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Incentive-driven transition to high ride-sharing
adoption
David-Maximilian Storch 1, Marc Timme 1,2 & Malte Schröder 1✉

Ride-sharing—the combination of multiple trips into one—may substantially contribute

towards sustainable urban mobility. It is most efficient at high demand locations with many

similar trip requests. However, here we reveal that people’s willingness to share rides does

not follow this trend. Modeling the fundamental incentives underlying individual ride-sharing

decisions, we find two opposing adoption regimes, one with constant and another one with

decreasing adoption as demand increases. In the high demand limit, the transition between

these regimes becomes discontinuous, switching abruptly from low to high ride-sharing

adoption. Analyzing over 360 million ride requests in New York City and Chicago illustrates

that both regimes coexist across the cities, consistent with our model predictions. These

results suggest that even a moderate increase in the financial incentives may have a dis-

proportionately large effect on the ride-sharing adoption of individual user groups.
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Sustainable mobility1–6 is essential for ensuring socially,
economically, and environmentally viable urban life7,8.
Ride-sharing (sometimes also referred to as ride-pooling)

constitutes a promising alternative to individual motorized
transport by private cars or single-occupant taxi cabs, currently
dominating urban mobility9. In ride-sharing, one vehicle trans-
ports multiple passengers simultaneously by combining two or
more trip requests with similar origin and destination. In contrast
to analog on-street hailing of taxi rides, digital app-based ride-
hailing services are especially suited to implement ride-sharing
due to easy access to the information required to match different
trips.

By combining different individual trips into a shared ride, ride-
sharing increases the average utilization per vehicle, reduces the
total number of vehicles required to serve the same demand10 and
thereby mitigates congestion and negative environmental impacts
of urban mobility11,12. Hence, encouraging ride-sharing for trips
that would otherwise be conducted in a single-occupancy
motorized vehicle is preferable from a systemic perspective12–15.

Previous research focused on developing algorithms to imple-
ment large-scale ride-sharing16 as well as the potential efficiency
gains derived from aggregating rides9,17,18. Recent analyses sug-
gest that large-scale ride-sharing is most efficient in densely
populated urban areas9,10,17–19 since matching individual rides
into shared ones without large detours becomes easier with more
users, increasing both the economic and environmental efficiency
as well as the service quality of the ride-sharing service17,18,20.
Yet, if and under which conditions people are actually willing to
adopt ride-sharing remains elusive21–28. In particular, it is unclear
how to encourage an ever growing number of ride-hailing users
to choose shared rides over their current individual mobility
options29–31.

In this article, we disentangle the complex incentive structure
that governs ride-hailing users’ decisions to share their rides—or
not. In a game theoretic model of a one-to-many demand con-
stellation we illustrate how the interactions between individual
ride-hailing users give rise to two qualitatively different regimes
of ride-sharing adoption: one low-sharing regime where the
adoption decreases with increasing demand and one high-sharing
regime where the population shares their rides independent of
demand. Analyzing ride-sharing decisions from approximately
250 million ride-requests in New York City and 110 million in
Chicago suggests that both adoption regimes coexist in these
cities, consistent with our theoretical predictions. Our findings
indicate that a small increase in financial incentives may dis-
proportionately increase the adoption of ride-sharing for indivi-
dual user groups from a low to a high-sharing regime.

Results
Contrasting ride-sharing adoption. Currently, only a small
fraction of people adopts ride-sharing even in high-demand
situations, despite all its positive aspects32. For example, among
more than 250 million ride-hailing requests served in New York
City in 2019 less than 18% were requests for shared
transportation33. Moreover, the city’s ride-sharing activity varies
strongly across different parts of the city, in particular at locations
with a high number of ride-hailing requests (see Fig. 1): For
instance, in the East Village and Crown Heights North the frac-
tion of shared ride requests is relatively high, while it is low at
both John F. Kennedy and LaGuardia airports, locations that
would intuitively be especially efficient for sharing rides. Several
other location throughout New York City as well as Chicago
exhibit similarly contrasting ride-sharing adoption (see Supple-
mentary Notes 1 and 2 for details). These findings hint at a
complex interplay of urban environment, demand structure and

socio-economic factors that govern the adoption of ride-sharing.
To disentangle these complex interactions, we introduce and
analyze a game theoretic model capturing essential features of
ride-sharing incentives, disincentives as well as topological
demand structure.

Ride-sharing incentives. The decision of ride-hailing users to
request a single or a shared ride reflects the balance of three
fundamental incentives22,26: financial discounts, expected detours
as well as uncertainty about the duration of the trip, and the
inconvenience of sharing a vehicle with strangers. Strong corre-
lations between the adoption of ride-sharing and (in)direct

Fig. 1 Contrasting ride-sharing adoption despite high request rate in New
York City. Fraction of shared ride requests from different origins (red)
served by the four major for-hire vehicle transportation service providers in
New York City by destination zone (January - December 2019)33. Gray
areas were excluded from the analysis due to insufficient data (see
Methods). The fraction of shared ride requests differs significantly by origin
and destination with a complex spatial pattern across destinations, even
though the average overall request rate is similar for all four origin
locations. a, b Some areas, such as East Village and Crown Heights North,
show a high adoption of ride-sharing services. c, d Despite a similarly high
request rate, other locations, such as JFK and LaGuardia airports, show a
significantly lower adoption of ride-sharing services.
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measures of the three incentives (see Supplementary Notes 1
and 2, including Supplementary Figs. 5 and 7) confirm the
importance of these incentives found in detailed empirical studies
of ride-sharing user experiences as well as focus group
interviews21,23–25,27,28,34–38. Together, discounts, detours and
inconvenience affect the ride-sharing adoption as follows (Fig. 2):

Discounts: Ride-sharing is incentivized by financial discounts
granted on the single ride trip fare, partially passing on savings
of the service cost to the user. Often, these discounts are
offered as percentage discounts on the total fare such that the
financial incentives usharefin > 0 are approximately proportional to
the distance or duration dsingle of the requested ride,
usharefin ¼ ϵ dsingle, where ϵ denotes the per-distance financial
incentives. In many cases, these discounts are also granted if
the user cannot actually be matched with another user into a
shared ride39,40.

Detours: Potential detours ddet to pickup or to deliver other
users on the same shared ride discourage sharing. The magnitude
of this disincentive usharedet < 0 increases with the detour ddet.

Inconvenience: Sharing a ride with another user may be
inconvenient due to spending time in a crowded vehicle or due to
loss of privacy22,24,25. This disincentive ushareinc < 0 scales with the
distance or duration dinc users ride together.

In the following we take usharedet / ddet and ushareinc / dinc,
describing the first order approximation of these disincentives

and matching the linear scaling of the financial incentives with
the relevant distance or time.

These incentives for a shared ride describe the difference Δu in
utility compared to a single ride or another mode of transport.
The overall utility of a shared ride is then given by

ushare ¼ usingle þ Δu

¼ usingle þ usharefin þ usharedet þ ushareinc

¼ usingle þ ϵ dsingle � ξ ddet � ζ dinc

ð1Þ

where the utility usingle for a single ride describes the benefit of
being transported, as well as the cost and time spent on the ride.
The factors ϵ, ξ and ζ denote the user’s preferences. By rescaling
the utilities (measuring in monetary units), ϵ directly denotes the
relative price difference between single and shared rides whereas ζ
and ξ quantify the importance of inconvenience and detours
relative to the financial incentives (see Supplementary Note 3 for
details).

For a given origin-destination pair with fixed single ride
distance dsingle, financial incentives are constant for a given
discount factor ϵ. In contrast, detour and inconvenience
contributions depend on the destinations and sharing decisions
of other users. Their magnitude depends on where these users are
going and on the route the vehicle is taking for a shared ride (see
Methods). The decision to share a ride is determined by the
expected utility difference (see Fig. 2)

E½Δu� ¼ E½ushare� � E½usingle� ð2Þ
where E[ ⋅ ] signifies the expectation value over realizations of
other users’ destinations and sharing decisions conditional on
one’s own sharing decision.

Ride-sharing coordination game on networks. To understand
how these incentives determine the adoption of ride-sharing, we
study sharing decisions in a stylized city network41 with a com-
mon origin o in the center (e.g., a central downtown location) and
multiple destinations d (illustrated in Fig. 3). Two rings define
urban peripheries equidistant from the city center. Branches
represent cardinal directions of destinations. Requests for shared
rides will only be matched along adjacent branches, if the shared
ride reduces the total distance driven to deliver the users and to
return to the origin compared to single rides, consistent with a
profit-maximizing service provider. Pairing at most two users
who request a shared ride, the problem of matching shared ride
requests reduces to a minimum-weight-matching with an efficient
solution, eliminating the influence of heuristic matching
algorithms16,18 (see Methods for details).

In this one-to-many setting, users requesting a shared ride
would only share a ride if they make their requests within some
small time window τ. Therefore, we consider a game with S= s τ
users traveling to a uniformly chosen destination location, where
s denotes the average request rate. These users have the option to
book a single ride or a shared ride at discounted trip fare. Their
decision to share depends on their expected utility difference
E[Δu(d)] [Eq. (2)], now depending on their respective destination
d. Users observe their respective utility differences E[Δu(d)] over
a number of rides and adapt their sharing decision to maximize
their expected utility. Eventually, users’ sharing decisions
converge to the equilibrium probabilities π*(d), reflecting an
optimal response that maximizes the utility of users going to
destination d (see Methods for details).

At fixed discount ϵ and preferences ζ and ξ ride-hailing users
may decrease their overall adoption of ride-sharing 〈π*〉 as the
total number S of users increases (see Fig. 3a, blue), even though
ride-sharing becomes more efficient with higher user numbers.

Fig. 2 Trade-offs between incentives determine the decision to share a
ride, or not. a Shared rides offer advantages and disadvantages compared
to single rides. On the one hand, they offer financial discounts typically
proportional to the distance of a direct single ride (blue, dotted). On the
other hand, rides shared with strangers may include detours compared to a
direct trip to pickup or deliver these other passengers (orange, solid
compared to dotted) and may be inconvenient due to other passengers in
the car (e.g., loss of privacy or less space, green). b The decision to book a
shared ride depends on the balance of all three factors. If the expected
utility difference E½Δu� ¼ E½ushare� � E½usingle� between a shared and a single
ride is positive, the financial discounts overcompensate detour and
inconvenience effects; users share. If E[Δu] is negative (as illustrated),
users prefer to book single rides.
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Here 〈 ⋅ 〉 denotes the average over all destinations d. While for
small request rates everybody is requesting shared rides (Fig. 3b),
a distinctive sharing/non-sharing pattern emerges along the
branches of the city network upon higher demand (Fig. 3c, d),
before the adoption of ride-sharing eventually fades out for high
request rates, S≫ 1 (Fig. 3e). This observation offers a novel
perspective on the prevalent conclusion that increased demand
improves the shareability of rides9,18. While more rides are
potentially shareable, less people may be willing to share them.

The underlying incentives explain this phenomenon: Ideally, a
user wants to book a shared ride (financial incentive) but without
actually sharing the ride (inconvenience and detour). This
discrepancy is consistently observable also in public vocalization
of user sentiment about shared ride experiences21,24,28, and
exemplarily summarized by the user quote ’Every time I take a
[shared ride] and it ends up being just me the entire ride I feel like
a genius’27. The expected detour and inconvenience mediate a
repulsive interaction between the sharing decisions of ride-hailing
users, turning ride-sharing decisions into a complex anti-
coordination game. For small request rates, i.e., small numbers
of concurrent users S, the probability pmatch(d) for a user with
destination d to be matched with other users is low (see Fig. 3a,
gray). Consequently, the expected detour E½ddetðdÞ� ¼
pmatchðdÞ E½ddetðdÞ j match� is also small (analogously for the
inconvenience). As illustrated in Fig. 3b, bottom, financial
incentives outweigh the expected disadvantages of ride-sharing

such that everybody is requesting shared rides, π*(d)= 1 for all
destinations d, but is only rarely matched with another user. As
the number of users S increases, the provider can pair ride
requests more efficiently given constant sharing decisions,
∂pmatch(d)/∂S > 0, resulting in more requests that are actually
matched with another user (see Fig. 3a). Consequently, the
expected detour and inconvenience also increase. However,
instead of reducing the average adoption of ride-sharing
homogeneously across all destinations, neighboring destinations
adopt opposing sharing strategies (see Fig. 3b). In this sharing
pattern, only destinations in identical cardinal direction can and
will be matched into a shared ride, minimizing the detours for
shared requests and simultaneously disincentivizing other users
to start sharing due to high expected detours (Fig. 3c–e bottom).
As the number of users S increases further, the probability
pmatch(d) would also increase at given sharing adoption π(d). This
leads to an adoption of mixed sharing strategies where the
financial discounts and the expected inconvenience are exactly in
balance (Fig. 3d, e). Further numerical simulations demonstrate
that this transition robustly exists also for heterogeneous demand
distribution across the destinations, asymmetric street network
topologies modeled by different origin locations within the
network, for stochastic utility functions and imperfect informa-
tion, as well as under different matching strategies by the
service provider (see Supplementary Note 4 with Supplementary
Figs. 10–14, 17).

Fig. 3 Adoption of ride-sharing decreases with request rate. In a stylized city topology (panels b–e) users request transportation from a single origin
(gray) to destinations in the city periphery homogeneously (results are robust for alternative settings, see Supplementary Note 4). a The global equilibrium
adoption of ride-sharing decreases as the number of users increases (blue) while the number of actually shared rides becomes constant (gray). The kink
for S= 3 is an artefact related to the small and odd number of requests and matching of exactly two requests per vehicle such that one request can never
be paired (see Supplementary Note 3 for details). b–e As the number of users increases, ride-sharing adoption decreases and a sharing/non-sharing
pattern emerges around the origin (top), resulting from the equilibrium incentive balance (bottom, illustrated for the numbered destinations) and possible
matching constellations. Requests for shared rides are only matched when traveling to the same or to neighboring branches when the combined trip and
return is shorter than the sum of individual trips. With few requests (S= 2, panel b), all users request a shared ride. The expected detour and
inconvenience is small since it is unlikely to be matched with another user. As the number of users increases (S= 4, panel c), half of the destinations stop
sharing in an alternating sharing/non-sharing pattern around the origin. In this configuration, users requesting a shared ride never suffer any detour while
users that do not share are disincentivized from doing so due to their high expected detour (compare bottom part of panel c). For high numbers of users
(S= 12 and 30, panels d and e), the probability to be matched with another user when requesting a shared ride increases and the financial incentives
cannot fully compensate the expected inconvenience. The adoption of ride-sharing decreases until the financial incentives exactly balance the expected
inconvenience (panels d and e, bottom). Illustrated here for financial discount ϵ= 0.2 and inconvenience and detour preferences ζ= 0.3 and ξ= 0.3.
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Naturally, if the discount ϵ is sufficiently large such that the
financial incentives completely compensate the expected incon-
venience, ϵ > ζ, all users share also in the high request rate limit,
S→∞. In this limit, dsingle= dinc as detours disappear,
E½ddet� ! 0, due to an abundance of similar requests. This
transition is robust to changes of the model details, though under
different matching strategies where detours remain possible in the
high demand limit (see Supplementary Fig. 17), the financial
incentives required to achieve high sharing adoption may be
larger.

Figure 4 a summarizes these results in a phase diagram for the
ride-sharing decisions as a function of financial discounts per
inconvenience tolerance, ϵ/ζ, and number of users S, illustrating
under which conditions the users adopt ride-sharing (high-
sharing regime) and under which conditions the users only share
partially or not at all (low-sharing regime).

For fixed values of financial discounts ϵ relative to the
inconvenience preference ζ of the users, different behavior
emerges (Fig. 4a): If ϵ/ζ is sufficiently large (ϵ/ζ > 1), the system
is in the high-sharing state and all users request a shared
ride (SShare ¼ S). Otherwise (ϵ/ζ < 1), the system transitions from
the high- to a partial and finally to the low-sharing state
(compare Fig. 3). Figure 4b illustrates the scaling of SShare in both

cases as S increases. In the low-sharing regime, SShare eventually
becomes constant for large S, such that SShare=S ! 0 as S→∞
(compare Fig. 3a). This implies a discontinuous phase transi-
tion between low-sharing and high-sharing regimes for
large S when the financial incentives exactly balance the
inconvenience, ϵc/ζc= 1 (see Supplementary Note 3 and Supple-
mentary Fig. 9).

For heterogeneous preferences within the population (e.g.,
different preferences of the individual users requesting rides from
the same location) the transition robustly persists per user type. If
ϵ/ζi < 1 for parts of the local ride-hailing users, identified by their
destination and preferences, these individuals transition from
high- to low-sharing as the demand S increases. The other part of
the population, for whom ϵ/ζi > 1, remains in the high-sharing
state. Macroscopically, the system appears to be in a partial-
sharing state even at very high demand (compare Fig. 4c), but in
fact subsets of the population adopt opposing sharing strategies.
The state of ride-sharing adoption across a city, i.e. across
different origins each with a different distribution of inconve-
nience parameters and demand for rides S, is described by a
superposition of these mixed states (see Fig. 4d). Macroscopically,
the system may appear to be in a hybrid state of partial- and low-
sharing adoption, even when the aggregate population on average

Fig. 4 Transition from low to high ride-sharing adoption. a Phase diagram of the fraction of shared rides Sshare=S for different relative importance of
financial and inconvenience incentives ϵ/ζ. Ride-sharing is adopted dominantly if the financial discount fully compensates the expected inconvenience, ϵ/ζ
> 1 (high-sharing, dark blue). Otherwise, the total number of shared ride requests saturates and the overall adoption of ride-sharing decreases with
increasing number of users S (low-sharing, compare Fig. 3a). In the limit of infinitely many requests S→∞ the transition becomes discontinuous (see
Supplementary Note 3). b Qualitatively different sharing behavior emerges for different relative incentives ϵ/ζ (compare red lines in panel a). When ϵ/ζ > 1
all users request shared rides (Sshare ¼ S, dark blue triangles). When ϵ/ζ < 1, the system is in a low-sharing regime where users request shared rides at low
numbers of users S but the number of shared ride requests saturates and becomes constant at high S (Sshare, light green triangles). c Hybrid states of high-
and low-sharing adoption may emerge if users with heterogeneous preferences ϵ/ζ mix and interact. A fraction of users (for whom ϵ/ζ > 1) is in the high
sharing regime (blue). The others (green, for whom ϵ/ζ < 1) decrease their ride-sharing adoption as the overall demand increases, consistent with the
prediction for homogeneous user preferences (panel b). Macroscopically, the system exhibits partial ride-sharing adoption (gray). d The superposition of
different realizations of this partial ride-sharing adoption represents the expected outcome in a city with multiple origins, each with heterogeneous
preference distributions and demand (see Methods for parameters and Supplementary Note 4 for simulation details). While the macroscopic state
suggests partial ride-sharing adoption, individual origins and user groups split into a mix of low- and high- sharing states, following the fundamental
adoption regimes from the basic model.
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satisfies E[ϵ/ζ] > 1 (see Methods, Supplementary Note 3 and
Supplementary Figs. 15–16 for simulation details).

Ride-sharing activity in New York City and Chicago. Ride-
sharing adoption across different parts in New York City (taxi
zones) and Chicago (community areas), illustrated in Fig. 5 (see
Methods and Supplementary Notes 1 and 2 for details), matches
the qualitative sharing behavior expected for multiple origins with
heterogeneous preferences and demand (compare Fig. 4d and
Supplementary Note 4).

At locations with a low request rate s, the number of shared
ride requests increases approximately linearly with more requests,
sShare � s. Though even in the low demand limit, the ride-sharing
adoption in New York City and Chicago, corresponding to the
diagonal branches in Fig. 5a, b, is below 100% (approximately

20% in New York City and 40% in Chicago). In terms of our ride-
sharing game, the remaining fraction of requests for single rides
may correspond to a user group with high relative importance of
inconvenience compared to financial incentives, ϵ/ζ≪ 1, or that
otherwise does not consider sharing as an option. In this
interpretation, the smaller value for New York City is consistent
with a large fraction of high-income and business customers in
Manhattan who likely place a higher value on convenience than
financial incentives.

At higher request rates, sharing decisions differ by origin zone
and split between low and partial sharing states (compare Fig. 1).
In New York City (Fig. 5a), Crown Heights North and East
Village exhibit a relatively high ride-sharing adoption in line with
that observed in low demand zones, indicating ϵ is sufficiently
large to compensate the expected inconvenience and detour
effects for a significant fraction of the users. Other origins with a

Fig. 5 Ride-sharing adoption in New York City and Chicago is consistent with the predicted high- and low-sharing regimes. a, b Sharing decisions for
New York City and Chicago (blue dots) distribute between the two branches corresponding to the high- and low-sharing regime, consistent with the model
predictions under heterogeneous user preferences (compare Fig. 4). At low request rates, the number of requests for shared rides increases linearly with
the total number of requests (compare red diagonal). At high request rates, the sharing decisions differ between locations (compare Figs. 1 and 4, see also
Supplementary Note 1 and 2). As inconvenience preferences ζ are naturally heterogeneous in the cities, adoption is in a hybrid low/high-sharing state. c–f
Ride-sharing adoption is consistently higher across destination zones in the high-sharing regime compared to the low-sharing regime. The predominantly
linear increase of the number of shared rides in New York City as demand increases suggests broadly sufficient financial compensation of sharing
disutilities, or, alternatively a very broad range of user preferences, leading to a stable fraction of ride-sharing adoption. However, the slope of the high-
sharing branch indicates that only about 20% of ride-hailing users consider ride-sharing as an option. While about 40% of requests are shared in the high-
sharing regime in Chicago, this potential is largely not realized. The available data points at locations with relatively high request rate indicate a growth with
the request rate that is much weaker than on average for the entire data set, or even absent, consistent with the low-sharing regime observed in our model.
Seven large downtown zones in Chicago with up to 50 requests per minute (not shown) fall in between the high- and low-sharing state, likely representing
the average of sharing behavior over a diverse population of ride-hailing users as expected for users with heterogeneous preferences (see Supplementary
Fig. 6 for details).
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similarly high request rate, such as JFK and LaGuardia airports,
do not follow this trend and exhibit a smaller number of shared
ride requests. In terms of our model, we expect that sShare has
largely saturated in these zones and the given financial incentives
do not outweigh the perceived inconvenience of ride-sharing. In
particular at the airports, it seems plausible that financial
incentives for ride-sharing are less important to users in the
context of already costly plane tickets. In Chicago (Fig. 5b), we
find high-demand zones with an approximately constant number
of shared ride requests, consistent with the low-sharing regime
(horizontal branch sShare ¼ const: in our model). In contrast, no
zones with high demand show the same, relatively high ride-
sharing adoption as zones with low demand. Some large
downtown zones in Chicago with up to 50 requests per minute
fall in the partial sharing regime expected for zones that
effectively aggregate sharing decisions over a broad distribution
of user preferences.

Discussion
Ride-sharing bears a large potential in the transition towards
more sustainable mobility9,17. Yet, it remains poorly understood
how to unlock this potential due to the complex interplay of
demand patterns, matching algorithms, available transportation
options, urban environments and the relevant incentive structure
governing the adoption of shared rides. We have introduced a
game theoretical model capturing incentives for and against
ride-sharing from a user perspective, reflecting the major incen-
tives found in empirical studies of users’ ride-sharing
experience21,23–28. The model offers mechanistic insight into
the collective effect of these incentives on individual ride-sharing
decisions, unveils a discontinuous transition towards high overall
ride-sharing adoption, and consistently explains the qualitative
adoption of ride-sharing observed from 360 million empirical trip
records from New York City and Chicago.

The ratio of financial discounts to inconvenience preferences
acts as the control parameter in the model, separating two dis-
parate regimes of ride-sharing adoption: one where the number of
shared rides increases as the overall demand for rides increases
(high-sharing regime) and one where it saturates (low-sharing
regime), despite more efficient matching options and less detour
as demand increases. Both regimes are separated by a regime with
partial ride-sharing adoption that disappears in the high-demand
limit. These results complement the finding of increased potential
shareability of rides in high-demand settings9,17 and may help to
increase the service adoption to realize the full potential of ride-
sharing under these conditions.

For homogeneous preference types across the user base, the
adoption switches abruptly from the low adoption to the high
adoption regime with a small change of the financial incentives
and the transition between the two regimes becomes dis-
continuous (see Supplementary Note 3 for a mathematical proof).
For heterogeneous preference types, as naturally expected in real
cities with diverse population groups, the discontinuous transi-
tion robustly persists per user type. Macroscopically, however,
heterogeneous preferences may induce a broad variance in the
sharing adoption and yield mixed sharing decisions between the
high- and -low sharing limit, blurring the abrupt transition
towards high ride-sharing adoption as financial incentives
increase. In line with our model predictions under spatially het-
erogeneous preferences, ride-sharing adoption observed in 360
million ride-sharing decisions from New York City and Chicago
is broadly distributed across the cities, bounded between the high-
and low-sharing regime (compare Figs. 4 and 5). Hence, the
results above provide a consistent theoretical model and offer a
possible explanation of qualitative features of ride-sharing

adoption in urban environments, based on empirical model
ingredients. The mechanisms captured by the model are inde-
pendent of details of the incentive structure, utility functions, or
matching and service scheme applied by the provider. We illus-
trate this robustness for a wide range of different conditions
beyond those illustrated in Fig. 3, including non-symmetric city
topologies, heterogeneous demand distribution across possible
destinations, noisy or imperfect information or decision-making,
different strategies for matching rides, as well as for different
simulation parameters (see Supplementary Note 4). However,
deriving specific quantitative predictions from the model would
require more detailed knowledge about users’ preferences beyond
the linear utility function assumed in our model. While the linear
scaling in our model captures the basic features of the interac-
tions, other models commonly assume a threshold dynamic to
describe the impact of detour9,17. In addition, correlations in the
demand structure and non-local matching of rides with different
origins as well as the interplay between different service providers
may also affect ride-sharing adoption. Similarly, the heterogeneity
of ride-sharing adoption across different parts of the cities,
expected in the low-sharing regime, seems to be dominated by
socio-economic factors rather than by the pattern formation
dynamics observed in our model network42.

Future research may investigate in more detail the impact of
inconvenience on the adoption of ride-sharing, but also extend
the analysis to additional factors such as users’ sustainability
attitudes, explicit risk aversion in the light of detour uncertainty,
or mode choices with regard to public transportation alternatives.
Our model description may already provide a theoretical frame-
work for many of these factors influencing ride-sharing adoption
on an aggregate level. For example, sustainability or uncertainty
preferences to first approximation scale with the additional dis-
tance driven and may thus be effectively described by the detour
preference. Similarly, alternative public transport options may be
captured by modifying the effective financial discount and relative
inconvenience preferences for individual destinations.

The sharp transition to high-sharing adoption predicted by our
model for any given set of preferences of a user, suggests that even
a moderate increase of financial incentives or a small improve-
ment in service quality may disproportionately increase ride-
sharing adoption of user groups currently in the low-sharing
regime under a broad range of conditions. On the other hand, the
overall low fraction of shared ride requests observed in the
empirical trip records, even in the high-sharing regime, suggests
that an additional societal change towards acceptance of shared
mobility is required43 to make the full theoretical potential of
ride-sharing accessible9,17. A carefully designed incentive struc-
ture for ride-sharing users adapted to local user preferences is
essential to drive this change and to avoid curbing user adoption
or stimulating unintended collective states44,45. This is particu-
larly relevant in the light of increasing demand as urbanization
progresses1. In the broader context of macroscopic mode-choice
behavior, e.g. between private car, ride-hailing or public trans-
port, results and extensions of our model should be considered
also from the perspective of rebound effects, such as more traffic
induced by higher demand counteracting the benefits of ride-
sharing. Nonetheless, the overall impact of more attractive ride-
sharing on sustainability of urban transport is likely to be
positive12,27. Overall, the approach introduced above can serve as
a conceptual framework to work towards sustainable urban
mobility by regulating and adapting incentives to promote ride-
sharing in place of motorized individual transportation.

Methods
New York City ride-sharing data. We analyzed trip data of more than 250 million
transportation service requests delivered through high-volume For-Hire Vehicle
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(HVFHV) service providers in New York City in 2019. The data is provided by
New York City’s Taxi & Limousine Commission (TLC)33 and consists of origin
and destination zone per request, pickup and dropoff times, as well as a shared
request tag, denoting a request for a single or shared ride. We compute the average
request rate across all data throughout 2019 taking 16 hours of demand per day as
an approximate average.

For fixed origin-destination pairs we determine the sharing fraction as the ratio
of the total number of shared ride requests and the total number of requests.
Departure and destination zones represent the geospatial taxi zones defined by
TLC33. However, we exclude zones without geographic decoding, nor name tag
defined by TLC. For each individual analysis, we fix the origin zone and compute
the fraction of shared rides to destination zones.

To illustrate the spatial sharing adoption (shown in Figs. 1 and 5c, e), we
exclude destination zones where the total number of requests is less than 100 trips
in the whole year 2019 to avoid excessive stochastic fluctuations (see
Supplementary Note 1 and Supplementary Methods for details). We include these
trips in the calculation of the average sharing fraction of the zone though they do
not affect the averages due to their small number (102 compared to about 108 trips
in total).

Chicago ride-sharing data. We additionally analyzed more than 110 million trips
delivered by three service providers in Chicago in 2019. The data is provided
through the City of Chicago’s Open Data Portal and contains, amongst others,
information of trip origin, destination, pickup and dropoff times as well as
information whether a shared ride has been authorized46. While information is
available on whether a request was matched with another user, the flag denotes all
consecutive trips where the vehicle was not empty, even if the passengers never
shared part of their trip. We restrict ourselves to geospatial decoding of the city’s 77
community areas, as well as trips leaving or entering the official city borders. In
analogy to New York City, we compute the average request rate across all data for
2019 taking 16 hours of demand per day as an approximate average reference time
and repeat the analysis explained for New York City.

City topology. For our ride-sharing model we construct a stylized city topology
that combines star and ring topology41. Starting from a central origin node, rides
can be requested to 12 destinations distributed equally across two rings of radius 1
(inner ring) and 2 (outer ring), as depicted in Fig. 3. The distances between
neighboring nodes on the same branch are set to unity. Correspondingly, the
distances between neighboring nodes are π/3 on the inner, and 2π/3 on the
outer ring.

Ride-sharing adoption. We compute the equilibrium state of ride-sharing adop-
tion by evolving the adoption probabilities π(d, t) following discrete-time replicator
dynamics47,48

πðd; t þ 1Þ ¼ rðd; tÞ πðd; tÞ; ð3Þ
where the reproduction rate r(d, t) at destination d and time t is

rðd; tÞ ¼ E½ushareðd; tÞ�
E½uðd; tÞ� ¼ usingleðdÞ þ E½Δuðd; tÞ�

usingleðdÞ þ πðd; tÞE½Δuðd; tÞ� ð4Þ

and E[X] represents the expectation value of random variable X. Conceptually,
each user observes their utility difference between single and shared rides over a
number of rides (e.g. using the service for week) and then adjusts their strategy π
(d, t) for the next time step. Users thus effectively learn their optimal equilibrium
strategies where they cannot increase their utility by changing their decisions.

We realize this process in the following way: We prepare the system in an initial
state π(d, 0)= 0.01 of ride-sharing adoption for all destinations d, modeling the
emergence of sharing. We fix the utility for a single ride usingle(d)= 4 (unless stated
otherwise) to ensure positivity of Eqn. (4). The value of usingle effectively controls
the step size of the algorithm with usingle→∞ corresponding to the continuous
time limit of the replicator equation. The choice of usingle does not affect the
equilibrium states (Δu= 0 or π*∈ {0, 1}) and only determines the speed of
convergence (compare Supplementary Fig. 18). To evolve Eqn. (3), we numerically
compute E½ushareðd; tÞ� ¼ E½uðd; tÞjshare� at each replicator time step t: We generate
n= 100 samples of ride requests of size S of which at least one goes to destination d
and requests a shared ride. The other S− 1 requests are drawn from a uniform
destination distribution. Each of them realizes a sharing decision in line with the
current probability distribution πðd0; tÞ at their respective destination d0 at time t.
Shared ride requests are matched pairwise (see below). From these n= 100 game
realizations, we compute the conditional expected utility of sharing. We repeat this
procedure for all destinations d and then update all probabilities π(d, t) according
to Eqn. (3).

Before performing measurements on the system’s equilibrium observables, we
evolve the system for 20000 replicator time steps, corresponding to two million
game realizations per destination. We discard a transient of 19000 replicator time
steps and quantify the degree of fluctuations per π(d) around its mean value over
time for the last 1000 time steps. If fluctuations do not exceed a threshold of two
percentage points we consider the system equilibrated. Else, we continue to evolve
the system for another 5000 replicator time steps, test whether the equilibration

threshold is met, and potentially repeat the procedure. The average ride-sharing
adoption 〈π(d)〉 over the last 1000 replicator time steps represents a proxy for the
stationary solution π*(d) of Eqn. (3) and is plotted as the sharing fraction in Figs. 3
and 4. In Supplementary Fig. 19 we quantify the degree of fluctuations per
parameter constellation in the phase diagram in Fig. 4a and demonstrate a high
degree of equilibration, much better than the required threshold.

Heterogeneous preferences. Simulations for users with heterogeneous con-
venience preferences are carried out for fixed inconvenience parameters ζi for dif-
ferent user types. To determine the equilibrium ride-sharing adoption per user type,
we repeat the equilibration procedure as explained in the previous paragraph, but
the S requests consist of randomly chosen user types with different inconvenience
preferences. The probability to draw a user with preference ζi is given by the
exogenous parameter Pr[ζi] (see Supplementary Note 4 and Supplementary Fig. 15).

To produce Fig. 4c we fix ϵ= 0.2, ζ1= 0.172 and ζ2= 0.270. The probabilities to
draw ζ1 or ζ2 are Pr[ζ1]=0.4 and Pr[ζ1]=0.6, respectively. Other values yield
qualitatively similar results (see Supplementary Note 4 for details). To compute the
macroscopically observed combined contribution of shared ride requests from both
user types (gray in Fig. 4c), we sum the number of shared ride requests from the
two user types for given total demand S.

To study the approximate macroscopic ride-sharing dynamics of a real city we
superimpose 600 origin zones with different local demand for rides and local
differences in convenience preferences of users (compare Fig. 4d). Per origin we
determine the local demand S from an exponential distribution (see Supplementary
Note 4 for details). Per origin, users may segment into three groups of convenience
preference types ζi∈ {0.175, 0.225, 0.275}. The probabilities Pr[ζi] govern the
distribution of convenience types per origin. Note that the distribution also
determines for how many people, on average, ϵ overcompensates potential
inconvenience effects.

Across origins we fix the macroscopic average ratio of financial incentives to
inconvenience at E[ϵ/ζ ]= 1.05, hinting at a full-sharing state at the aggregated
level. We draw the probabilities (Pr[ζ1], Pr[ζ2], Pr[ζ3]) from a normal distribution
with mean E[ϵ/ζ ]= 1.05 and standard deviation σ= 0.085, fixing the local ratio of
financial incentives to expected inconvenience parameters (see Supplementary
Fig. 16).

Matching. Each request set of size S decomposes into single and shared ride
requests. We realize the optimal pairwise matching of requests as follows: For
shared requests we construct a graph whose nodes correspond to requests and
edges encode the distance savings potential of matching the two requests. To
determine the distance savings potential we assume that, independent of single or
shared ride, the provider has to return to the origin of the trip.

After constructing the shared request graph we employ the ’Blossom V’
implementation of Edmond’s Blossom algorithm to determine the maximum
weight matching of highest distance savings potential49,50. The matching
determines the routing and the realization of inconvenience and detour (see
Supplementary Note 3 for more details). Since in the model all user requests are
served, this matching strategy is consistent with a profit maximizing service
provider.

Data availability
The trip record dataset for New York City is available in the Taxi & Limousine
Commission’s (TLC) public repository https://www1.nyc.gov/site/tlc/about/tlc-trip-
record-data.page as ’High Volume For-Hire Vehicle Trip Records’33. The trip record
dataset for Chicago is available on Chicago’s Open Data portal https://data.cityofchicago.
org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p as
’Transportation Network Providers - Trips’46. The simulation datasets generated from
the game theoretical model in the current study are available upon reasonable request to
the authors.

Code availability
Full details on the data analysis and game theoretic modeling are provided in the
Supplementary Information. The simulation code is available in the public Github
repository ’PhysicsOfMobility/ridesharing-incentives’, https://doi.org/10.5281/
zenodo.463050851.
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