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Abstract—We consider a continuous-time bandlimited additive
white Gaussian noise channel with 1-bit output quantization.
On such a channel the information is carried by the temporal
distances of the zero-crossings of the transmit signal. The set
of input signals is constrained by the bandwidth of the channel
and an average power constraint. Under a set of assumptions,
we derive a lower bound on the capacity by lower-bounding the
achievable rate for a given set of waveforms with exponentially
distributed zero-crossing distances. We focus on the behaviour
in the high signal-to-noise ratio regime and characterize the
achievable rate depending on the available bandwidth and the
signal-to-noise ratio.

I. INTRODUCTION

For very high data rate short link communication the
power consumption of the analog-to-digital converter (ADC)
becomes a major factor, also compared to the transmit power.
This is due to the required high quantization resolution and
the very high sampling rate. One option to circumvent this
is coarse quantization and oversampling at the receiver w.r.t.
to the Nyquist rate, as one-bit quantization does not require
highly linear analog signal processing. Obviously, optimal
communication over the resulting channel requires an adapted
modulation and signaling scheme as the information is carried
in the zero-crossing time instants of the transmitted signal. The
question is, how this affects the channel capacity compared to
an additive white Gaussian noise (AWGN) channel quantized
with high resolution and sampled at Nyquist rate. Previously,
in [1] simulative approaches on bounding the achievable rate
in a discrete-time scenario are studied. In [2], [3], the achiev-
able rate is evaluated via simulation for different signaling
strategies. For the noise free case, analytical approaches can
be found already in [4] and [5], where it has been shown
that oversampling can increase the information rate. Moreover,
for the low signal-to-noise ratio (SNR) domain in [6] it was
shown that oversampling increases the capacity per unit-cost of
bandlimited Gaussian channels with 1-bit output quantization.
In [7] it was proven that oversampling increases the achievable
rate based on the study of the generalized mutual information.

An analytical evaluation of the channel capacity of the 1-bit
quantized oversampled AWGN channel is still open. As a
limiting case, in the present work, we study the capacity of the
underlying continuous-time 1-bit quantized channel. Without
time quantization, there is no quantization in the information
carrying dimension. Its capacity is obviously upper-bounded
by the AWGN channel as given by Shannon [8]. The channel
in question corresponds to some extent to a timing channel
as, e.g., studied in [9]. Given the outlined application scenario

n(t)

+

L
P
W

L
P
W

M
a
p
p
er

1
-b
it

A
D
C

Z
er
o
-

cr
o
ss
in
g

d
et
ec
to
rDemapper

A(K) D(M)
x(t) x̂(t) r(t)

1-bit continuous time channel

y(t)

Fig. 1. System model

of short range multigigabit/s-communication, we focus on the
mid to high SNR domain. We derive a lower bound on the
capacity of the bandlimited continuous-time additive Gaussian
noise channel with 1-bit output quantization. The derivation is
based on certain approximations and simplifications, which
will be clearly stated and are suitable in the mid to high
SNR domain. We show that the achievable rate increases with
the bandwidth for an appropriately chosen input distribution
but saturates over the SNR. Moreover, we observe that the
ratio between our lower bound and the AWGN capacity is a
constant independent of the bandwidth for a given SNR and
the appropriately chosen input distribution.

II. SYSTEM MODEL AND DESIGN PARAMETERS

We consider the system model depicted in Fig. 1. All
information that can be conveyed through such a channel is
encoded in the time instants of the zero-crossings.1 Hence,
the channel input and output vectors, A(K) = [A1, ...,AK ]T

and D(M) = [D1, ...,DM ]T contain the temporal distances
Ak and Dm of two consecutive zero-crossings of the transmit
signal x(t) and the received signal r(t), respectively. Here, K
is not necessarily equal to M as noise can add or remove zero-
crossings. The corresponding processes are denoted A and D.

We assume that the time instants of the zero crossings can
be resolved with infinite precision, which makes Ak and Dm
continuous random variables. We consider the input symbols
Ak to be i.i.d. exponentially distributed with

Ak ∼ λe−λ(a−β)1[β,∞)(a) (1)

since this is entropy maximizing for continuous random
variables supported on the interval [β,∞) with given mean.
Here, 1[u,v](x) is the indicator function. This results in a
mean symbol duration of

Tavg = 1/λ+ β. (2)

1Note that one additional bit is carried by the sign of the signal. However,
its effect on the mutual information between channel input and output can
be neglected when studying the capacity as it converges to zero for infinite
blocklength.
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Fig. 2. Mapping from input sequence A(K) to x(t)

The mapper converts the random vector A(K) into the
continuous-time transmit signal x(t) as illustrated in Fig. 2.
The signal x(t) alternates between ±

√
P̂ with zero-crossings

at the times Tk and peak power P̂ . The transition between
the levels is modeled by a cosine waveform, yielding

x(t) =
(∑K

k=1

√
P̂ (−1)kg(t− Tk)

)
+
√
P̂ (3)

with the pulse shape

g(t) =

(
1− cos

(
πt

β

))
·1[0,β] + 2·1[β,∞). (4)

The transition time β is chosen according to the available
bandwidth W of the channel with

β =
1

2W
. (5)

For λ→∞ this leads to a one sided signal bandwidth of W .
However, x(t) is only almost bandlimited, with a small portion
of its energy outside of the interval [−W,W ]. Strict bandlimi-
tation is ensured by the lowpass (LP) filters at transmitter and
receiver, which are considered to be an ideal LP with one-
sided bandwidth W and amplitude one. The LP-filtered signal
x̂(t) is transmitted over a continuous-time AWGN channel.
The received signal after quantization and LP-filtering is
given by y(t) = Q(x(t) + z(t)) where z(t) = n̂(t) + x̃(t) is
the distortion introduced by the filtered white Gaussian noise
n̂(t) and the distortion x̃(t) = x(t)− x̂(t) due to LP-filtering.
Throughout our analysis, x̃(t) is approximated to be Gaussian.
This enables closed form analytical treatment of the problem.
Furthermore, Q(·) denotes a binary quantizer with threshold
zero, i.e., Q(x) = 1 if x ≥ 0 and Q(x) = −1 if x < 0.

The noise n(t) is zero-mean additive white Gaussian noise
with power spectral density (PSD) N0/2. Its filtered version is
n̂(t) has the PSD

Sn̂(f) =

{
N0/2 for |f | ≤W
0 otherwise

. (6)

Accordingly, the variance of the Gaussian noise is σ2
n̂ = N0W

and the variance of x̃(t) is given by σ2
x̃ = E

[
|x(t)− x̂(t)|2

]
.

The signal-to-noise ratio is defined as

ρ =
P

N0W
(7)

where P is the average power of x(t)2. It is given by

P =
P̂

Tavg

(∫ β

0

cos2
(
π

β
t

)
dt+

1

λ

)
=

1
2 + 2Wλ−1

1 + 2Wλ−1
P̂ . (8)

2Note, that the actual SNR is ρ∗ = (P−σ2
x̃ )/(N0W ) < ρ. Hence, the

results we obtain for ρ are actually achievable with ρ∗, s.t. the lower bound
on the achievable rate is maintained. As we only obtain an upper bound on
σ2
x̃ , cf. Section VI, we do not know ρ∗ and, thus, define the SNR as ρ in (7).

III. ACHIEVABLE RATE AND ERROR EVENTS

The capacity of the communication channel is defined as
the supremum of the mutual information rate over all input
distributions with constrained average power P and bandwidth
W . The mutual information rate is hereby defined as

I ′ (A;D) = lim
K→∞

1

KTavg
I
(
A(K);D(M)

)
(9)

with I
(
A(K);D(M)

)
being the mutual information. We omit

the evaluation of the supremum, but derive a lower bound on
the capacity based on the input signal described in Section II.

The channel can alter the zero-crossings of the received
signal r(t) w.r.t. x(t) by shifts, leading to an error in magnitude
of Ak, or a pair of zero-crossings can be either introduced
or deleted, leading to insertion or deletion of symbols. In-
sertion and deletion channels have been studied to the best
of our knowledge only for binary channels via combinatorial
approaches, e.g., [10], [11]. For the considered input signals
and the high SNR scenario, we neglect deletions since Ak ≥ β.
In this regard consider, that two sampling points of the band-
limited noise with distance β can be considered uncorrelated
and, thus, the probability of the noise remaining high over the
complete duration of Ak ≥ β is low, cf. [12, Appendix E].

The remaining error events, are shifts denoted below by the
process S and insertions denoted by the process V of zero-
crossings. Both can be analyzed separately using the idea of
a genie-aided receiver as in [11]. We provide the information
V to the receiver, such that it can remove the additional zero-
crossings. The resulting channel output is D̂. For the mutual
information rate in case the receiver has the side information
about the inserted zero-crossings it holds

I ′(A; D̂) = I ′(A;D,V). (10)

By applying the chain rule to (10), we can write for the mutual
information rate in (9)

I ′(A;D) = I ′(A;D,V)− I ′(A;V|D). (11)

For the characterization of the auxiliary process V, we con-
sider the transmission of one input symbol Ak. Its bounding
zero-crossings Tk−1 and Tk will be shifted to T̂k−1 and T̂k
by the noise process such that

T̂k = Tk + Sk (12)

where Sk is a shift in time caused by the noise z(t). Further-
more, additionally introduced zero-crossings will divide the
input symbol into a vector of corresponding received symbols.
The latter is reversible, if the receiver knows which zero-
crossings correspond to the originally transmitted symbol. The
receiver could sum up all those received distances Dm in order
to obtain D̂k. Hence, starting from the first received symbol
onwards, the auxiliary sequence V(K) consists of positive
integer numbers Vk ∈ N, representing for each input symbol
the number of corresponding output symbols. As V is discrete,
we can bound the information rate in (11) by

I ′(A;D) = I ′(A;D,V)−H ′(V|D) +H ′(V|D,A)
≥ I ′(A;D,V)−H ′(V) (13)



where (13) results from the fact that the entropy rate is non-
negative and that conditioning cannot increase entropy.

The proof of the existence of a coding theorem remains for
future research. In the following, we will derive bounds on
I ′(A;D,V) and H ′(V).

IV. ACHIEVABLE RATE OF THE GENIE-AIDED RECEIVER

To evaluate I ′(A; D̂) of the genie-aided receiver, cf. (13) and
(10), we have to evaluate the mutual information rate between
the sequence of temporal spacings between the zero-crossings
of the input signal A(K) and genie-aided channel output D̂

(K)
.

Note, that in contrast to the original channel, here both vectors
are of same length. The only error remaining is a shift Sk of
every zero-crossings instant Tk to T̂k. On a symbols level we
can write for the channel output

D̂k = T̂k − T̂k−1 = Ak + Sk − Sk−1 (14)

For the given system model, two assumptions are reasonable
(A1) the shifts Sk are independent
(A2) there is only one zero-crossing in each transition

interval
[
Tk − β

2 ,Tk +
β
2

]
Assumption (A1) is due to the fact that any Sk and Sk−1 are
spaced at least time β apart, which is above the coherence time
of the noise. Likewise, due to the bandlimitation of the noise
additional zero-crossings are very unlikely within the transition
interval leading to (A2). Further details are given in [12].

A. The Distribution of the Shifting Errors
The distribution of the Sk can be evaluated by mapping the

probability density function of the additive noise z(Tk) at the
time instant Tk by the function

z(Tk) = −
√
P̂ sin

(π
β
Sk
)

(15)

into the zero-crossing error Sk on the time axis. The mapping
depends on the slope of the transition waveform. As r(t) is
bandlimited, it can be described adequately by a sampled
representation with sampling rate 1/β to fulfill the Nyquist
condition, cf. (5). Note that we refer to sampling only to
evaluate the value of z(t) at the certain time instant Tk of
the original zero-crossing. We still assume the receiver to be
able to resolve the zero-crossing time instants with infinite
resolution. As the exact distributions of x̃(t) is unknown, we
approximate it by a Gaussian distribution with the same mean
and variance. As n̂(t) and x̃(t) are independent, we obtain

σ2
z = σ2

n̂ + σ2
x̃ = N0W + σ2

x̃ (16)

and z(t) ∼ N (0, σ2
z ). As we are focusing on the mid to high

SNR behaviour of the capacity, the zero-crossing errors Sk
are with high probability small in comparison to the transition
time β such that we can assume s/β � 1. Hence, the
zero-crossing errors Sk can be approximated to be zero-mean
Gaussian distributed with variance

σ2
S =

σ2
z

4π2W 2P̂
. (17)

The validity of the high SNR assumption is analyzed in [12,
Appendix B]. It holds for SNR of approximately ρ ≥ 6 dB.

B. Lower Bound on I ′(A; D̂)

The mutual information between the temporal spacings of
the zero-crossings of the channel input signal A(K), and the
zero-crossings of the signal at the output of the genie-aided
receiver D̂

(K)
is given by

I
(
A(K); D̂

(K)
)
= h

(
A(K)

)
− h
(
A(K)|D̂

(K)
)

= h
(
A(K)

)
− h
(
A(K) − Â

(K)

LMMSE

∣∣∣D̂(K)
)

(18)

where h(·) denotes the differential entropy. Moreover, Â
(K)

LMMSE
is the linear minimum mean-squared error estimate of A(K)

based on D̂
(K)

. Equality (18) follows from the fact that
addition of a constant does not change differential entropy
and the fact that Â

(K)

LMMSE can be treated as a constant while
conditioning on D̂

(K)
. Next, we will upper-bound the second

term on the RHS of (18). This term describes the randomness
of the linear minimum mean-squared estimation error while
estimating A(K) based on the observation D̂

(K)
. It can be

upper-bounded by the differential entropy of a Gaussian
random variable having the same covariance matrix [13,
Th. 8.6.5]. The estimation error covariance matrix of the linear
minimum mean-squared error (LMMSE) estimator is given by

R(K)
err = E

[ (
A(K) − Â

(K)

LMMSE

)(
A(K) − Â

(K)

LMMSE

)T ]
= σ2

AI
(K) − σ4

A

(
σ2
AI

(K) + σ2
SR

(K)
S

)−1
(19)

where

σ2
AI

(K)=E
[(
A(K)− µA

)(
A(K)− µA

)T ]
=λ−2I(K) (20)

with µA = E
[
A(K)

]
=
(
β + λ−1

)
1(K), cf. (2), and where

(20) follows from the fact that the elements of A(K) are
independent exponentially distributed, see (1). Furthermore,
I(K) is the identity matrix of size K × K and 1(K) is the
all one column vector of length K. Moreover, σ2

SR
(K)
S is the

covariance matrix of the shifting error, cf. (14), i.e.,

σ2
SR

(K)
S = σ2

S


2 −1 0 ... 0

−1 2 −1
. . .

...

0 −1 2
. . . 0

...
. . . . . . . . . −1

0 ... 0 −1 2

 (21)

of size K ×K. Here, we have used that Sk − Sk−1 is zero-
mean. Thus, we get

h(A(K) − Â
(K)

LMMSE

∣∣D̂(K)
) ≤ 1

2
log det

(
2πeR(K)

err

)
(22)

yielding for the mutual information in (18)

I(A(K); D̂
(K)

) ≥ Kh(Ak)

+
1

2
log det

(
(2πe)−1

(
σ−2A I(K)+σ−2S (R

(K)
S )−1

))
(23)



where the first term of (23) follows as the Ak are i.i.d. and for
the second term we have used (19) and the matrix inversion
lemma. With (23) the mutual information rate in (10) is lower-
bounded by

I ′(A; D̂)≥ h(Ak)
Tavg

+
1

2Tavg

∫ 1
2

− 1
2

log
σ−2A +σ−2S S−1S (f)

2πe
df (24)

where for (24) we have used Szegö’s theorem on the asymp-
totic eigenvalue distribution of Hermitian Toeplitz matrices
[14, pp. 64-65], [15] with SS(f) being the PSD corresponding
to the sequence of covariance matrices R

(K)
S . It is given by

SS(f) = 2(1− cos(2πf)). |f | < 0.5. (25)

As the Ak are exponentially distributed, we get h(Ak) = 1−
log(λ). With this and (2), (5), (17), (20), the lower bound in
(24) can be written as

I ′(A; D̂) ≥ 1

2Tavg

{
log
( e

2π

)
+ arcosh

(
1

2σ2
Sλ

2
+ 1

)}
=

W

1+2Wλ−1

{
log
( e

2π

)
+arcosh

(
2π2W 2P̂

σ2
zλ

2
+1

)}
. (26)

V. THE PROCESS OF ADDITIONAL ZERO-CROSSINGS

In order to bound the rate I ′(A;D) without the side in-
formation V provided to the receiver, it remains to find an
explicit expression or an upper bound for H ′(V), cf. (13). For
every input symbol Ak the random variable Vk, describing
the number of received symbols corresponding to a transmit
symbol, depends on the number Nk of introduced zero-
crossings by Vk = Nk + 1. Based on (A2) we do not need to
consider the transition intervals as they just contain the shifted
zero-crossings. It remains the time Tsat = E[Ak] − β = λ−1

in which the signal level ±
√
P̂ is maintained, leading to a

level-crossing problem, which has been widely studied, e.g.,
in [16], [17]. Leveraging those results, we derive a bound on
H ′(V) based on E[Vk]. By applying the Rice formula [16],
we obtain

µ = E[Vk] =
1

π

√
−s′′zz(0)
σ2
z

exp

(
− P̂

2σ2
z

)
λ−1 + 1. (27)

Here, szz(τ) is the autocorrelation function (ACF) of z(t),
which is approximated as a Gaussian process as stated above,
and s′′zz(τ) = ∂

∂τ2 szz(τ). For −s′′zz(0) < ∞, it holds that
µ <∞. Analogously to (16), we get

s′′zz(0) = −
4

3
N0W

3 + s′′x̃x̃(0) (28)

where s′′x̃x̃(0) is finite for finite bandwidths W , cf. Section VI.
We upper-bound H ′(V) based on the entropy of a geometric
distribution with mean µ, cf. (27) and [12, Appendix C], using

H(Vk) ≤ (1− µ) log (µ− 1) + µ logµ. (29)

All time intervals with maximum signal level ±
√
P̂ are

spaced by the transition time β apart and, hence, the Vk can
be considered i.i.d. Thus, for the entropy rate V of we get

H ′(V) =
1

Tavg
H(Vk). (30)

Note that the bound on H(Vk) is an increasing function in
µ. Furthermore, the expected number of level-crossings of a
random Gaussian process increases with its variance. Hence,
to upper-bound (27) an upper bound for σ2

z and, thus, for σ2
x̃

is required. An upper bound on σ2
x̃ results in a lower bound

on s′′x̃x̃(0), cf. Section VI, as the two parameters depend on the
ACF of the noise process and cannot be chosen independently.
Both bounds will be derived in the next section.

VI. SIGNAL DISTORTION BY LOWPASS-FILTERING

The distortion x̃(t) of x(t) introduced by the LP-filter
can be quantified by the clipped energy, using the mean
squared error σ2

x̃ as distortion measure. As we consider a
rectangular filter with cutoff-frequency W , the PSD of x̃(t) is
SX̃(f) = SX(f) for |f | > W and zero otherwise. Applying
Parseval’s Theorem, we obtain

σ2
x̃ = lim

T→∞

1

2T

∫ T

−T
E
[
x̃2(t)

]
dt =

1

π

∫ ∞
2πW

SX(ω)dω (31)

as SX(ω) is even. The PSD SX(ω) is given by [12, Section VI]

SX(ω) = lim
K→∞

E
[
|X(ω)|2

]
KTavg

(32)

=
2P̂ (1+cos(ωβ))

Tavg

[
π2

ω(π2−ω2β2)

]2
×
(
1+2 lim

K→∞

K−1∑
n=1

(−1)n
(
1− n

K

)
E[cos(ωLn)]

)
(33)

where n = k− j is the index describing the distance between
two arbitrary zero-crossing instances and Ln = Tk−Tj is the
corresponding random variable with probability distribution

pL(ln)=
λne−λ(ln−nβ)(ln−nβ)n−1

(n−1)!
, n≥1, ln≥nβ. (34)

The infinite sum in (33) is upper-bounded by [12, Section VI]

c(ω) =
λ√

λ2+ω2−λ
. (35)

Hence, the PSD can be bounded as

SX(ω)≤
2P̂ (1+2c(ω))

Tavg
(1+cos(ωβ))

[
π2

ω(π2−ω2β2)

]2
. (36)

With (36) bounds on σ2
x̃ and s′′x̃x̃(0) can be computed. For

σ2
x̃ we get with (31) and (36)

σ2
x̃ ≤

(1 + 2c1)P̂ β

2Tavgπ2
[3 Ci(2π)− 3γ − 3 log(2π)

−π2 + 4π Si(π)− π Si(2π)
]

(37)

where γ ≈ 0.577 is the Euler-Mascheroni constant, Si(·)
and Ci(·) are the sine- and cosine-integral functions, and
c1 = λ/(

√
λ2 + 4π2W 2 − λ) involving a further bounding step

for |ω| ≥ W on the monotone decreasing function c(ω) in
(35). Furthermore, the second derivative of sx̃x̃(τ) is given by

s′′x̃x̃(τ)=
∂2

∂τ2
sx̃x̃(τ)=

1

π

∫ ∞
2πW

SX(ω)
∂2

∂τ2
cos(ωτ)dω (38)
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Fig. 3. Lower bound on I′(A;D) in comparison to the AWGN capacity

where the exchangeability of differentiation and integration
has been shown via Lebesgue’s dominated convergence the-
orem [18, Theorem 1.34], with the dominating function
g(ω) = ω2SX(ω). As in (38) ∂2

∂τ2 cos(ωτ)
∣∣
τ=0

= −ω2 and
since SX(ω) is positive for all ω, an upper bound on SX(ω)
results in a lower bound on s′′x̃x̃(0) given by

s′′x̃x̃(0) ≥−
(1 + 2c1)P̂

2Tavgβ
[π2 − γ

− log(2π)− π Si(2π) + Ci(2π)]. (39)

VII. LOWER BOUND ON THE ACHIEVABLE RATE

Substituting (2), (5), (10), (26), (29), and (30) into (13), a
lower bound on the achievable rate of the 1-bit quantized time
continuous channel is given by

I ′(A;D) ≥ I ′(A;D) =
2W

2Wλ−1 + 1

[
1

2
log
( e

2π

)
+
1

2
arcosh

(
2π2W 2P̂

σ2
zλ

2
+1

)
+µ log

(
µ−1
µ

)
−log(µ−1)

]
(40)

with the equalities and inequalities (16), (27), (28), (37), and
(39). Fig. 3 shows the lower bound in (40) for different SNRs
ρ, see (7), where both axis are normalized by λ.

The achievable rate saturates for high bandwidths W due
to the limited randomness of the input signal controlled by λ.
The average symbol duration Ak is then large compared to the
coherence time of the noise such that the expected number of
additional zero-crossings within Ak becomes significant. For
comparison also the capacity of the AWGN channel without
output quantization is given, which is an upper bound to
the capacity of the continuous-time 1-bit quantized channel
studied in the present paper. It can be seen, that the lower
bound is relatively tight for W/λ in the order of 1. In order
to avoid saturation of the achievable rate by the chosen input
distribution, the randomness of the input signal needs to be
matched to the channel bandwidth, which is achieved by
allowing λ to grow linearly with W , i.e., fixing the operation
point on the abscissa in Fig. 3. It can be shown that I ′(A;D)
is a constant fraction of CAWGN in case W/λ and ρ are fixed.

Furthermore, Fig. 4 shows that the lower bound I ′(A;D)
saturates for increasing SNR. Differently, the AWGN capacity
increases logarithmically with the SNR without bound.
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