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Extreme synchronization transitions

Seungjae Lee 1 , Lennart J. Kuklinski1 & Marc Timme 1,2,3,4

Across natural and human-made systems, transition points mark sudden
changes of order and are thus key to understanding overarching system fea-
tures. Motivated by recent experimental observations, we here uncover an
intriguing class of transitions in coupled oscillators, extreme synchronization
transitions, from asynchronous disordered states to synchronous states with
almost completely ordered phases. Whereas such a transition appears like
discontinuous or explosive phase transitions, it exhibits markedly distinct
features. First, the transition occurs already in finite systems of N units and so
constitutes an intriguing bifurcation ofmulti-dimensional systems rather than a
genuine phase transition that emerges in the thermodynamic limit N → ∞ only.
Second, the synchronization order parameter jumps from moderate values of
the order of N−1/2 to values extremely close to 1, its theoretical maximum,
immediately upon crossing a critical coupling strength. We analytically explain
the mechanisms underlying such extreme transitions in coupled complexified
Kuramoto oscillators. Extreme transitions may similarly occur across other
systems of coupled oscillators as well as in certain percolation processes. In
applications, their occurrence impacts our ability of ensuring or preventing
strong forms of ordering, for instance in biological and engineered systems.

Transition pointsmark the qualitative change of collective phenomena
upon varying system parameters, often between a less and a more
ordered system state, with broad applications in physics, biology,
engineering andbeyond, see, e.g.,1–9. Distinguishingdifferent classes of
transitions and clarifying their underlying mechanisms are essential
because the class of transition significantly impacts our ability to
predict and understand state changes.

Phase transitions emerge in the structure and dynamics of com-
plex systems in the thermodynamic limit of infinitely many units,
N→∞. Whereas continuous phase transitions, such as to ferromagnetic
order in spin systems, imply a smooth change in the degree of emer-
gent order, discontinuous transitions such as the freezing of water,
induce a jump in the degree of order1.

Synchronization, the temporal ordering of phases of coupled
oscillatory units, constitutes a paradigmatic ordering process emer-
ging in nonlinear dynamical systems10,11. It stands as a temporal analog
of structural ordering processes such as the emergence of ferro-
magnetism or freezing in many-particle systems 12. The Kuramoto

model mathematically captures key aspects of synchronization pro-
cesses of coupled limit cycle oscillators, exhibiting a number of intri-
guing properties13–16. Specifically, systems of Kuramoto phase
oscillators with natural frequencies drawn from a unimodal distribu-
tion exhibit a continuous phase transition to frequency locking and
ultimately phase-locking with increasing the coupling strength K 2 R
(Fig. 1a). The synchronization order parameter

r =
1
N

XN
ν = 1

eixν

�����
����� ð1Þ

quantifies the degree of coherence of the oscillators’ phase state
variable xν 2 ð�π,π� for ν∈ [N]≔ {1, 2,⋯ , N}. The phase transition to
synchrony constitutes a transition of qualitative state change at a
defined coupling strength Kc emerging in the thermodynamic limit as
the number of units N → ∞. In contradistinction, finite-N systems
exhibit a crossover regime where ordering gradually increases in a
range of coupling strengths K, see also Fig. 1a. Moreover, coupled
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Kuramoto oscillators with frequencies drawn from a bimodal dis-
tribution typically exhibit a discontinuous phase transition and also a
gradual change of order for finite-N systems,17 see (Fig. 1b).

Interestingly, recent experiments on photo-chemically cou-
pled relaxation oscillators that resemble Belousov-Zabotinsky
(BZ) oscillatory reactions18 found a discontinuous transition
despite unimodally distributed natural frequencies (Fig. 1c), in
contrast to the continuous transition found for phase-only oscil-
lator. Curiously, these transitions often appear extreme, with
(close to) maximal order r ≈ 1 just past the transition. They remain
largely unexplained to date.

In this article, we pin down and conceptualize an unprecedented
class of discontinuous transitions—extreme synchronization transi-
tions—in the collective dynamics of coupled oscillators. It qualitatively
resembles the experimentally found transition for coupled BZ
reactions;18 cf. (Fig. 1c). We also identify the core mechanism under-
lying the extreme nature of extreme transitions. To be able to analy-
tically access the transition, we first analyze coupled complexified
Kuramoto oscillators19,20

d
dt

zμ =ωμ +
K
N

XN
ν = 1

sinðzν � zμÞ , ð2Þ

for μ ∈ [N] with complex variables zμ = xμ + iyμ 2 C and coupling
strength K = jKjeiα 2 C. The model (2) analytically continues cou-
pled phase-only oscillators and offer mathematical access to
systems of finite units19,20. The natural frequency of each
oscillator is a constant ωμ 2 R randomly independently drawn
from a Gaussian distribution gðωÞ= 1

σ
ffiffiffiffiffi
2π

p e�
ω2

2σ2 with
PN

μ= 1 ωμ =0,
thus considering a co-moving reference frame. We provide
numerical evidence of similar extreme transitions in other
systems towards the end of this article and in the Supplementary
Information.

Results
Observations: Finite-N bifurcations with an extreme jump in the
order parameter
Similar to the coupled BZ oscillators, we find a discontinuous transi-
tion (Fig. 1d) that does not require a thermodynamic limit and already
emerges for systemswith as few asN = 8 units (Fig. 1d, inset). It thereby
constitutes a bifurcation in multi-dimensional systems.

Importantly, the transition is extreme in the sense that for small

β=π=2� α 2
�
0,

π
2

�
ð3Þ

the phase order parameter jumps from low values with r =OðN�1=2Þ in
the incoherent state to values close to itsmaximumat r = 1 just past the
transitionpointmarkedby adefined critical coupling strength, as Fig. 2
illustrates. The jump in order parameter is already extreme at mod-
erate β. For instance, for β <0.4, we already find r >0.99 immediately
past the transition. As β approaches 0, the gap 1−r becomes arbitrarily
small and thus the order parameter r arbitrarily close to unity, already
at moderate or even small coupling strength ∣K∣, see also Fig. 2.

Asymptotic analysis confirms extremeness
At β = 0 (and thus α = π

2) and any given ∣K∣ >0, the dynamical system (2)
exhibits a fixed point

zð0Þμ = xð0Þμ + iyð0Þμ = � i sinh�1 bωμ

jK j

� �
, ð4Þ

a complex locked state with identical xð0Þμ for all μ ∈ [N]. It is note-
worthy thatwenumerically observeotherfixedpoint solutions that are
unstable and irrelevant to synchronization phenomena. To obtain Eq.
(4), we initially assume the imaginary parts to be of the form yð0Þμ = �
sinh�1 bωμ

jK j

� 	
based on numerical observations and later confirm this

form analytically (see Supplementary Information). From ansatz (4)
and the fixed point conditions for both xμ and yμ, we obtain a self-
consistency condition

1
b
=

1
N

XN
ν = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

b2ω2
ν

jKj2

s
ð5Þ

for the parameter b > 0. Moreover, a linear stability analysis together
with a systematic numerical nonlinear analysis demonstrates that the
fixed point is neutrally stable.

Interestingly, these complex locked states (4) exhibit identical
synchronization with completely homogeneous phase variables,

=

=

=

Fig. 1 | From discontinuous to extreme synchronization transitions. Panels
show classical Kuramoto order parameter (1) as a function of coupling strength.
a Continuous synchronization phase transition in the Kuramoto model with
unimodal natural frequency distribution. b Discontinuous synchronization phase
transition in the Kuramoto model with bimodal natural frequency distribution.
Phase transitions with defined transition point Kc in (a) and (b) emerge only in the
thermodynamic limit N → ∞. c Recently experimentally observed discontinuous
synchronization in a finite (N = 200) system of photo-chemical Belousov-Zabo-
tinsky reactions (inset), modeled via FitzHugh-Nagumo fast-slow oscillators (main
panel), data reproduced from18. d Extreme synchronization transitions in finite-N
systemsof complexifiedKuramoto units, visible already forN =8.The insetdisplays
r vs. system sizeN just above the critical coupling atK = 1.05Kc, in log-log scaleswith
red dots for panel (a), blue dots for panel (b), and purple dots for panel (d).
See Supplementary Information for details of the parameter settings.
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Fig. 2 | Extreme features of the synchronization transition. a The gap 1−r of the
order parameter r to its maxmimal value 1 for fixed ∣K∣ = 1.5. Direct numerical
observations (open circles) agree well with our approximate, second-order pre-
diction (8) asymptotically as β = π/2 − α→ 0+ (red line) and even for the full range of
α∈ (0,π/2) (inset).bWith increasing α, the critical coupling strength decreases and
the jumps in order parameter r (color-coded r ∈ [0.8, 1]) become increasingly
extreme. The white area indicates an incoherent state with r of the order of N−1/2.
The black solid curve indicates the critical coupling ∣Kc∣. In (a) and (b),N = 80 across
all observations.
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xð0Þμ =0 for all μ and thus r = 1, despite the heterogeneous natural
frequencies directly driving the variables xμ and the coupling
strength ∣K∣ being finite (and possibly small or moderate). We
analytically quantify this extreme form of synchrony also for β >0.

We derive an asymptotic expansion21,22 of the form z*μ = x
*
μ + iy

*
μ �

xð0Þμ + xð1Þ
μ β + iðyð0Þμ + yð1Þμ βÞ as β → 0+ with xð0Þ

μ =0 and yð0Þμ = � sinh�1 bωμ

jK j

� 	
and real first order coefficients xð1Þμ and yð1Þμ for all μ. Substituting this
ansatz into (2) yields

z*μ �� Qβ tanhðyð0Þμ Þ+ iyð0Þμ

=Qβ
bωμ=jK jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

bωμ

jK j

� 	2
r � i sinh�1 bωμ

jK j

� �
ð6Þ

up to corrections of order Oðβ2Þ as β → 0+. Here

Q=
PN

ν = 1 cosh yð0ÞνPN
ν = 1 cosh y

ð0Þ
ν +

PN
ν = 1 sinh yð0Þν tanh yð0Þν

>0 ð7Þ

is a positive parameter. For small β >0, this first-order asymptotic
resultwell characterizes the complex locked states, see Supplementary
Information for an illustration (Figs. S1 and S2). With the relation (6),
the order parameter (1) becomes

rðβÞ= 1
N

XN
ν = 1

cosð�Qβ tanh yð0Þν +Oðβ2ÞÞ

= 1� 1
2
W 2Q

2β2 +Oðβ4Þ
ð8Þ

for 0 ≤ β≪ 1 (Fig. 2a).We remark that at least up toOðβ4Þ, the imaginary
part components of the complex locked state alone determine the
constantW 2 : = 1

N

PN
μ= 1 tanh

2ðyð0Þμ Þ as well as Q, because the real parts
are xð0Þ

ν =0. Moreover, the constants W2 and Q are essentially inde-
pendent of the system sizeN (see Supplementary Information; Fig. S3),
resulting in the extremenessof synchronization already for small,finite
N (compare Fig. 1d inset). The relation (8) thus confirms analytically
that the jump in order is extreme, with the difference 1 − r(β) decaying
to zero quadratically, as β → 0+ (Fig. 2a). The order parameter hence
exhibits an extreme jump from incoherence, where r ∝ N−1/2 to values
close tomaximal coherencewhere r = 1�Oðβ2Þ and thus close to unity
for a range of β (Fig. 2b) and essentially independent of N.

How does such an extreme transition emerge?
First, how many heterogeneous parameters (here: the natural fre-
quencies) that drive the rate of change of the phase variables xμ yield
collective states with these variables being close to identical and thus
highly homogeneous? We find that whereas the order in the xμ jumps
extremely, with the order parameter close to unity just past the tran-
sition, the order in the other variables yμ continuously and slowly
grows with ∣K∣, absorbing the disorder among the units (Fig. 3a). We
furthermore qualitatively find that with varying β and thus varying
α = π/2 − β the heterogeneity in the state variables gradually transfers
from the xμ (at α = 0) to the yμ (at α → π/2) in multi-dimensional state
space (Fig. 3b). Moreover, a numerical quantitative analysis shows that
the local angleφ= arg zμ and thus tanφ=

yμ
xμ
, computed for sufficiently

small ∣xμ∣ and ∣yμ∣, well matches the negative argument of the complex
parameter K, i.e. φ ≈ − α, see Fig. 3c. An asymptotic analysis (see Sup-
plementary Information; Fig. S4) for the simplest coupled system of
N = 2 units confirms this finding as it yields

tanφ= � tanα +O ω2 � ω1

K

��� ���2� �
, ð9Þ

indicating that theone-to-one argumentmappingbetweenparameters
and collective states may hold more and more exactly as ∣K∣ grows.
Overall, the parameter disorder driving one set of variables, the xμ, is
gradually redistributed or transferred to other variables of the system,
here the yμ.

Second, given the transition occurs already for finite N, it con-
stitutes a bifurcation of a finite-dimensional dynamical system, not a
phase transition that requires a thermodynamic limit N → ∞. Analyzing
the eigenvalue spectrum of the (complex) locked state, we find that
one pair of eigenvalues crosses the imaginary axes from positive to
negative real parts upon increasing ∣K∣, signifying a Hopf bifurcation,
see Fig. 4a–c. Numerical evaluations of the order parameter r as a
function of time Fig. 4d–f support this view. Indeed, oscillatory
dynamics of r(t) with the characteristic time scale are already apparent
below the transition point, panel Fig. 4d.

Extreme synchronization transitions emerge across different
systems
The current work has beenmotivated by experimental observations of
such transitions in coupled Belousov-Zhabotinsky chemical reactions18

that may be modeled by coupled Fitzhugh-Nagumo oscillators
(Fig. 1c). Our study of the complexified Kuramotomodel with all-to-all
coupling has enabled analytic access to collective states representing
synchrony (complex locked states) as well as the order parameter.
Further systematic numerical simulations indicate that features of
extreme transitions may also exist in other systems of coupled oscil-
lators, including in systems without all-to-all coupling and networks
with random interaction topologies (see Supplementary Information;
Fig. S5), in coupled van-der-Pol oscillators that represent a class of
coupled relaxation oscillators as well as in Stuart-Landau oscillators
that represent a class of phase-amplitude oscillators (Fig. 5).

In general, the extreme transitions we report thus come with four
characteristics:
(i) extremeness: discontinuous jump to near-maximal ordering just

above a defined critical coupling,
(ii) finite-size systems: emergence already for finite systems,

possibly of moderate or small sizes; no requirement of a
thermodynamic limit N → ∞,

(iii) transition at low Kc (in contrast to at large Kc induced by delayed
transitions as in certain explosive transitions), and

(iv) redistribution of parameter disorder to variables other than
those driven by the heterogeneous parameters

Condition (i) is a requirement for justifying the transition to be
called extreme, yet the other features (ii)-(iv) may or may not co-occur
in a given order-disorder transition. It is conceivable, for instance, that
coupled van der Pol oscillators may exhibit a delayed synchronization
transition at large K [thus not exhibiting characteristic (iii)]. If so,
coupling strengths slightly above the critical value may overcome
parameter heterogeneities by far, as for the original Kuramoto model
for very large K, removing the need to transfer disorder to other
variables (iv). Similarly, Stuart-Landau oscillators exhibit an extreme
synchronization transition (Fig. 5b) for large K by quenched
oscillation,23 i.e., a fixed point solution. However, during the synchro-
nization transitions, the redistribution of parameter disorder into
amplitude degrees of freedom is not readily apparent.

Distinct nature of the transition
The nature of such extreme transitions stands in contrast to standard
synchronization transitions found in the paradigmatic Kuramoto
model, with continuous phase transitions for unimodal natural
frequencies15 and with discontinuous phase transitions for bimodal17

(or bounded-support24) natural frequency distributions, see also7,9.
Both emerge only in the thermodynamic limit N → ∞ and exhibit
moderate order, perhaps r≈0.7 formoderateK >Kcpast the transition.
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Intriguingly, our asymptotic analysis (6) indicates that the extreme
transitions found here emerge independently of the specific natural
frequency realizations, examples ranging from uniform, unimodal,
bimodal and even to tri-modal distributions (see Supplementary
Information; Fig. S6 and Fig. S7), in contrast to the original Kuramoto
model where the class of phase transition depends on the form of the

frequency distributions (for instance, unimodal vs. bimodal,17 and
bounded vs. unbounded support24).

The extreme transition we found emerges already for small
system sizes N with, for instance, r > 0.99 for N = 8 coupled units
immediately past ∣K∣ > Kc, compare Fig. 1d, inset. We remark that
some oscillator systemsmay exhibit discontinuous synchronization
transitions even for a few coupled units, yet typically, these are not
extreme transitions nor analytically accessible. In contrast, our
study offers enhanced analytical access, even for finite-sized sys-
tems, and pins down the extreme nature of synchronization tran-
sitions as well as the behavior of the order parameter. Moreover, the
transition emerges at coupling strength Kc substantially smaller
than that of the original Kuramotomodel, becoming even smaller as
α increases. Furthermore, this earlier transition stands in stark
contrast to known, explosive phase transitions7,25–31 that have been
identified in both temporal and structural ordering processes,
specifically for synchronization and percolation, where the transi-
tions are often delayed to larger Kc, that in turn contributes to a
strong jump in order parameter once the transition occurs. Intri-
guingly, recent studies32–34 observed a percolation transition that
appears to also exhibit extreme features in the sense we intro-
duced above.

Previously known discontinuous (non-extreme) transitions,
including in systems with higher-order interactions (e.g., biharmo-
nic interactions35), occur through a bistability between incoherent
and synchronous states7. Such bistability arises due to a change
from a supercritical to a subcritical branching point bifurcation
(e.g., a pitchfork or transcritical bifurcation). For continuous tran-
sitions, stable synchrony bifurcates directly off the incoherent state
at a supercritical branching point. For discontinuous transitions, a
branch of unstable synchrony connects the incoherent state and
with the stable synchronous state. In contrast, further analysis of
the extreme synchronization transitions we report indicates that
the stable (extremely) synchronous state is disconnected from the
incoherent state.

Fig. 4 | Extreme synchronization emerges via Hopf bifurcation. Panels (a–c)
display the eigenvalues (open circles) of the Jacobianmatrix evaluated at the locked
state z*. The pair of eigenvalues relevant to the bifurcation is highlighted by filled
red disks. It crosses the imaginary axis with increasing ∣K∣, indicating a Hopf
bifurcation. For panel (b), we choose ∣K∣ = 0.47, close to but slightly above the
critical coupling strength. d–f show the order parameter as a function of time after

a transient period, t0 = 3000, with the system state initiated by a random pertur-
bation of order 10−1 away from each locked state evaluated in (a–c), respectively.
Additional oscillations visible in (e) and (f) are transient phenomena due to small
negative real parts of eigenvalues. All panels for α = π

2 � 0:01, i.e., β = 0.01
and N = 128.
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Fig. 3 | Disorder moves to additional variables. a The order parameter r is
depicted as a function of ∣K∣ for both real parts, i.e. the phase-variables (solid disk)
and the other variables (the imaginary parts, open circles) for N = 128 and β = 0.01.
As the yν are unbounded, we define phase-like variables θμ by a stereographic
projection via cos θμ : =

1�y2μ
1 + y2μ

and sinθμ : =
2yμ
1 + y2μ

for each μ and evaluate
r = ∣ 1N

PN
μ= 1 e

iθμ ∣, in analogy to (1).bComplex locked states in the complex plane for
N = 80 and ∣K∣ = 3.0move with increasing α values from curves① for α = 0 and② for
α = 1.5 to curve ③ for α = π

2. c Local angles φ of the curves around the origin are
depicted as a function of α with gray solid guiding line indicating ∣φ(α)∣ = α as
emerges for N = 2 up to corrections OðjKj�1Þ.
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Interestingly, recent experiments18 on photochemically coupled
Belousov-Zabotinsky oscillators already hinted at similar extreme
transitions (cf. Fig. 1c). The authors in18 raised a hypothesis that a
sudden synchronization transition they observed emerges “beyond
phase reduction," yet did not identify the detailed mechanism of the
extreme nature of their observed synchronization transitions. It is
noteworthy that a model representing the Belousov-Zhabotinsky
reaction consists of planar oscillators beyond standard phase reduc-
tion. Such traditional planar oscillator models often fail to elucidate
the core mechanism of the onset of extreme synchronization. Our
results confirm that more than just phase state variables are necessary
and emphasize the potential finite-N and extreme nature of the
transition.

Discussion
Wehave presented and analyzed anunprecedented formof transition,
an extreme synchronization transition, that constitutes an intriguing
instance of a bifurcation in finite, multi-unit nonlinear dynamical
systems.

More generally, these results offer an alternative perspective for
interpreting the extreme nature of certain explosive phenomena,
encouraging to rethink of the underlying mechanisms behind the
onset of explosive synchronization transitions. For example, coupling
adaptivity36 might absorb parameter heterogeneities in oscillator fre-
quencies, which would otherwise prevent synchrony such that the
transition becomes discontinuous and may potentially become
extreme. More broadly, higher-dimensional oscillator models may
effectively absorb parameter disorder in additional variables37.

From a theoretical and methodological perspective, analytically
continuing variables and parameters to become complex has pre-
viously advanced our understanding of fractals,38 phase transitions in
statistical physics,39,40 and the foundations of quantummechanics41–44.
Our analytic continuation of coupled oscillator systems has revealed
an unprecedented class of synchronization transition and clarified the
core mechanisms underlying it, underlining that analytic continuation
may also be valuable in understanding emergent properties of net-
worked nonlinear dynamical systems45.

The extreme synchronization transition studied above may have
general relevance to real-world problems. In applications, the occur-
rence of extreme transitions impacts our ability of ensuring or pre-
venting strong forms of synchrony. For instance, strong synchrony
shall be avoided in neural diseases such as Parkinson’s or epilepsy, yet
extreme transitions may induce strong synchrony immediately past
seizure onset. Similarly, while synchrony in terms of phase locking is
required to operate an electric power grid, strong synchrony in the
sense of close-to-identical phases prevents efficient power flow
between network nodes46. We may exploit extreme transitions in
technical systems such as swarmalators, compare47. For example,
when implementing coupled nonlinear oscillator systems with

extreme transition features in swarms of unmanned aerial vehicles
(UAVs)or ground-based robots,wemayexploit theparticular variables
that exhibit extreme synchronization transitions to enable a tightly
synchronized state that in turn enables a self-organized clocking
scheme for robust communication48–50. How and under which condi-
tions extreme transitions to synchrony may arise in such different
systems also constitute open questions for future research.

Our results raise a number of intriguing conceptual and technical
questions. For instance, which role do the sizes of the basins of attrac-
tion and hysteresis phenomena play in making transitions extreme or in
inducing such pronounced transitions already at small or moderate
system size (see Supplementary Information for examples: Fig. S8)?
Under which conditions does intrinsic disorder shift to other variables
or, more generally, does each of the features (i)-(iv) that indicate an
extreme transition also arise beyond synchronization phenomena?

Data availability
The data can be reproduced from the codes in Mathematica, which are
publicly accessible: https://github.com/NetworkSync/ExtremSyncTrans.
git. The data that support the findings of this study are also available
from the corresponding author upon request.

Code availability
We did not use any specific custom-made code; our analyses relied on
standard ODE solvers, algebraic equation solvers (root finders) and
eigenvalue solvers available in Mathematica, which are publicly
accessible: https://github.com/NetworkSync/ExtremSyncTrans.git.
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