topological structure of a neuron
consisting of one pointlike soma and B-independent
dendritic compartments (Fig. 1). Each compartment
receives its inputs from a number of presynaptic neurons
and transfers its output to the soma. We assume that
nonlinear dendritic integration takes place over a time
window Δt. Our model can be applied to dendrites with
fast or slow dendritic spikes, where Δt assumes values of
2–3 ms (fast, sodium spikes [3,4]) or 10 s of ms (slow, e.g.,
NMDA spikes [5,44]). The durations of the different
dendritic spikes have time scales similar to their integration
windows. The input arriving at a branch within Δt is
denoted by u. On each branch, we capture the nonadditive
input summation of the dendrites through a piecewise
linear, sigmoidal transfer function

fðuÞ ≔
�
u if u < θ

D otherwise:
(1)

If u is smaller than a threshold θ, i.e., u < θ, the inputs
superpose linearly. Biologically, this linear superposition
means that the inputs u has not reached the threshold θ for
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dendritic spike generation and that it is conventionally
transferred to the soma. If the threshold is exceeded, i.e.,
u ≥ θ, the inputs superpose nonadditively and a fixed
dendritic output strength D is attained. Such a fixed output
strength models the effect of a dendritic spike elicited by
sufficiently strong input. The summation scheme as well as
the compartmentalization are in agreement with experi-
mental findings and modeling studies [3–5,8,27,38]. Our
approaches may be directly extended to neurons with
multiple stages of dendritic processing (cf. Appendix C).

B. Capturing dendritic spikes by an effective
somatic input

To quantify the impact of nonadditive dendritic events
on the neuronal input processing, the temporal and spatial
distribution of synaptic inputmust be taken into account.We
consider a neuron with B dendritic branches b ∈ f1;…; Bg
and some time interval of the length of the dendritic
integration window. xb denotes the number of synapses
on branch b that are activewithin this window. The numbers
of active synapses are distributed according toPðx1;…; xBÞ.
Furthermore, we allow for distributed connection strengths
by assigning the synapses weights w that are independently
and identically distributed according toPðwÞ. Averageswith
respect to Pðx1;…; xBÞ and PðwÞ can be interpreted as
ensemble averages or temporal averages. The ensemble
average is taken over a large number of neurons at a fixed
timewhere each neuron has numbers xb of active inputs and
weights w that are samples of Pðx1;…; xBÞ and PðwÞ,
respectively. Under the additional assumption of a large
number of synaptic contacts on each branch, the averages
may also be understood as time averages, which are taken at
a fixed neuron over a suitably segmented long time interval
in which the active inputs are changing. In this article, we
follow the first interpretation of ensemble averages.
What is the effective input to the soma given that

synaptic inputs are distributed across branches? We
assume that each branch samples a volume in which

synapses of axons from S other (presynaptic) neurons
can be synaptically contacted [45]. A synapse is present
and active with probability pb such that Pðx1;…; xBÞ is a
product of binomial distributions with means E½xb� ¼ Spb
and variances Var½xb� ¼ Spbð1 − pbÞ. Alternatively, the
total number of active synaptic terminals across branches
might be fixed to S (e.g., due to homeostatic learning),
which suggests a multinomial distribution for Pðx1;…; xBÞ.
Then, the xb on different branches are not independent
but negatively correlated with covariances Cov½xb; xc� ¼−Spbpc for b, c ∈ f1;…; Bg and b ≠ c.
The input to branch b is given by the linear sum

ub ¼
Xxb
i¼1

wi; (2)

and we are interested in the distribution Pðu1;…; uBÞ of
input across branches. According to Wald’s equation [46],
the Blackwell-Girshick equation [47], and the conditional
covariance formula [48], we have for b ≠ c

E½ub� ¼ E½xb�E½w�; (3)

Var½ub� ¼ E½xb�Var½w� þ Var½xb�E2½w�; (4)

Cov½ub; uc� ¼ EðCov½ub; uc∣xb; xc�Þ
þ CovðE½ub∣xb; xc�; E½uc∣xb; xc�Þ

¼ Cov½xb; xc�E2½w�; (5)

where Cov½ub; uc∣xb; xc� ¼ 0 and E½ub∣xb� ¼ xbE½w� due
to the independence of the synaptic weights w.
Pðu1;…; uBÞ is, in general, a complicated distribution
(Appendix B). Since its first moments are known
[Eqs. (3)–(5)], we approximate Pðu1;…; uBÞ by a multi-
variate normal distribution, i.e., by the maximum entropy
distribution for the given moments.
This approximation enables us to derive an effective

input to the soma that depends only on S, the number B of

(a) (b) (c) (d)

FIG. 1. Arborized neuron with dendritic nonlinearities. Network architecture for (a) a classical point-neuron model without dendrites
and (b) an arborized neuron with B ¼ 3 dendrites (or dendritic branches) modeled as separate compartments. The red boxes mark the
neuronal unit for each case. (c) Circles represent linear summation of inputs; triangles and squares represent somatic and dendritic
processing, respectively. In a point neuron, all inputs are summed up linearly and then processed nonlinearly. In a model with nonlinear
dendrites, there is an additional, preceding layer where inputs to each dendrite are summed up linearly and then subjected to a dendritic
nonlinearity. (d) This nonlinearity is modeled as a piecewise linear function with threshold θ and saturation strengthD, incorporating the
effect of dendritic spikes. The somatic transfer function is not constrained in the model.
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branches, the probabilities pb, and the moments E½w� and
Var½w�. For only linear branches, i.e., ub < θ on all
branches, the input to the soma is simply given by the
linear sum

P
B
b¼1 ub. For ub ≥ θ, the dendritic nonlinearity

sets in and branch b provides input of strength D to the
soma. Since somatic preprocessing is linear, the total input
to the soma is

F ¼ Fðu1;…; uBÞ ¼
XB
b¼1

fðubÞ: (6)

The evaluation of the sum is numerically simple but denies
analytical treatment. Yet, for Gaussian Pðu1;…; uBÞ, we
may compute its mean (Appendix A) via

E½F� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½fðu1Þ þ � � � þ fðuBÞ�

× Pðu1;…; uBÞ

¼ B

�Z
∞

θ
duDPðuÞ þ

Z
θ

−∞
duuPðuÞ

�

¼ BPNLDþ Bð1 − PNLÞE½u� − BCNL; (7)

where we exploit that the marginal distribution PðuÞ of the
multivariate normal distribution Pðu1;…; uBÞ is a normal
distribution again and define

PNL ≔
1

2
erfc

�
θ − E½u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Var½u�p

�
; (8)

CNL ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½u�
2π

r
exp

�
− ðθ − E½u�Þ2

2Var½u�
�
: (9)

In the second line of Eq. (7), we assume pb ¼ p0, where p0

is a constant probability independent of b. Throughout the
rest of the article, we follow this choice for simplicity,
although many results are independent of pb or may be
easily generalized to arbitrary pb. Equation (7) may be
interpreted as follows: The first part describes the expected
number BPNL of dendritic spikes of strength D, while the
second part captures Bð1 − PNLÞ linear events, and the last
part BCNL corrects the overestimate of the contribution of
the linear branches by E½u�. To obtain the variance
Var½F� ¼ E½F2� − E2½F�, we analogously derive the second
moment (Appendix A)

E½F2� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½fðu1Þ þ � � � þ fðuBÞ�2

× Pðu1;…; uBÞ

¼ B
Z

∞

−∞
duf2ðuÞPðuÞ

þ ðB2 − BÞ
Z

∞

−∞

Z
∞

−∞
dudvfðuÞfðvÞPðu; vÞ: (10)

Pðu; vÞ is the marginal distribution of Pðu1;…; uBÞ in two
variables. For binomially distributed synapses, Pðu; vÞ ¼
PðuÞPðvÞ factors into two independent normal distribu-
tions, which yields

E½F2� ¼ BPNLD2 þ Bð1 − PNLÞðE2½u� þ Var½u�Þ
− BCNLðE½u� þ θÞ þ ðB2 − BÞB−2E2½F�: (11)

For multinomially distributed synapses, the double integral
in Eq. (10) needs to be evaluated numerically (see
Appendix A and Fig. 2).
The mean E½F� and its variance Var½F� (as well as the

expected number E½k� of nonlinear branches and its
variance Var½k�; see below) may also be computed without
the Gaussian approximation employing the exact expres-
sion for Pðu1;…; uBÞ (Appendix B).
We note that our approximation can be employed to

compute the input statistics to neurons with several layers
of nonadditive dendritic branches by iteratively applying
the formulas for E½F� and Var½F� [Eqs. (7)–(10)] to each
branching point and using the result as a new input to the
next layer (cf. Appendix C for a derivation).

C. Features of the effective somatic input

We compare the input F to the soma from numerical
simulations [Eq. (6) and circles in Fig. 2], from the
Gaussian approximation [Eqs. (7) and (10) and solid lines
in Fig. 2; Appendix A], and from the exact solution
(Appendix B and dashed lines in Fig. 2) and find good
agreement. We choose p0 ¼ B−1 for both the binomial and
multinomial cases for a direct comparability of the two.
Several features of the input statistics may be noticed: The
average E½F� is the same for the binomial and multinomial
distributions Pðx1;…; xBÞ (Fig. 2, Gaussian approximation
in a solid gray line and exact solution in a dashed black
line) because their marginal distributions in one variable are
the same; in particular, correlations among branches do not
contribute. The variation Var½F� is larger in the binomial
(Fig. 2, solid cyan and dashed blue lines) than in the
multinomial scenario (Fig. 2, solid orange and dashed red
lines) since the total number of active synaptic inputs is
constant in the latter and allows less fluctuation of input
across branches. In the strongly nonlinear regime, i.e.,
E½u� ≫ θ, all branches are saturated and the average E½F�
approaches saturation DB (Fig. 2, dotted black line).
In the linear regime, i.e., E½u� ≪ θ, Eq. (6) becomes
F ¼ P

x
i¼1 wi, where x ¼ P

B
b¼1 xb is the total number of

active synapses. Then, the average E½F� ¼ SE½w� and hence
grows linearly with the number of inputs S but is inde-
pendent of B (Fig. 2, dash-dotted black line). Further, the
variance Var½F� ¼ SVar½w� þ Sð1 − B−1ÞE2½w� in the
binomial scenario [cf. Eq. (4) and the dash-dotted blue
line in Fig. 2] because E½x� ¼ S and Var½x� ¼ Sð1 − B−1Þ.
In the multinomial scenario, Var½F� ¼ SVar½w� (Fig. 2,
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dash-dotted red line) because the total number of active
synapses is fixed so that Var½x� ¼ 0.
Another important feature of themean somatic inputE½F�

is its maximum at an intermediate number B ¼ BF;opt of
branches. [In Fig. 2(b), BF;opt ¼ 11.] To better understand

this maximum, we compute the expectation value E½k� ¼
BPNL of the number k of branches in the nonlinear regime
[and its variance Var½k� ¼ BPNLð1 − PNLÞ in the binomial
case; Gaussian approximation, cf. Appendix A and Fig. 2,
solid line and pink lines; exact solution, cf. Appendix B and
Fig. 2 dashed green and purple lines]. E½k� has a maximum.
The presence of amaximum is plausible since the number of
nonlinear branches typically starts with one for B ¼ 1
because all input is concentrated on this branch, then
increases when more branches are available, but goes to
zero for large B. E½k� assumes its maximum at approx-

imatelyBk;opt ≈
SE½w�
θ becauseStd½u� ≪ E½u� for (biologically

plausible) sufficiently large ratios SB−1 [Eqs. (3) and (4)] so
that PNL [Eq. (8)] approaches a step function and
E½k� ¼ BPNL ≈ Bstepðθ − S

B E½w�Þ. The somatic input E½F�
[Eq. (7)] has two contributions: The first (from nonlinearly
enhanced inputs) is DE½k�, and the second (from linearly
summed inputs) is monotonically increasing in B. Since D
is comparably large, the maximum of E½k� induces a
maximum in E½F�. The latter is shifted to the right due to
the monotonic increase of the linear contribution. The shift
indicates that a few additional branchesmay further increase
E½F� because synapses can there provide input that would
otherwisebe lost on saturated, nonlinear branches.Because a
further increasein thenumberofbranches,however, leads toa
substantial loss of (nonadditive) input, themaximumofE½F�
is close to that of E½k�, i.e., BF;opt ≈

SE½w�
θ .

Up to now, we considered a combined processing of
inhibition and excitation on the dendritic branches. Often,
inhibitory synapses are found to directly target the soma
[49,50]. Such input can be readily incorporated in our
model by including an extra term in Eq. (7):

E½F� ¼BPNLDþBð1−PNLÞE½uD�−BCNLþE½uS�; (12)

where E½uD� is the average input to a dendrite and PNL and
CNL [Eqs. (8) and (9)] are computed using u ¼ uD. E½uS� is
the mean direct somatic input. Both summation scenarios
may lead to different collective dynamics on the network
level (see below).
Concluding, we modeled the somatic input of a neuron

with nonadditive dendrites. Our findings are independent of
a specific neuron model. We introduced a Gaussian
approximation to describe the input irrespective of the
particular distribution of active synapses across branches
[Eqs. (7) and (10)]. It provides a sufficiently good descrip-
tion (cf. Fig. 2), simplifies calculations, and is therefore
used in the remainder of this article.

D. Deterministic Hopfield networks
of arborized neurons

How do nonlinear dendrites influence the dynamics
of associative neural networks? Because of its analytical
accessibility and its relevance in neural computation,

(a)

(b)

FIG. 2. Mean and standard deviation of the somatic input F,
optimal number of branches. Results for (a) fixed B ¼ 10 and
varying S and (b) vice versa, with S ¼ 100. The remaining
parameters are θ ¼ 10, D ¼ 20, and p0 ¼ B−1, and PðwÞ is
Gaussian with mean E½w� ¼ 1 and variance Var½w� ¼ 2. The
effective somatic input E½F�, the average number of nonlinear
branches E½k�, and their standard deviations Std½F� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½F�p
and Std½k� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½k�p
are derived numerically using 2000

realizations of binomially and multinomially distributed synapses
(circles). They agree well with the Gaussian approximation (solid
lines) and the exact analytical solution (dashed lines). E½F� are
shown in black (exact solution, dashed lines) and gray (Gaussian
approximation, solid lines); the lines that represent Std½F� are
colored blue and cyan for binomially distributed synapses and red
and orange for multinomially distributed synapses. Lines that
represent averages E½k� are colored green and lime, and their
variances Std½k� for the binomial scenario are shown in purple and
pink. Dash-dotted and dotted lines represent the linear and
saturated limits, respectively. See the main text for a detailed
discussion.
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we consider a Hopfield network [25] of N neurons
n ∈ f1;…; Ng with discrete states vn ∈ f−1;þ1g and
asynchronous updates of one random unit at a discrete
time t ∈ N. We might interpret t as being measured in units
of N−1Δt so that on average each neuron is updated once
per Δt (approximately equaling the dendritic spike dura-
tion) and samples states that are present in other neurons
for Δt (approximately equaling the dendritic integration
window). The update rule for the conventional determin-
istic Hopfield model reads

vnðtþ 1Þ ¼ sgnfun½v1ðtÞ;…; vNðtÞ� − Θg; (13)

where n is the neuron updated at t. sgnðxÞ, with sgnðxÞ ¼
−1 if x < 0 and sgnðxÞ ¼ 1 otherwise, is the neuronal
transfer function, and Θ denotes the neuronal threshold. un
is the linear field

un ¼ unðv1;…; vNÞ ¼
XN
m¼1

wn;mvm: (14)

The couplings wn;m between neurons n andm ∈ f1;…; Ng
are assumed to be symmetric wn;m ¼ wm;n. Then, a
Lyapunov function may be derived

EL½v1ðtÞ;…; vNðtÞ�

¼ − 1

2

XN
n¼1

XN
m¼1

wn;mvnðtÞvmðtÞ þ
XN
n¼1

ΘvnðtÞ; (15)

satisfying ELðtþ 1Þ ≤ ELðtÞ [13,25]. The equality
ELðtþ 1Þ ¼ ELðtÞ only occurs if the state of the network
upon update is not changed or in the rare case when un
matches exactly the threshold Θ. Since EL is bounded and
un ¼ Θ implies vnðtþ 1Þ ¼ 1, the weak Lyapunov prop-
erty guarantees convergence of the system. Thus, the
network converges to an asymptotically stable minimum
in the energy landscape ELðv1;…; vNÞ.
To store P patterns ξp, p ∈ f1;…; Pg, the couplings in

the Hopfield model are set in Hebbian manner [51]:

wn;m ¼ N−1XP
p¼1

ξpnξ
p
m: (16)

Classically, the storage of random, uncorrelated patterns
ξpn ∈ f−1;þ1g is studied, where ξpn ¼ �1 with equal
probabilities. Self-coupling terms wn;n may lead to spurious
states close to stored patterns and are usually omitted;
wn;n ¼ 0 [13]. In this article, we adopt these conventions.
An alternative and similarly common model represents

the neuronal states via vn ∈ f0; 1g (cf., e.g., Ref. [52]). For
an appropriate choice of variables (cf. Ref. [13]), this
representation is equivalent to the f−1;þ1g model, when
introducing a dependence of the neuronal threshold Θ on
the couplings wnm. Since we assume constant Hebbian
couplings [Eq. (16)], we can include this term into the (then

still constant) thresholds and translate a f0; 1g model
into a f−1;þ1g model. Because it is most often used in
classical statistical mechanics studies of neural networks
(cf. Ref. [53]), we adopt the f−1;þ1g representation.
We now modify this well-known model to incorporate

dendritic branches. For simplicity, we assume that each
neuron has B dendritic branches. The arborization changes
the network topology (Fig. 1) since neurons are now linked
to branches. The coupling matrix becomes an N × B × N
“matrix” with entries wn;b;m that characterize the coupling
of neuron m to branch b of neuron n. The input to an
individual dendrite is given by the dendritic field

un;b ¼ un;bðv1;…; vNÞ ¼
XN
m¼1

wn;b;mvm: (17)

The inputs are processed by the dendrites according to
Eq. (1), and the somatic input is given by Eq. (6). Taken
together, the update rule at time t reads

vnðtþ 1Þ ¼ sgnfGn½v1ðtÞ;…; vNðtÞ� − Θg; (18)

where

Gn ¼ Gnðv1;…; vNÞ
¼ F½un;1ðv1;…; vNÞ;…; un;Bðv1;…; vNÞ�: (19)

Like in the classical Hopfield model, we assume a
Hebbian rule that strengthens connections wn;b;m between
coactive neurons such that their expected value is
E½wn;b;m� ¼ B−1wn;m, with wn;m given by Eq. (16).
Because the process of adjustment of synaptic weights is
subject to fluctuations [54], we further assume that the
weights wn;b;m are distributed with variance Var½wn;b;m� ¼
w2
n;mB−2Var½w�. The width of the distribution is propor-

tional to the mean (with a parameter Var½w�), which avoids
excessively large deviations for small weights.
The network is fully connected, and because input

correlations across branches vanish (Appendix D), this
setup can be identified with the binomial scenario intro-
duced before, with S ¼ N and pb ¼ p0 ¼ 1. Equations (3)
and (4) yield (Appendix D)

E½un;b� ¼ B−1un; (20)

Var½un;b� ¼ B−2PN−1Var½w�: (21)

The moments are computed as ensemble averages over an
ensemble of neurons with index n at a fixed network state
(annealed approximation). The neural identity is preserved
as it is specified by the parameters wn;m that determine the
expectation value and the variance of the weight distribu-
tion of wn;b;m over which we average. An averaging over xb
is unnecessary as pb ¼ p0 ¼ 1, and thus E½xb� ¼ N and
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Var½xb� ¼ 0. The mean somatic input at neuron n, E½Gn�,
follows from Eqs. (7)–(9). It depends on v1;…; vN and n
only via the mean input per branch [Eq. (20)] and thus via
the linear field un [Eq. (14)]. We may therefore define an
effective input function F̄ ¼ F̄ðunÞ as

F̄½unðv1;…; vNÞ� ¼ E½Gnðv1;…; vNÞ�: (22)

From Eqs. (7)–(9), we find

F̄ðunÞ ¼ BPNLDþ ð1 − PNLÞun − BCNL (23)

with

PNL ¼ 1

2
erfc

�
Bθ − unffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2PN−1Var½w�
p

�
; (24)

CNL ¼ B−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PVar½w�
2πN

r
exp

�
− ðBθ − unÞ2
2PN−1Var½w�

�
: (25)

Analogously, Eq. (11) shows that the standard deviation of
Gn, Std½Gn�, is a function of the mean input per branch
only. We may therefore define Std½F� ¼ Std½FðunÞ� via
Std½Gnðv1;…; vnÞ� ¼ StdfF½unðv1;…; vnÞ�g and compute
it from Eqs. (11) and (23).
To investigate the convergence properties of the network,

we consider its state ½v1ðtÞ;…; vNðtÞ� at time t and the
update of a neuron n by Eq. (18). Led by Fig. 2, we neglect
the fluctuations Std½F� ≪ F̄ and replace Gn in Eq. (18) by
its mean F̄ðunÞ. This approximation of the response of
neuron n by the response of a typical neuron with identity n
(as specified by the weights wn;m) simplifies the analysis of
the network dynamics. For reasonable parameter choices,
the deviations are small and very rarely lead to erroneous
updates of neuron states (Fig. 4). Furthermore, we may
assume that the effective input function F̄ðunÞ is strictly
monotonic in un and thus invertible (Appendix E). This
dynamics is then equivalent to the conventional Hopfield
network dynamics [Eqs. (13)–(15); see Appendix E] with
coupling matrix wn;m and an effective threshold ϑ. ϑ is
determined by the intersection of the effective somatic
input F̄ and the neuronal threshold Θ (Fig. 3)

ϑ ¼ F̄−1ðΘÞ: (26)

In particular, for symmetric weights wn;m ¼ wm;n, the
dynamics has a Lyapunov function (Appendix E)

ENL½v1ðtÞ;…; vNðtÞ�

¼ − 1

2

XN
n¼1

XN
m¼1

wn;mvnðtÞvmðtÞ þ
XN
n¼1

ϑvnðtÞ: (27)

By construction, ENL decreases in time and the system
converges toward a dynamical fixed point. Thus, the
supralinear dendrites effectively reduce the neuronal

threshold to ϑ ≤ Θ and leave the convergence properties
of the system unchanged.
To study the convergence of the extended Hopfield

model, we generate a network with Hebbian synaptic
weights wn;m according to Eq. (16) by drawing
random patterns ξpn ¼ �1 with equal probabilities.
Then, wn;b;m are drawn from a Gaussian distribution with
mean E½wn;b;m� ¼ B−1wn;m and variance Var½wn;b;m� ¼
w2
n;mB−2Var½w� as explained above. We note that generallyP
B
b¼1 wn;b;m ≕ w0

n;m ≠ w0
m;n, so that the neuronal connec-

tivity in the presence of dendrites is not symmetric
like in the classical Hopfield model. The energy function
in Eq. (27) is derived for symmetric weights
w0
n;m ¼ wn;m ¼ wm;n ¼ w0

m;n, which may be seen as an
approximation valid at least for slightly asymmetric cou-
plings. Figure 4 shows that this approximate energy
function correctly reflects the convergence of the network.
Also, stronger deviations from the symmetric scenario
(quantified by Var½w�) leave the findings largely unchanged
(Appendix F).
The results of numerical simulations displayed in Fig. 4

illustrate the convergence properties of our model. If the
threshold reduction by dendrites is small, subthreshold
inputs to a neuron also remain subthreshold in the presence
of nonlinear dendrites and the network converges to the
same state as for linear branches (Fig. 4, thick gray line).
However, if the effective threshold reduction is stronger,
inputs that are subthreshold may become superthreshold
due to the dendritic nonlinearity and the same initial
conditions tend to converge toward different attractors
(Fig. 4, red lines). Since deviations of the somatic input

FIG. 3. Effective reduction of the neuronal threshold to ϑ ≤ Θ
by nonlinear dendrites. The traditional, linear transfer function u
(solid black line) crosses the threshold Θ ¼ 6 (solid gray line) at
ϑ ¼ 6 (dashed black line). For B ¼ 2, PN−1Var½w� ¼ 0.8, and
θ ¼ 1, dendritic nonlinearities F̄ðuÞ [Eq. (23)] with strengths
D ¼ 4 (solid orange line) and D ¼ 6 (solid red line) lead to
effective thresholds ϑ ≈ 2.5 (dashed orange line) and ϑ ≈ 1.9
(dashed red line), respectively.
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from its ensemble average F̄ may violate our approxima-
tion and the network is slightly asymmetric, the energy
function can occasionally increase (Fig. 4, red square).
However, for the considered parameters, these events occur
rarely and do not affect the long-term convergence of the
system (checked for 1000 runs, not shown).
If inhibitory synapses project directly onto the soma

instead of being mingled with excitatory synapses on the
dendrites, the effective somatic input F̄ is given by Eq. (12).
Since the dendritic saturation by excitatory input may be
exceeded by linear inhibition, F̄ is nonmonotonic and no
Lyapunov function is apparent. The energy of the system as
given by Eq. (27) with, e.g., ϑ ¼ Θ does not decrease
monotonically in time (Fig. 4, orange lines). However,

numerical simulations suggest that the network reaches a
stable fixed point nevertheless, as exemplarily shown in
Fig. 4. Such network convergence despite nonmonotonic
transfer functions is known from other systems [41,42,55].
These studies do not split excitation and inhibition but
choose transfer functions nonmonotonic in the total, linear
input un.

E. Capacity of stochastic Hopfield networks with
nonadditive dendritic input processing

We now assess the extent to which a network of binary
neurons with nonlinear dendrites is capable of storing and
retrieving specific patterns. Since biological neurons are
noisy, i.e., their input-output relation is not fully reliable
(e.g., Ref. [56]), we generalize the above deterministic
dynamics to allow for stochasticity. For the analysis of the
storage capacity of the extended Hopfield network, we
exploit the analogy between spin glasses and neural
networks and employ statistical physics methods [13,26].
As a generalization of the deterministic update rule

[Eq. (18)], we use the common Glauber dynamics
[13,40,57] with asynchronous updates according to which
the state of a randomly chosen neuron n is set to vn ¼ �1
with probability

pnðvnÞ ¼ ½1þ exp ð−2β½Gn − Θ�vnÞ�−1: (28)

This update rule is equivalent to flipping the state of
the respective neuron with probability pnðvn → −vnÞ ¼
½1þ exp ð2β½Gn − Θ�vnÞ�−1. Here, T ≔ β−1 is the pseudo-
temperature and a measure for the noise in the system and
Gn [Eq. (19)] is the input to the neuron. We recall that P is
the number of desired patterns, and the fraction α ¼ PN−1
is called the load parameter. We obtain a temporally
averaged state hvni of units n in the ensemble-averaged,
stochastic network in mean-field theory by replacing Gn by
the ensemble average F̄ðunÞ [Eq. (23)]. Further, we replace
the fluctuating argument of F̄ðunÞ by its average, which
yields F̄ðhuniÞ, such that in the stationary state,

hvni ¼ ðþ1Þpnðþ1Þ þ ð−1Þpnð−1Þ
¼ tanh½βF̄ðhuniÞ − βΘ�

¼ tanh

�
βF̄

�
N−1XN

m¼1

wn;mhvmi
�
− βΘ

�
: (29)

The overlap between pattern p and state hvni is defined by
mp ≔ N−1 PN

n¼1 ξ
p
nhvni. Without loss of generality, we

study the retrieval of pattern p ¼ 1, so that m ≔ m1

estimates the quality of retrieval. m is given as an implicit
solution to a set of coupled integral equations [Appendix G,
Eqs. (G3), (G6), (G8), and (G9)]. In particular, we consider
two limits α ≈ 0 and T ¼ 0.
First, we study a finite number of patterns P so that

in the thermodynamic limit of large N, we have α ≈ 0
(Appendix H). The overlap m is given by the 0 s of Δm

FIG. 4. Network convergence with effective threshold reduc-
tion by nonlinear dendrites. Simulation of a network of N ¼ 100
binary neurons with Θ ¼ 0.4, B ¼ 2, P ¼ 8, and Var½w� ¼ 0.1.
Simulations are performed with identical initial states, topology,
and identical realization of the (random) order of updates. The
energy function [Eq. (15)] for linear input summation (solid black
line) decreases, and the network converges toward a fixed point.
Including weakly nonlinear branches (thick gray line, θ ¼ 0.6
and D ¼ 1) does not alter the dynamics or the energy of the
modified network [which is now given by Eq. (27)]. The
unaltered dynamics is confirmed by the vanishing Hamming
distance d ¼ 1

2N

P
N
n¼1 jvn − v0nj (dashed gray line) between the

two systems. For stronger dendritic spikes (solid red line, θ ¼ 0.1
and D ¼ 2), deviations of the somatic input from its ensemble
average F̄ and slightly asymmetric couplings lead to occasional
increases in the energy (red square), but network convergence is
preserved (checked for 1000 runs). The dynamics converges
toward an attractor that is different from that of the linear
network, as shown by the Hamming distance (dashed red line)
between the systems. When inhibitory and excitatory inputs are
processed separately by the soma and the dendrites, respectively,
no energy function is known, and we exemplarily choose the
energy function given by Eq. (27) with ϑ ¼ Θ. The energy is then
nonmonotonic (solid orange line, θ ¼ 0.1 and D ¼ 2), but the
system nonetheless reaches a stationary state (checked in sim-
ulations up to t ¼ 2000) that is different from the one of the linear
system; cf. the Hamming distance (dashed orange line).
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Δm ≔
1

2
tanhfβ½1 − PNLðmÞ�m

þ β½BDPNLðmÞ − BCNLðmÞ − Θ�g

þ 1

2
tanhfβ½1 − PNLð−mÞ�m

− β½BDPNLð−mÞ − BCNLð−mÞ − Θ�g −m; (30)

where the functions PNL and CNL are given by Eqs. (24)
and (25). The solutions of the transcendental equation
Δm ¼ 0 are obtained numerically and compared to sim-
ulation results of the Hopfield network with nonlinear
dendrites [Fig. 5(a)].
The dendritic nonlinearities have a strong impact on the

overlap curve. They change its shape and increase the
critical temperature Tc that marks the transition between
functioning and nonfunctioning associative memory. They
provide a discontinuous, first-order phase transition with
a nonzero critical overlap mc ≔ mðTcÞ. For the same
parameters, the conventional Hopfield model displays a

continuous, second-order phase transition. These findings
may be understood by graphically solving Eq. (30): For the
considered, not too large Θ (Θ < 0.448), linear input
processing leads to a concave ΔmðmÞ for high temper-
atures, so that the overlap continuously goes to zero when T
approaches the critical temperature Tc [Fig. 6(a)]. In the
presence of nonlinear dendrites, we need to take into
account that PN−1Var½w� ∝ α ≳ 0 [Eqs. (23)–(25)] is small
so that the dendritic nonlinearity F̄ sharply rises to its
maximal (saturation) value at m with Bθ −m ≈ 0 due to its
dependence on PNLðmÞ [cf. Eq. (24) with un ¼ m;
CNLðmÞ ∝ α is small]. The second tanh is approximately
constant there [because PNLð−mÞ and CNLð−mÞ are small
for small PN−1Var½w�] and may be neglected. The sharp
rise in F̄ thus induces a convex turn in the right-hand side of
Eq. (30) and results in a stable and an unstable fixed point
ofm [Fig. 6(b), red lines]. With growing temperature T, the
two fixed points vanish in a saddle-node bifurcation at
nonzero mc ≈ Bθ and the system undergoes a discontinu-
ous phase transition of first order. For α ¼ 0, the increase in

(a) (b)

FIG. 5. Nonadditive dendritic coupling increases the overlap m
of the network state with a retrieval pattern. Simulation results
(circles) and analytical results (solid lines) for linear (black lines
and circles) and nonlinear summations with dendritic spike
strengths D ∈ f0.4; 0.6; 0.8g (gray, orange, and red lines and
circles). The remaining parameters are N ¼ 4000, B ¼ 2,
θ ¼ 0.1, Θ ¼ 0.4, and Var½w� ¼ 0.1. Results for linear input
summation with Θ ¼ 0 are included for comparison (dash-dotted
black line). The setup of the networks is the same as described in
the discussion of Fig. 4. (a) The overlapm versus the temperature
T for a small load α ¼ N−1 ≈ 0. It decreases with increasing T
and reaches zero at the critical temperature Tc above which
retrieval fails. This phase transition is discontinuous for the
nonlinear and continuous for the linear model of input process-
ing. Dendritic nonlinearities increase Tc. (b) m versus α at zero
temperature T ¼ 0. It decreases with increasing load α and
displays a discontinuous jump to zero at the critical storage
capacity αc. αc increases with stronger dendritic nonlinearities up
to a level at which the effective threshold ϑ vanishes and the linear
scenario with Θ ¼ 0 is approached (dash-dotted black line).

(a)

(b)

FIG. 6. Graphical solutions to the transcendental equation for
the overlapm and phase transitions. Parameters are the same as in
Fig. 5, with D ¼ 0.4. Equation (30) is solved graphically, with its
solutions given by the zero crossings of Δm, i.e., the intersections
with the solid gray line. (a) For the traditional Hopfield case with
linear input summation, the stable solution for the overlap m
continuously decreases (black markers, rectangle to circle to
diamond) with increasing temperatures T ∈ f0.7; 0.75; 0.8g
(solid, dashed, and dotted black lines) and reaches mc ¼ 0
(diamond) at a critical value of Tc ≈ 0.8. (b) For nonlinear input
summation due to nonlinear dendrites and small α ¼ N−1 ≈ 0,
increasing temperatures T ∈ f2.0; 2.295; 2.6g (solid, dashed, and
dotted red lines) lead to decreasing overlapsm (red markers, from
rectangle to circle to diamond) that jump discontinuously from
mc ≈ 0.22 (circle) to zero at Tc ≈ 2.3. The gray rectangle
indicates an unstable solution. In the limit α ¼ 0 (orange lines)
the jump in Δm is discontinuous, which slightly changes the
critical temperature but leaves the system’s critical behavior
unchanged.
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F̄ is jumplike, so that no unstable fixed point appears, and
the critical overlap is mc ¼ Bθ [Fig. 6(b), orange lines].
The increased critical temperature Tc due to the dendrites

implies an increased robustness of the network against
thermal fluctuations and may be intuitively understood as
follows: If the network state is close to a learned pattern, the
input to the neurons is either strongly positive and thus
further amplified by the dendritic nonlinearities or strongly
negative and not affected by the dendrites. The overall
strengthening of the stored patterns counteracts the influ-
ence of the temperature [Eq. (28)] and stabilizes the
patterns against thermal fluctuations. Consequently, the
nonlinear dendrites allow pattern retrieval in a temperature
regime in which linear neurons fail.
Because for the conventional Hopfield model neuronal

thresholds Θ decrease the critical temperature [cf. Fig. 5(a),
black lines], we test if our results are a mere consequence of
an effective threshold reduction ϑ ≤ Θ by the nonlinear
dendrites [cf. Eq. (26)]. Repeating the above calculations
and simulations with Θ ¼ ϑ ¼ 0, we find that results as
described above hold also for vanishing neuronal thresh-
olds (Appendix H).
Second, we consider the zero-temperature limit T ¼ 0, in

which thermal fluctuations cease and the binary neurons are
deterministic threshold units (Appendix I). The overlap m
is determined by

m ¼ 1

2
erf

�
m − ϑffiffiffiffiffiffiffiffi
2αr

p
�
þ 1

2
erf

�
mþ ϑffiffiffiffiffiffiffiffi
2αr

p
�
;

ffiffiffi
r

p ¼ 1þ
ffiffiffiffiffiffiffiffi
1

2πα

r
exp

�
− ðm − ϑÞ2

2αr

�

þ
ffiffiffiffiffiffiffiffi
1

2πα

r
exp

�
− ðmþ ϑÞ2

2αr

�
; (31)

where ϑ is the effective threshold [Eq. (26)]. We solve these
coupled equations numerically and compare them to the
simulation data of a Hopfield network with nonlinear
dendrites [Fig. 5(b)]. Equations (31) are equivalent to the
order-parameter equations of the conventional Hopfield
model with threshold ϑ. For Θ > 0, we may therefore
conclude that the dendritic branches reduce the neuronal
threshold to ϑ ≤ Θ and thereby improve the critical storage
capacity αc of the network. Analogous to Tc, αc denotes the
critical load above which retrieval of patterns fails.
We note that the improved performance is a direct effect

of the dendritic nonlinearity as demonstrated in Fig. 5,
where the connectivity of neurons is the same for networks
with linear and nonlinear dendrites, while there is a clear
increase in the critical temperature Tc and load αc in the
latter case.
These findings may be understood by considering a

neuronal threshold Θ ≠ 0 that generally introduces an
asymmetry between the two states vn ¼ �1 of a unit n.
Since we assume the storage of random patterns ξpn ¼ �1

with equal probabilities, the nonzero Θ ≠ 0 impedes the
retrieval of learned patterns. For a positive thresholdΘ > 0,
the threshold reduction by the dendritic nonlinearities
attenuates the asymmetry of the network and improves
the retrieval of random patterns. In the zero-temperature
limit and for strong nonlinearities, our model becomes
equivalent to the standard Hopfield model without thresh-
old Θ ¼ 0 [Fig. 5(b), dash-dotted black line].
We note that the agreement of analytical and numerical

results as shown in Fig. 5 is even better if the couplings
w0
n;m ¼ P

B
b¼1 wn;b;m are normalized such that the w0

n;m
exactly equal the symmetric Hebbian weights wn;m. This
improved agreement due to normalized weights is particu-
larly pronounced for stronger dendritic spikes [Fig. 5(b),
red lines] that emphasize the asymmetry. To check if the
above results hold also for larger deviations from the
assumption of symmetric couplingsw0

n;m ¼ w0
m;n, we repeat

the simulations for larger Var½w� [cf. Eq. (21) and
Appendix F]. In the deterministic limit T ¼ 0 with many
patterns, we find that stronger asymmetries impede the
quality of retrieval. For finite temperatures T > 0 and few
patterns α ≈ 0, the impact of moderately asymmetric
synaptic weights is negligible.
Complementing our analytical study of the limiting cases

α ≈ 0 and T ¼ 0, we compute the quality of retrieval in the
α-T phase space numerically. We find that our associative-
memory network with nonadditive dendrites enables
memory functioning in a larger α-T region than the model
with linear branches (cf. Appendix J).

F. Optimal number of dendritic branches for
memory function

Finally, we investigate the impact of varying numbers B
of dendritic branches on the performance of the extended
stochastic Hopfield network. As shown above, nonadditive
dendritic input processing leads to an increased storage
capacity and more robust memory retrieval by amplifying
strong input to the neuron. Figure 2(b) shows that when this
input is fixed, the average somatic input E½F� ¼̂ F̄ is
maximal for an intermediate number of dendrites. Since
strong neuronal input may stabilize the memorized patterns
we expect optimal memory performance for intermediate
branch numbers.
We thus study the Hopfield network for varying B. In

analogy to Fig. 5(a), we compute the overlaps m for the
limiting case α ≈ 0 [Fig. 7(a)]. The critical temperature
Tc [Fig. 7(b)] displays a maximum at an intermediate
number of branches, here BT;opt ¼ 30. For larger θ, the
optimal branch number is smaller (not shown). We can
understand the maximum in Tc by considering the ΔmðmÞ
curves [Fig. 7(c)]. They display maxima at mc ≈ Bθ (see
discussion of Fig. 6) with absolute heights determined bymc
and F̄ðmcÞ where the latter is maximal for intermediate
branch numbers. In combination, they yield the maxima of
Δmðm ≠ 0Þ that are highest for intermediate numbersBT;opt
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of branches. Upon increasing temperature, the correspond-
ing curves are thus the last to fall entirely below zero at their
TcðBÞ so that Tc is highest for such branch numbers.
Another notable feature is the growing critical overlap

mc at the critical temperature Tc with increasing numbers of
branches [Fig. 7(d)]. As shown in the discussion of Fig. 6,
the critical overlap for small α is given by mc ≈ Bθ. The
argument is correct for strong nonlinearities D and mod-
erate θB but breaks down for θB ≈mc > 1 since the
overlap is naturally bounded by 1 and only the solution
mc ¼ 0 remains, if a larger overlap would be needed to
reach the upturn point of Δm [cf. Fig. 7(c)]. In particular,
for large B, the behavior of the linear scenario with mc ¼ 0
is reobtained.
Thus, the performance of the memory network depends

nontrivially on the number of dendritic branches B.
Additionally, depending on the purpose of the memory
network, its robustness against noise (specified by Tc) may
be balanced against the quality of retrieval (for which mc
gives a worst-case measure) [cf. Fig. 7(a)].

III. DISCUSSION: NONLINEAR DENDRITES
IMPROVE PATTERN RETRIEVAL

Nonadditive processing of synaptic input is an important
feature of biological neurons and may have severe conse-
quences for neural processing in single neurons and

networks. In this work, we first studied the influence of
dendritic spikes in a neuron with a variable number of
dendritic branches and sufficiently synchronous spiking
inputs of variable strength, independently of a specific
neuron model. We derived an approximation for the
somatic input in the presence of nonlinear dendrites
[Eqs. (7)–(10) and Appendix C]. This approximation
allows the analytical investigation of dendritic summation
phenomena in networks of arbitrary connectivity. Second,
we extended the well-known Hopfield model to include
neurons with branches that process inputs nonadditively.
Employing the results from the first part, we constructed
networks that are, at each neuron, ensemble averaged over
the nonlinear dendrites and their inputs, such that the
overall connectivity and thus the neural identities in the
networks are preserved. These networks could be analyzed
analytically with statistical physics methods. We used them
to approximate the full dynamics of networks with non-
linear dendrites. We find that, for a deterministic Hopfield
network, the dendritic nonlinearities reduce the neuronal
thresholds [Eq. (26)], and the network still converges to a
dynamical fixed point [Eq. (27)]. Separate processing of
inhibition and excitation [Eq. (12)] can break the mono-
tonic decrease of common energy functions. A mean-field
analysis for a stochastic Hopfield network revealed an
improved memory-storage capacity and a greater robust-
ness against thermal fluctuations due to nonadditive den-
dritic input processing [Eqs. (30) and (31) and Appendix J].
An intermediate number of dendritic branches was shown
to optimally support the memory functionality of the
associative network.
Our findings help to advance the understanding of the

role of nonlinear dendrites in three respects: (i) Earlier
works studied the ability of arborized neurons to discrimi-
nate patterns [22,23]. They focused on a combinatorial
approach of counting the numbers of different input-output
functions of single neurons with multiple dendrites. In
contrast, our study assumes a dynamical perspective. We
derived an expression for the approximate somatic input
that may be readily used to investigate the dynamics of
networks of neurons with nonlinear dendrites for arbitrary
connectivity and synaptic weights. (ii) We applied our
results and studied the capability of networks with non-
additive dendrites to serve as memory devices. Our work
shows that nonlinear dendrites can increase the capacity
and the robustness of memory retrieval against thermal
fluctuations in recurrent, dynamic associative-memory net-
works. (iii) Finally, our theoretical results suggest that there
might be an intermediate number of dendritic branches that
is optimal for network functionality [22,58]. Such a gain in
performance may have severe implications for biological
neural circuits featuring nonadditive dendrites, e.g., in the
hippocampus. Since nonadditive dendritic integration
may take place in sliding windowlike segments of the
dendritic tree, a precise number of independent dendritic

FIG. 7. Memory performance in dependence of the number B
of dendritic branches. Parameters are the same as in Fig. 5, with
D ¼ 0.6 and θ ¼ 0.005. Branch numbers B are color-coded from
black to red; cf. (b) and (d). (a),(c) Results for a few selected
values of B. (a) The overlap curves mðTÞ with α ≈ 0 are
computed for varying numbers B of branches. (b) The critical
temperature Tc depends nonmonotonically on B and is maximal
for BT;opt ¼ 30 (dashed line and circles). For a fixed temperature
T ¼ 25, (c) shows Δm whose 0 s provide the solutions for m
[Eq. (30)] and whose maxima display a nonmonotonical depend-
ency on B. (d) The critical overlap mc (dotted line and circles)
grows approximately linearly with B as indicated by the linear
function mc ¼ θB (solid line) and jumps to zero at mc ≈ 1.
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compartments is unlikely to be found [5]. Biological
studies suggest around 50 to 100 independent sites capable
of generating dendritic spikes per neuron, depending on the
neuron type and function [19,59]. Our model shows
optimal memory performance for such numbers of
branches, depending on the dendritic parameters (see
discussion of Fig. 7).
For biological neural networks, we suggest that non-

linear dendrites may serve to stabilize memory recall
against noisy network background activity. In such net-
works, memories might be stored in so-called Hebbian cell
assemblies with higher internal connectivities or connec-
tion strengths that display elevated firing rates when
presented with a specific input pattern [60,61]. Similar
to our Hopfield model, matching patterns of activity
provide a larger input to the other cells of the assembly,
which is amplified by the dendritic nonlinearities. In our
model, we restricted ourselves to Hebbian learning of
coupling strengths, and noise and patterns were equally
nonlinearly enhanced. Biological neural networks can
change their wiring as well as the dendritic nonlinearities
in an activity-dependent manner [5,20,62]. Further, some
kinds of dendritic spikes amplify only temporally highly
coordinated inputs [3]. Both features may contribute to a
selective nonlinear enhancement of pattern activity and
may increase the stabilizing effects of nonadditive dendrites
in memory networks.
On a theoretical level of statistical physics, our work may

be continued in several directions: Preliminary calculations
suggest that for certain parameters, new phenomena arise,
such as improved memory retrieval for moderate noise
levels. (This improved performance in presence of noise is
reminiscent of stochastic resonance [63,64].) Further,
previous studies on nonmonotonic transfer functions found
beneficial effects for memory performance in artificial and
biological neural systems [25,41,42,65]. The novel kind of

nonmonotonicity that is due to dendritic reception of
excitatory input and somatic reception of inhibitory input
[cf. Eq. (12)] should be further explored and linked to these
findings. Finally, many studies suggest that neural plasticity
exploits dendritic spikes and dendritic compartmentaliza-
tion [5,20,62]. Non-Hebbian learning rules that are tailored
to utilize dendritic spikes and branches were shown to
increase the memory capabilities of single neurons or
ensembles of such neurons [15,21–23,66]. Therefore, such
dendrite-based learning is expected to also boost the
performance of associative-memory networks and is a
particularly important target of future studies. Our statis-
tical treatment [Eqs. (7)–(10)] and the numerical approach
can be directly applied to address these issues. Gaining
insight into these matters will help to better understand and
utilize the full power of dendritic computation.
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APPENDIX A: APPROXIMATE MEAN
AND VARIANCE OF THE EFFECTIVE

SOMATIC INPUT AND THE NUMBER OF
NONLINEAR BRANCHES

We compute the first moments of the somatic input F
[Eq. (6)] using a Gaussian approximation of the dendritic
input distribution Pðu1;…; uBÞ and assuming statistically
identical branches, i.e., pb ¼ p0, b ∈ f1;…; Bg. Means
E½ub�, variances Var½ub�, and covariances Cov½ub; uc� of
Pðu1;…; uBÞ are given by Eqs. (3)–(5). We start with

E½F� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½fðu1Þ þ � � � þ fðuBÞ�Pðu1;…; uBÞ (A1)

and pick u ≔ u1 without loss of generality to obtain

E½F� ¼ B
Z

∞

−∞
dufðuÞ

Z
∞

−∞
du2 � � �

Z
∞

−∞
duBPðu; u2;…; uBÞ ¼ B

Z
∞

−∞
dufðuÞPðuÞ; (A2)

where PðuÞ is the marginal distribution of Pðu; u2;…; uBÞ and thus Gaussian with mean E½u� and variance Var½u�. Using
the definition of the dendritic transfer function f [Eq. (1)], we split

E½F� ¼ B

�Z
∞

θ
duDPðuÞ þ

Z
θ

−∞
duuPðuÞ

�
¼ BPNLDþ Bð1 − PNLÞE½u� − BCNL; (A3)

where we use partial integration in the second line and the definitions

PNL ≔
1

2
erfc

�
θ − E½u�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Var½u�p

�
; (A4)
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CNL ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½u�
2π

r
exp

�
− ðθ − E½u�Þ2

2Var½u�
�
: (A5)

The second moment is computed similarly:

E½F2� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½fðu1Þ þ � � � þ fðuBÞ�2Pðu1;…; uBÞ

¼ B
Z

∞

−∞
duf2ðuÞPðuÞ þ ðB2 − BÞ

Z
∞

−∞
du

Z
∞

−∞
dvfðuÞfðvÞPðu; vÞ

¼ B

�Z
∞

θ
duD2PðuÞ þ

Z
θ

−∞
duu2PðuÞ

�
þ ðB2 − BÞ

�Z
∞

θ
du

Z
∞

θ
dvD2Pðu; vÞ

þ 2

Z
∞

θ
du

Z
θ

−∞
dvDuPðu; vÞ þ

Z
θ

−∞
du

Z
θ

−∞
dvuvPðu; vÞ

�

¼ BPNLD2 þ Bð1 − PNLÞðE2½u� þ Var½u�Þ − BCNLðE½u� þ θÞ þ ðB2 − BÞIF: (A6)

Here, v ≔ u2 and themarginal distributionPðu; vÞ is againGaussianwithmeans ðE½u�; E½v�Þ, variances ðVar½u�;Var½v�Þ, and
covariance Cov½u; v�. For binomially distributed numbers of active synapses per branch, Pðu; vÞ ¼ PðuÞPðvÞ, and therefore

IF ¼ ðPNLDÞ2 þ 2ðPNLDÞfð1 − PNLÞE½u� − CNLg þ fð1 − PNLÞE½u� − CNLg2
¼ fPNLDþ ð1 − PNLÞE½u� − CNLg2
¼ ðB−1E½F�Þ2: (A7)

For a multinomial distribution of active synapses across
branches, the double integral IF needs to be computed
numerically (see Fig. 2). These results are discussed in the
main text and in the caption of Fig. 2. The calculations may
be easily extended to cover nonuniform branch probabil-
ities pb, dendritic thresholds θb, and strengths Db.
Similarly to E½F�, we compute the expected number E½k�

of branches k in the nonlinear regime. The dendritic
transfer function fðuÞ in Eq. (A1) is replaced by a step
function stepðu − θÞ to count the number of branches
above threshold θ. Here, we define stepðxÞ ¼ 0 if x < 0
and stepðxÞ ¼ 1 otherwise. Then,

E½k� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½stepðu1 − θÞ þ � � �

þ stepðuB − θÞ�Pðu1;…; uBÞ

¼ B
Z

∞

θ
duPðuÞ

¼ BPNL: (A8)

Since the step function satisfies step2ðxÞ ¼ stepðxÞ, we
derive the second moment of the distribution of the number
k of nonlinear branches via

E½k2� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½stepðu1 − θÞ þ � � �

þ stepðuB − θÞ�2Pðu1;…; uBÞ

¼ B
Z

∞

θ
duPðuÞ þ ðB2 − BÞ

Z
∞

θ
du

Z
∞

θ
dvPðu; vÞ

¼ BPNL þ ðB2 − BÞIk: (A9)

The binomial distribution of synapses among branches
provides Pðu; vÞ ¼ PðuÞPðvÞ, and thus

Ik ¼ P2
NL ¼ ðB−1E½k�Þ2; (A10)

while Ik needs to be computed numerically in the multi-
nomial case.

APPENDIX B: EXACT MEAN AND VARIANCE
OF THE EFFECTIVE SOMATIC INPUT AND
THE NUMBER OF NONLINEAR BRANCHES

We now derive the mean somatic input E½F� and its
variance Var½F� for the exact distribution Pðu1;…; uBÞ of
input where ub ¼

Pxb
i¼1 wi [cf. Eq. (2)] with Gaussian

PðwÞ. We decompose Pðu1;…; uBÞ into

Pðu1;…; uBÞ ¼
XS
x1¼1

…
XS
xB¼1

Pðu1;…; uB∣x1;…; xBÞ

× Pðx1;…; xBÞ; (B1)

where

Pðu1;…; uB∣x1;…; xBÞ ¼ Pðu1∣x1Þ � � �PðuB∣xBÞ (B2)

since ub depends only on xb. The Pðub∣xbÞ are Gaussian
distributed with means xbE½w� and variances xbVar½w�, and
Pðu1;…; uBÞ is a weighted superposition of Gaussian
distributions. For non-Gaussian PðwÞ and large numbers
of small inputs, we may employ a central limit theorem
to establish the Gaussianity of the Pðub∣xbÞ. E½F� is
computed as
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E½F� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½fðu1Þ þ � � � þ fðuBÞ�Pðu1;…; uBÞ

¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB

XB
b¼1

fðubÞ
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞPðu1;…; uB∣x1;…; xBÞ

¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB

XB
b¼1

fðubÞ
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞPðu1∣x1Þ � � �PðuB∣xBÞ

¼
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞ
XB
b¼1

Z
∞

−∞
dubfðubÞPðub∣xbÞ

YB
c≠b

Z
∞

−∞
ducPðuc∣xcÞ

¼
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞ
XB
b¼1

Z
∞

−∞
dubfðubÞPðub∣xbÞ · 1

¼
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞ
XB
b¼1

fPNL;ub∣xbDþ ð1 − PNL;ub∣xbÞE½ub∣xb� − CNL;ub∣xbg

¼
XS
x¼1

PðxÞBfPNL;u∣xDþ ð1 − PNL;u∣xÞE½u∣x� − CNL;u∣xg; (B3)

where we assume identical statistics for all branches only in the last line and PðxÞ is the marginal distribution of
Pðx1;…; xBÞ. Similarly to Appendix A, we define

PNL;u∣x ≔
1

2
erfc

�
θ − E½u∣x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Var½u∣x�p

�
; (B4)

CNL;u∣x ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½u∣x�

2π

r
exp

�
− ðθ − E½u∣x�Þ2

2Var½u∣x�
�
; (B5)

with

E½u∣x� ¼ xE½w�; (B6)

Var½u∣x� ¼ xVar½w�: (B7)
The second moment of F is given by

E½F2� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½fðu1Þ þ � � � þ fðuBÞ�2Pðu1;…; uBÞ

¼
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞ
XB
b¼1

Z
∞

−∞
dubf2ðubÞPðub∣xbÞ

þ
XS
x1¼1

…
XS
xB¼1

Pðx1;…; xBÞ
XB
c¼1

XB
b≠c

Z
∞

−∞
dub

Z
∞

−∞
ducfðubÞfðucÞPðub∣xbÞPðuc∣xcÞ

¼
XS
x¼1

PðxÞB½PNL;u∣xD2 þ ð1 − PNL;u∣xÞðE2½u∣x� þ Var½u∣x�Þ − CNL;u∣xðE½u∣x� þ θÞ�

þ
XS
x¼1

XS
y¼1

Pðx; yÞðB2 − BÞfPNL;u∣xDþ ð1 − PNL;u∣xÞE½u∣x� − CNL;u∣xg

× fPNL;u∣yDþ ð1 − PNL;u∣yÞE½u∣y� − CNL;u∣yg; (B8)
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where the assumption of identical branch statistics is used
in the last step and Pðx; yÞ is the marginal distribution of
Pðx1;…; xBÞ.
Analogously, we may compute the exact average number

E½k� of nonlinear branches. Similarly to Appendix A, we
use a step function to count the number k of branches in the
nonlinear regime

E½k� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½stepðu1 − θÞ þ � � �

þ stepðuB − θÞ�Pðu1;…; uBÞ

¼
XS
x¼1

PðxÞBPNL;ujx: (B9)

The second moment yields

E½k2� ¼
Z

∞

−∞
du1 � � �

Z
∞

−∞
duB½stepðu1 − θÞ þ � � �

þ stepðuB − θÞ�2Pðu1;…; uBÞ

¼
XS
x¼1

PðxÞBPNL;ujx

þ
XS
x¼1

XS
y¼1

Pðx; yÞðB2 − BÞPNL;u∣xPNL;u∣y: (B10)

The exact expressions for E½F� and Std½F� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½F2� − E2½F�

p
as well as E½k� and Std½k� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½k2� − E2½k�
p

are compared to simulation results and
the Gaussian approximation of F (see Appendix A)
in Fig. 2.

APPENDIX C: EFFECTIVE SOMATIC INPUT
APPROXIMATION FOR NEURONS WITH

MULTIPLE LAYERS OF DENDRITIC BRANCHES

The approximation for the somatic inputF [Eqs. (7)–(10)]
may be readily employed to compute the somatic input for
more complex dendritic arbors and multiple steps of non-
additive dendritic processing (Fig. 8). For this approxima-
tion, whenever necessary, we assume that the distribution of
inputs may be approximated by the maximum entropy
distribution for given mean and variance, i.e., by a normal
distribution [cf. discussion of Eqs. (3)–(5)]. For simplicity of
presentation, we assume that the number of sub-branchesBl
at a level l ∈ f1;…; Lg is identical for all branches bl ∈
f1;…; Blg at the level, that inputs arrive only at the terminal
branches and sufficiently synchronously, and that the dis-
tribution of synapses is identical across the terminal
branches. To compute the neuronal input for such a neuron,
wemay start from the soma and recursively work toward the
terminal branches:The firstmomentsof the effective somatic
input are given by

E½F� ¼ B1DPNL þ B1ð1 − PNL;1ÞE½u1� − B1CNL;1; (C1)

PNL;1 ¼ PNLðE½u1�;Var½u1�Þ; (C2)

CNL;1 ¼ CNLðE½u1�;Var½u1�Þ; (C3)

as defined in Eqs. (7)–(9), and Var½F� can be computed
similarly; cf. Eq. (10). The appearing mean input per branch
E½u1� and its varianceVar½u1� are nowgivenby an analogous
approximation that captures the nonadditive processing of
the preceding layer. Indeed, the mean input per branch
E½ul−1� for any layer l − 1, L ≥ l > 1, is given by

E½ul−1� ¼ BlDPNL þ Blð1 − PNL;lÞE½ul� − BlCNL;l; (C4)

PNL;l ¼ PNLðE½ul�;Var½ul�Þ; (C5)

CNL;l ¼ CNLðE½ul�;Var½ul�Þ; (C6)

and Var½ul−1� analogously; cf. Eq. (10). In this nomencla-
ture, E½u0� ¼ E½F� and Var½u0� ¼ Var½F� capture the
somatic input F, and l ¼ L indexes the layer of terminal
branches that receives the synaptic input so that E½uL� ¼
E½u� and Var½uL� ¼ Var½u� [cf. Eqs. (3)–(5)]. We note
that one can also introduce factors implementing branch-
coupling strengths at this point.
Figure 9 shows good agreement of our analytical

predictions with simulation results, both for the mean
somatic input E½F� and its standard deviation Std½F�.
Dendritic thresholds and dendritic spike strengths
in layer l ¼ 1 are increased to compensate for large input
strengths in the absence of branch-coupling factors.
We note that, as for the single-layered neuron, the

FIG. 8. Neuron model with multiple layers of dendritic
branches and nonadditive processing. Similarly to Fig. 1, differ-
ent steps of (a) linear and (b) nonadditive dendritic input
processing are represented by circles and squares, respectively.
A neuron with two levels of nonadditive dendritic branches is
displayed in (c). As is exemplarily shown, the numbers of sub-
branches may vary (at each level and between branches), and
there may be synaptic input to linear and nonlinear dendrites at all
levels.
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input is largest for intermediate numbers of branches B1;opt
and B2;opt (cf. discussion of Fig. 2).
The derivation can be directly generalized to cover

nonidentical branches, i.e., branches with different
probabilities for the formation of synapses, different
numbers of sub-branches (cf. Appendixes A and B), linear
branches, and additional external inputs on intermediate-
level branches. To incorporate linear branches, we may set
the dendritic threshold to infinity; to incorporate external
inputs to intermediate-level dendrites, we can add an
additional, linear input branch to the considered dendrite,
where the external inputs arrive. We may thus conclude
that our approach covers arbitrary treelike dendritic
structures.

APPENDIX D: MEAN AND VARIANCE
OF THE INPUT PER BRANCH IN A

NETWORK WITH DENDRITIC
BRANCHES

We now derive the expected input to branch b of neuron
n in the extended Hopfield model when the states of the
neurons are fixed and the average is taken over the weight
distribution. By construction, we have

E½un;b� ¼ E

�XN
m¼1

wn;b;mvm

�

¼
XN
m¼1

E½wn;b;m�vm

¼
XN
m¼1

B−1wn;mvm

¼ B−1un; (D1)

so that the mean input to the branch depends only on the
field un of the classical Hopfield model. The choice
E½wn;b;m� ¼ B−1wn;m in line three with wn;m given by
Eq. (16) is justified by assuming Hebbian learning. The
variance of the input per branch is given by

Var½un;b� ¼Var

�XN
m¼1

wn;b;mvm

�

¼
XN
m¼1

v2mVar½wn;b;m�þ
XN
m≠k

vmvkCov½wn;b;m;wn;b;k�

¼
XN
m¼1

Var½wn;b;m�þ0

¼
XN
m¼1

w2
n;mB−2Var½w�

¼Var½w�B−2NE½w2
n;m�

¼Var½w�B−2NðVar½wn;m�þE2½wn;m�Þ; (D2)

where we use the independence of the wn;b;m in the third
line. In the fourth line, we employ Var½wn;b;m� ¼
w2
n;mB−2Var½w� with a parameter Var½w�; cf. the discussion

preceding Eqs. (20) and (21). For the Hopfield network
with P random patterns to be stored [Eq. (16)], E½wn;m� ¼ 0

and Var½wn;m� ¼ PN−2 ¼ N−1α (with the load α ¼ PN−1)
since wn;m is a sum of P contributions �N−1 with equal
probabilities. Finally, in our extended Hopfield model, the
correlation of input between different branches vanishes:

Cov½un;b; un;c� ¼ Cov

�XN
m¼1

un;b;mvm;
XN
k¼1

un;c;kvk

�

¼
XN
m¼1

XN
k¼1

vmvkCov½un;b;m; un;c;k�

¼ 0; (D3)

where b ≠ c. In the third line, we use that for m ¼ k the
un;b;m are independently chosen from (the same) Gaussian
distributions with means B−1wn;m and variances
B−2w2

n;mVar½w� and for m ≠ k they are independently

(a)

(c)

(b)

(d)

FIG. 9. Somatic input for a neuron model with two layers of
nonadditive dendritic branches. Parameters are θ1 ¼ 100,
D1 ¼ 200, θ2 ¼ 5, D2 ¼ 10, E½w� ¼ 1, Var½w� ¼ 2, and
S ¼ 1000; the synaptic input arrives at the terminal branches.
Numerical results for (a) the mean somatic input and (b) its
standard deviation for different numbers of branches on the
first (B1) and the second (B2) levels are obtained from 400
realizations of multinomially distributed synapses. The corre-
sponding analytical results from Eqs. (C3) and (C6) are
highlighted in (c) and (d). Analytical and numerical results
agree well. The input is largest for intermediate numbers of
branches B1;opt and B2;opt.
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chosen from their respective (in general, different) distri-
butions. Because the input across branches is uncorrelated,
we may employ the results for the somatic input we
have derived for binomially distributed active synapses
[Eqs. (7) and (11)].

APPENDIX E: CONVERGENCE OF A HOPFIELD
NETWORK WITH DENDRITIC

NONLINEARITIES

Here, we show that the dynamics of the deterministic
Hopfield network with nonlinear dendrites is equivalent
to that of the classical Hopfield model with reduced
threshold. In particular, network convergence is guaran-
teed. Assuming that F̄ [Eq. (23)] is strictly monotonically
increasing and therefore also invertible, we find that

vnðtþ 1Þ ¼ sgnfF̄½unðtÞ� − Θg ¼ sgn½unðtÞ − ϑ�; (E1)

with the effective threshold

ϑ ¼ F̄−1ðΘÞ; (E2)

see also Fig. 3. This update rule is equivalent to the
conventional one with threshold ϑ. Hence, the energy
function ENL of the system is obtained from EL
[Eq. (15)] by substituting Θ by ϑ:

ENL½v1ðtÞ;…; vNðtÞ�

¼ − 1

2

XN
n¼1

XN
m¼1

wn;mvnðtÞvmðtÞ þ
XN
m¼1

ϑvmðtÞ: (E3)

For symmetric couplings wn;m ¼ wm;n, ENL is monotoni-
cally decreasing and the system converges to a steady state.
More explicitly, by assuming that neuron n is updated, we
have

ENLðtþ 1Þ − ENLðtÞ
¼ −½vnðtþ 1Þ − vnðtÞ�½unðtÞ − ϑ� ≤ 0: (E4)

Equality holds only for vnðtþ 1Þ ¼ vnðtÞ or unðtÞ ¼ ϑ,
where the latter implies vnðtþ 1Þ ¼ 1. Therefore, the
energy ENL either decreases in time or remains constant
only if the state of the network does not change or the
updated neuron n is set to vn ¼ 1. Since the energy is
bounded from below due to

jENLj ≤
1

2

XN
n¼1

XN
m¼1

jwn;mj þ Nϑ; (E5)

the network converges to a stable state that is given by a
minimum in the energy landscape ENLðv1;…; vNÞ.
Thus, the effective nonlinearity reduces the neuronal

threshold to ϑ ≤ Θ as compared to linear input summation
[Eq. (15)] but maintains network convergence.
For ϑ to be uniquely defined, the dendritic nonlinearities

have to be strong enough BD > Θ, so that F̄ intersects the
constant function Θ (Fig. 3). Analytical calculations show
that for D > θ, the transfer function F̄ is strictly monotonic
(cf. Fig. 10). Since experiments demonstrate supralinear
dendritic amplification, e.g., with thresholds of θ ≈ 3.8 mV
and spike amplitudes of D ≈ 10 mV [3], this parameter
regime is biologically plausible.

APPENDIX F: ASYMMETRIC COUPLINGS AND
CONVERGENCE OF A HOPFIELD NETWORK

WITH NONLINEAR DENDRITES

The couplings of the classical Hopfield network are
symmetric wn;m ¼ wm;n, so that convergence is guaranteed
by a Lyapunov function [Eq. (15)]. In the extended model,
we argue that the coupling weights wn;b;m to the dendritic
branches obey E½wn;b;m� ¼ B−1wn;m or, equivalently,
BE½wn;b;m� ¼ wn;m due to Hebbian learning [Eq. (20)].
To account for fluctuations in the learned weights,
we assume a variance Var½wn;b;m� ¼ w2

n;mB−2Var½w�
[Eq. (21)]. In a particular network realization with a finite
number of branches and fluctuations, the dendritic weights
do therefore not sum up to the expected Hebbian weight
precisely:

XB
b¼1

wn;b;m ¼∶w0
n;m ≠ wn;m: (F1)

FIG. 10. Monotonicity of the effective somatic input F̄. (a) The
monotonicity of F̄ [Eq. (23)] for B ¼ 2, PN−1Var½w� ¼ 0.8 (cf.
the caption of Fig. 3), with varying dendritic thresholds θ and
dendritic spike strengths D. It displays two regions, one where F̄
is strictly monotonic (white) and one where it is nonmonotonic
(gray). They are separated by D ¼ θ. (b) The monotonic or
nonmonotonic shape of F̄ for different dendritic parameters
ðθ; DÞ ∈ fð5; 3Þ; ð3; 4Þ; ð1; 5Þg (black, orange, and red lines).
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Generally, we have w0
n;m ≠ w0

m;n, and the magnitude of the
deviation from symmetric couplings is determined by
Var½w�. To check if our analytical calculations are appli-
cable despite larger asymmetries, we redo the simulations
from the main part of the paper for larger Var½w�.
Our simulations indicate that although convergence of

the extended deterministic Hopfield network is not guar-
anteed by a Lyapunov function for asymmetric couplings, it
reaches a fixed point, as shown exemplarily by Fig. 11 and
also confirmed for 1000 runs (not shown) for larger
asymmetries Var½w�.
To study the impact of asymmetric couplings on the

memory performance of the extended stochastic Hopfield
network, we repeat the simulations shown in Fig. 5 for
larger Var½w�. For a small load α ≈ 0 and nonzero temper-
atures T > 0, the analytical calculations for symmetric
couplings agree well with the simulation results
[Fig. 12(a)]. Yet, in the zero-temperature limit T ¼ 0,
the asymmetries decrease the storage capacity of the
network compared to the symmetric case [Fig. 12(b)].

APPENDIX G: MEAN-FIELD CALCULATIONS
FOR A STOCHASTIC HOPFIELD MODEL WITH

NONLINEAR DENDRITIC BRANCHES

We now derive the mean-field equations for the
overlap m ≔ m1 ¼ N−1 PN

n¼1 ξ
1
nhvni of the network state

ðv1;…; vNÞ with pattern p ¼ 1, i.e., ðξ11;…; ξ1NÞ. The
following calculations go along those provided in
Refs. [13,67]. From

huni ¼
XN
k¼1

wn;khvki ¼
XN
k¼1

N−1 XP
p¼1

ξpnξ
p
k hvki

¼
XP
p¼1

ξpnmp ¼∶ un (G1)

and Eq. (29), we find

mq ¼ N−1XN
n¼1

ξqn tanhfβ½F̄ðunÞ − Θ�g

¼ N−1XN
n¼1

ξqnξ1n tanhfβξ1n½F̄ðunÞ − Θ�g; (G2)

where we employ the point symmetry of tanhðxÞ ¼
− tanh ð−xÞ in the second line. We now assume that the
number P of patterns is large, of orderOðNÞ. We define the
mean square overlap r ≔ α−1

P
P
q≠1 ðmqÞ2 and assume that

the mq are independent, zero-centered random variables

FIG. 12. Memory performance of the stochastic Hopfield
model with nonlinear dendritic branches and more asymmetric
couplings. Parameters are the same as in Fig. 5, with
Var½w� ¼ 0.5. The figure compares analytical results (solid lines)
for linear summation (black lines and symbols) and nonlinear
summation with dendritic spike strengths D ∈ f0.4; 0.6; 0.8g
(gray, orange, and red lines and symbols) and symmetric
couplings to simulation results (circles) for asymmetric cou-
plings. Results for linear input summation with Θ ¼ 0 are
included for comparison (dash-dotted black line). (a) The overlap
m versus the temperature T for a small load α ¼ N−1 ≈ 0. The
more asymmetric couplings change m only slightly, and the
simulation results agree well with the analytics of the symmetric
couplings. (b) m versus α for T ¼ 0. The stronger asymmetries
impair the memory function, and the overlap m displays a drop at
lower loads α compared to the symmetric case.

FIG. 11. Network convergence despite more asymmetric cou-
plings. Parameters are the same as in Fig. 4, with Var½w� ¼ 0.5.
Simulations are performed with identical initial states, topology,
and order of updates. As the linear Hopfield model is not affected
by Var½w�, its energy (solid black line) decreases monotonically
and reaches a fixed point. For the extended Hopfield model with
nonadditive dendrites and more asymmetric couplings, the
energy decreases (solid red line) with rare events of increasing
energy (red squares) due to deviations from the mean-field
approach or asymmetric couplings [cf. the discussion of
Eq. (27)]. The convergence of the system is preserved (checked
for 1000 runs). The Hamming distance d ¼ 1

2N

P
N
n¼1 jvn − v0nj

(dashed red line) between the systems shows that they settle into
different attractors.
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with variance αrP−1. Then, the sum ξ1n
P

P
p≠1 ξ

p
nmp can be

seen as a Gaussian noise term of variance αr and the sum
N−1 PN

n¼1 may be treated as an average over this noise.
Since ξ1n ¼ �1 with equal probabilities, the overlap with
the first pattern is [Eq. (G2)]

m¼ 1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2 tanhfβ½F̄ðmþ ffiffiffiffiffi
αr

p
zÞ−Θ�g

þ1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2 tanhf−β½F̄ð−m− ffiffiffiffiffi
αr

p
zÞ−Θ�g;

(G3)

with the effective somatic input F̄ given by Eqs. (23)–(25).
Next, the correlations quantified by r must be determined
self-consistently. We define ūqn ≔

P
P
p≠q ξ

p
nmp, and because

ξqnmq ¼ un − ūqn is small, of order OðN−1=2Þ, we expand
Eq. (G2) into a Taylor series to first order:

mq ≈ N−1XN
n¼1

ξqnξ1n tanhfβξ1n½F̄ðūqnÞ − Θ�g

þ βN−1XN
n¼1

ð1 − tanh2fβξ1n½F̄ðūqnÞ − Θ�gÞF̄0ðūqnÞmq;

(G4)

where f0ðx0Þ ¼ dfðxÞ
dx jx¼x0

denotes the first derivative of a
function fðxÞ evaluated at x ¼ x0. Similar to the derivation
of Eq. (G3), we approximate ξ1n

P
P
p≠1;q ξ

p
nmp by a zero-

centered Gaussian distribution with variance αr and in the
second term of Eq. (G4) treat the sum N−1PN

n¼1 as an
average so that

mq ¼ N−1XN
n¼1

ξqnξ1n tanhfβξ1n½F̄ðūqnÞ − Θ�g þ βCmq; (G5)

with

C≔
1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2ð1− tanh2fβ½F̄ðmþ ffiffiffiffiffi
αr

p
zÞ−Θ�gÞ

× F̄0ðmþ ffiffiffiffiffi
αr

p
zÞþ 1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2

× ð1− tanh2f−β½F̄ð−m− ffiffiffiffiffi
αr

p
zÞ−Θ�gÞ

× F̄0ð−m− ffiffiffiffiffi
αr

p
zÞ; (G6)

where we take into account again that ξ1n ¼ �1 with equal
probabilities. Solving Eq. (G5) for mq, squaring it, and
averaging over all patterns q yields

r ¼ ð1 − βCÞ−2NP−1XP
q≠1

N−2 XN
n;k¼1

ξqnξ1nξ
q
kξ

1
k

· tanhfβξ1n½F̄ðūqnÞ − Θ�g tanhfβξ1k½F̄ðūqkÞ − Θ�g

¼ ð1 − βCÞ−2N−1 XN
n¼1

tanh2fβξ1n½F̄ðū2nÞ − Θ�g: (G7)

Here, we use that the arguments of the tanh are independent
of q, and in the average P−1PP

q≠1, only terms n ¼ k
survive. We set ūqn ¼ ū2n without loss of generality.
Employing a Gaussian approximation of the sum
ξ1n

P
P
p≠1;2 ξ

p
nmp like in Eq. (G5) yields

r ¼ ð1 − βCÞ−2s; (G8)

with

s≔
1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2 tanh2fβ½F̄ðmþ ffiffiffiffiffi
αr

p
zÞ−Θ�g

þ1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2 tanh2f−β½F̄ð−m− ffiffiffiffiffi
αr

p
zÞ−Θ�g:

(G9)

The above Gaussian approximations hold for α of order
Oð1Þ and smaller. Equations (G3), (G6), (G8), and (G9)
constitute a set of nonlinear, coupled integral equations for
the order parameters m, r, and s and can be solved
numerically or in limiting cases.

FIG. 13. Critical behavior of the network for a few patterns
α ≈ 0 and varying neuronal thresholds Θ and dendritic thresholds
θ. Parameters are the same as in Fig. 5, with D ¼ 0.4 and
different dendritic thresholds θ ∈ f∞; 0.1; 0.05; 0g. Simulation
results (circles) and analytical results (dash-dotted lines) for
vanishing neuronal thresholds Θ ¼ 0 are compared to the
analytical results for Θ ¼ 0.4 (solid lines; cf. Fig. 5). θ ¼ ∞
(dash-dotted black and solid gray lines) corresponds to the linear
Hopfield model. Decreasing the dendritic threshold θ increases
the critical temperature (θ ¼ 0.1 in green and lime lines; θ ¼ 0.05
in blue and cyan lines). For θ ¼ 0 (red and orange lines), there is
no phase transition anymore, as mðTÞ asymptotically follows
Eq. (H2) (dotted red line).
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APPENDIX H: MEMORY CAPACITY OF A STOCHASTIC HOPFIELD NETWORK WITH NONLINEAR
DENDRITIC BRANCHES IN THE THERMODYNAMIC LIMIT FOR A FINITE NUMBER OF PATTERNS

We now consider the quality of pattern retrieval estimated by the overlap m in the thermodynamic limit
of large N with finitely many patterns P, i.e., α ≈ 0. Because mq, q ≠ 1, is of order OðN−1=2Þ and P is finite, we
may write un ¼

P
P
p¼1 ξ

p
nmp ≈ ξ1nm. Starting from Eq. (G2) and using the definition of the effective somatic input F̄

[Eqs. (23)–(25)],

m ¼ N−1XN
n¼1

tanhfβ½1 − PNLðunÞ�ξ1nun þ βξ1n½BDPNLðunÞ − BCNLðunÞ − Θ�g

≈ N−1XN
n¼1

tanhfβ½1 − PNLðξ1nmÞ�mþ βξ1n½BDPNLðξ1nmÞ − BCNLðξ1nmÞ − Θ�g

¼ 1

2
tanhfβ½1 − PNLðmÞ�mþ β½BDPNLðmÞ − BCNLðmÞ − Θ�g

þ 1

2
tanhfβ½1 − PNLð−mÞ�m − β½BDPNLð−mÞ − BCNLð−mÞ − Θ�g; (H1)

where we use that ξ1n ¼ �1 with equal probabilities in the
third line. This transcendental equation for m is solved
numerically (Fig. 5).
It is shown in the main text that dendritic nonlinearities

elevate the critical temperature Tc above which retrieval
fails (Fig. 5). The increased critical temperature Tc may
result partially from the effectively reduced neuronal
threshold ϑ ≤ Θ [Eq. (26)]. To exclude this effect, we
study the impact of the nonlinearity on the critical temper-
ature Tc for vanishing neuronal threshold Θ ¼ 0. We find
that when changing Θ from Θ ¼ 0.4 to Θ ¼ 0, the critical
temperature Tc is altered only slightly (Fig. 13; see the
differences between the dashed and dotted vertical lines)
and the behavior of the system remains the same.

In contrast, the threshold θ of the dendritic nonlinearity
has a strong influence on the critical behavior of the network.
For θ ¼ ∞, we reobtain linear input summation (Fig. 13,
dash-dotted black and solid gray lines). For finite
0 < θ < ∞, the critical temperature Tc is increased
(Fig. 13, green and lime, blue and cyan lines). For θ ¼ 0,
there is no phase transition at all (Fig. 13, red and orange
lines) and memory retrieval at arbitrarily high temperatures
T (althoughwith smaller and smaller overlapsm) is possible.
The absence of a phase transition may be understood by
assuming θ ¼ 0 and T ¼ β−1 → ∞ in Eq. (H1). Then,

m →
1

2
tanh½T−1ðBD− ΘÞ� þ 1

2
tanh ðT−1ΘÞ (H2)

because PNLðmÞ ≈ 1 and CNLðmÞ ≈ PNLð−mÞ ≈
CNLð−mÞ ≈ 0 for θ ¼ 0 andm → 0 forT → ∞. SinceBD >
Θ (Appendix E), we have m > 0 for T > 0 and no phase
transition occurs (Fig. 13, dotted red line).

APPENDIX I: MEMORY CAPACITY OF A
STOCHASTIC HOPFIELD NETWORK WITH

NONLINEAR DENDRITIC BRANCHES IN THE
ZERO-TEMPERATURE LIMIT

We now compute the overlap m in the zero-temperature
limit T ¼ 0. The starting points are Eqs. (G3), (G6), (G8),
and (G9). For β ¼ T−1 → ∞, we may simplify

lim
β→∞

tanhf�β½F̄ð�m� ffiffiffiffiffi
αr

p
zÞ − Θ�g

¼ sgn½�F̄ð�m� ffiffiffiffiffi
αr

p
zÞ ∓ Θ�

¼ sgn½mþ ffiffiffiffiffi
αr

p
z ∓ ϑ�; (I1)

by definition of the effective threshold ϑ [see Eq. (26)],
F̄ðϑÞ ¼ Θ. Using the dominated convergence theorem, we
may compute [Eq. (G3)]

(a) (b)

FIG. 14. Quality of retrieval in dependence of capacity α and
temperature T. Numerical results for the overlapm, averaged over
20 realizations. Parameters are the same as in Fig. 5 with
D ¼ 0.8. The network model with nonadditive dendrites displays
(b) a larger region of stable memory retrieval than (a) the original
Hopfield network.
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lim
β→∞

m ¼ 1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2sgn½mþ ffiffiffiffiffi
αr

p
z − ϑ� þ 1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2sgn½mþ ffiffiffiffiffi
αr

p
zþ ϑ�

¼ 1

2
erf

�
m − ϑffiffiffiffiffiffiffiffi
2αr

p
�
þ 1

2
erf

�
mþ ϑffiffiffiffiffiffiffiffi
2αr

p
�

(I2)

and [Eq. (G9)]

lim
β→∞

s ¼ 1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2sgn2½mþ ffiffiffiffiffi
αr

p
z − ϑ� þ 1

2

Z
∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2sgn2½mþ ffiffiffiffiffi
αr

p
zþ ϑ� ¼ 1: (I3)

To derive r, we further compute βC [Eq. (G6)]. We use that β
2
ð1 − tanh2 ½βx�Þ approaches the Dirac delta function δðxÞ for

β → ∞:

lim
β→∞

βC ¼
Z

∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2δ½F̄ðmþ ffiffiffiffiffi
αr

p
zÞ − Θ�F̄0ðmþ ffiffiffiffiffi

αr
p

zÞ

þ
Z

∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2δ½−F̄ð−m − ffiffiffiffiffi
αr

p
zÞ þ Θ�F̄0ð−m − ffiffiffiffiffi

αr
p

zÞ

¼ 1

jF̄0ðϑÞj ffiffiffiffiffi
αr

p
Z

∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2δ
�
zþm − ϑffiffiffiffiffi

αr
p

�
F̄0ðmþ ffiffiffiffiffi

αr
p

zÞ þ 1

jF̄0ðϑÞj ffiffiffiffiffi
αr

p

×
Z

∞

−∞
dzffiffiffiffiffiffi
2π

p e−ð1=2Þz2δ
�
zþmþ ϑffiffiffiffiffi

αr
p

�
F̄0ð−m − ffiffiffiffiffi

αr
p

zÞ

¼
ffiffiffiffiffiffiffiffiffiffi
1

2παr

r �
exp

�
− ðm − ϑÞ2

2αr

�
þ exp

�
− ðmþ ϑÞ2

2αr

��
: (I4)

In the second line, we use δ½fðxÞ� ¼ jf0ðx0Þj−1δðx − x0Þ
with the (single) root x0, fðx0Þ ¼ 0, and again F̄ðϑÞ ¼ Θ.
There and in the third line, we use that F̄ is monotonically
increasing, i.e., F̄0 ≥ 0. From Eqs. (G8) and (I4), we find

ffiffiffi
r

p ¼ 1þ
ffiffiffiffiffiffiffiffi
1

2πα

r
exp

�
− ðm − ϑÞ2

2αr

�

þ
ffiffiffiffiffiffiffiffi
1

2πα

r
exp

�
− ðmþ ϑÞ2

2αr

�
: (I5)

Equations (I2) and (I5) provide coupled, implicit equations
for the order parameters m and r that can be solved
numerically. Solutions for varying effective thresholds ϑ
are shown in Fig. 5.

APPENDIX J: PHASE DIAGRAMS OF
ASSOCIATIVE-MEMORY NETWORKS OF

NEURONS WITH ADDITIVE AND
NONADDITIVE DENDRITIC PROCESSING

For a further comparison of the memory performance of
networks with arborized neurons with the classical
Hopfield model, we compute the quality of retrieval m
in the α-T plane.
We find both analytically and numerically that in the

limits α ≈ 0 and T ¼ 0, the critical temperature and
capacity of the network with nonadditive dendrites are

higher than for the linear model; cf. Fig. 5. Complementing
these findings, numerical simulations show that the α-T
region of successful memory retrieval is larger for non-
additive dendrites [Fig. 14(b)] than for linear dendrites
[Fig. 14(a)].
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