Communication with 1-Bit Quantization and
Oversampling at the Receiver: Spectral Constrained
Waveform Optimization

Sandra Bender, Lukas Landau, Meik Dorpinghaus, and Gerhard Fettweis
Vodafone Chair Mobile Communication Systems
Technische Universitidt Dresden, 01062 Dresden, Germany
Email: {sandra.bender, lukas.landau, meik.doerpinghaus, fettweis} @tu-dresden.de

Abstract—In case of wideband communications the analog-
to-digital converter becomes a power consumption implemen-
tation bottleneck. Alternatively, transmission schemes based on
coarse (1-bit) quantization and oversampling at the receiver
can be beneficial. In this regard, information is conveyed in
the zero-crossings. However, in presence of spectral constraints
the waveform design becomes a challenge. In this work, faster-
than-Nyquist BPSK signaling is considered, where runlength
limited sequences are applied in order to engineer intersymbol
interference. In addition, to further improve the achievable rate,
the waveform is optimized by applying a suboptimal design
criterion which corresponds to a convex optimization problem. A
rate improvement of 10 to 20 percent by optimizing the waveform
is observed, in comparison to Gaussian pulses, considering the
spectral mask for the IEEE 802.11ad standard. For all cases,
the simulation results show that using run-length limited input
sequences is superior in terms of achievable rate as compared to
independent uniformly distributed input symbols.

I. INTRODUCTION

The continued demand for faster communication systems is
driving data rates well beyond 10Gb/s. E.g., in [1] the scenario
of board-to-board communication is investigated, considering
data rates of 100 Gbit/s at carrier frequencies in the range
between 100-300 GHz. Digitizing the signal with a bandwidth
of 10 GHz and beyond imposes challenging requirements on
the frontend, namely the analog-to-digital converter (ADC).
Surveys, e.g. [2], show that power limited high sampling rates
come at the price of coarse quantization. In addition, todays
reduced supply voltage of scaled-down CMOS circuits leaves
only a small voltage headroom for amplitude processing.
But their short switching times make it feasible to increase
resolution in time, i.e., processing in time domain [3].

Considering this, using an ADC with coarse (1 bit) quantiza-
tion can be beneficial as the low resolution can be compensated
by higher signaling and sampling rates. This is also in line
with two earlier studies. On one hand, Mazo [4] showed rate
improvements when applying faster-than-Nyquist signaling
(FTN). On the other hand, Shamai [5] showed that for a
specific bandlimited process at least

I = log,(M + 1) [bits per Nyquist interval] (1)

This work is supported in a part by the German Research Foundation (DFG)
in the Collaborative Research Center “Highly Adaptive Energy-Efficient
Computing”, SFB912, HAEC.

are achievable when sampling the sign M-times faster than
the Nyquist rate. In the present work we apply FTN signaling
in combination with M-fold oversampling at the ADC with
respect to the signaling rate under 1-bit quantization at the
receiver.

More recently, in [6] it was shown for the low signal-
to-noise ratio (SNR) regime, that the capacity per unit-cost
can be increased by oversampling w.r.t. Nyquist rate. For the
high SNR regime, benefits in terms of achievable rate were
shown in [7] due to oversampling. Other studies consider
scenarios without hard bandlimitation. For example, [8] and
[9] demonstrate that appropriate sequence design based on 4-
ASK symbols is beneficial in terms of the achievable rate. Fur-
thermore, binary sequence design and faster-than-Nyquist sig-
naling is considered in [10]. Unlike the aforementioned work,
the present investigation considers spectral constraints that are
part of almost all wireless communication systems. Therefore
the contribution of this work can be summarized as follows

« compliance with a spectral mask according to the IEEE
802.11ad standard is assured,

e it is shown that runlength limited (RLL) sequences
are appropriate input sequences in order to resolve the
intersymbol interference (ISI) imposed by the spectral
constraints and in combination with FTN rates above the
intuitive one bit per Nyquist interval for binary inputs can
be achieved,

« optimized waveforms provide a further increase in achiev-
able rate and a further rate improvement can be achieved
by oversampling w.r.t. the signaling rate.

For the remainder of the paper, the following notation will
be applied: z!, = [zy,...,z;]7 and z! for u = 1, respectively,
are sequences of the values of a process {z} from time instant
u to I while z; is the value of {z} at time instant [. Vectors
are denoted by y and, equivalently, ¥!, = [y,,...,y;]7 and
y, refer to sequences and time instances of the corresponding
vector, respectively.

II. SYSTEM MODEL

The considered system model is depicted in Fig. 1. The RLL
input sequence consists of input symbols x;. RLL sequences
have a number of special properties as adjustable robustness
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Fig. 1. Continuous time baseband system model

to ISI and spectral characteristics that will be briefly explained
in Section IIL

The digital input is digital-to-analog converted with the
signaling rate f T% and pulse shaped by the real valued
filter v(t). Hereby, due to FTN signaling, f; can be arbitrarily
high as long as the spectral constraints are not violated. The
signal s(t) is then transmitted over the additive white Gaussian
noise (AWGN) channel with noise power density Ny /2. At the
receiver the signal is filtered with g(t) = v(T; — ). Then the
overall channel impulse response corresponds to the autocor-
relation of transmit and receive filter, respectively. Thus while
optimizing the overall channel impulse response h(t) = v(t) %
g(t), the spectral characteristics of g(¢) are known through

H(f)=|G(f). )

This significantly relieves the complexity of optimization.
The received signal is then given by

oo

z(t) = ( Z 216 (t —1Ts) * v(t) + n(t)) xg(t). ()
l=—00

After filtering, the received signal is passed to the ADC where
it is sampled with frequency fsamp = M fs, i.e., oversampled
by factor M. Then, corresponding to every symbol x; we get
a received vector

Y, = Qu{z} = Q1 {HUz|_; +Gnj 1} )
of length M, where
1, for z;.,, > 0
Q1{zim} = b (5)
—1, otherwise

is the 1-bit quantization function. L., denotes the channel
memory introduced by h(t), and U is the data upsampling
matrix of size M (Ley +2) — 1 X Ly + 1. Its entries for the
ith row and jth column are given by

for i = jM
otherwise

(6)

The vector m; represents the M samples of the Gaussian
white noise. L % + 1, with L., being even due to the
filtering assumed above, is the number of noise vectors to be
considered in order to account for the correlation introduced

on the noise signal by the receive filter g(t).

The filter matrices H of size M x M (L, +2) — 1 and G
of size M x M(L, + 1) represent the discrete convolution.
Thus, they contain the sampled coefficients of the filters h(t)

and g(t), with b = [hy, ho,...,hn,] and g = [g1, 92, ..., 9N, ]
respectively, and have Toeplitz structure

rhn, hwn,—1 h1 0 0 0
0 hn, ho hi 0 O
H = . . . >
L O 0 hn, ha  hy
'gNg gNg—1 g1 0 0 0 0
0 gnN, g2 ¢ 0 0 0
G=| . . . . I )
L 0 0 9N, g2 g1 O

where Ny, = M (Le, + 1) and N, = M Ly, are the lengths of
the filters h and g, respectively. As a result, the noise variance
and correlation at the receiver depends on v(t) with the noise
correlation matrix R being

R=o0,(GG") 7
2

where o; is the noise energy per sample. At the receiver,
perfect synchronization is assumed.

Regarding the spectral constraints it is referred to the
established 60 GHz communications. It can be assumed that
the basic characteristics of the mask will remain towards for
frequencies. We consider the latest IEEE 802.11ad-mask [11].
Its 3 dB-frequency f34p.mask is 0.98 GHz, which is going to be
the reference in terms of bandwidth.

III. PROPERTIES OF RUNLENGTH LIMITED SEQUENCES

RLL sequences have been widely studied in the field of
magnetic and optical recording [12]. The term runlength refers
to the number of consecutive alike symbols and is limited
by two constraints: a minimum and a maximum runlength,
respectively.

The concept of RLL sequences is very closely related to
so called dk-sequences. These are binary sequences where
every 1 has to be followed by at least d and at most k zeros.
The mapping from dk-sequences to RLL sequences is known
as non-return-to-zero-inverse (NRZI) coding, where every one
will translate into a zero-crossing. This is illustrated in the
following example:

i=[.1, 0, 1, 0, 0, 1, 0, 1,..] dk-seq.

r=1[.1, 1, -1, -1, —1, 1, 1, —1,...] RLL seq.

The constraints d and k on the dk-sequences translate
into minimum and maximum runlength d + 1 and k + 1,
respectively. This is the key to the tunable ISI robustness
of RLL sequences as minimum runlength controls the
maximum transition frequency within the signal and, hence,
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Fig. 2. State diagram of d-sequence

has an impact on (destructive) ISI when transmitting over
a bandlimited channel. For the remainder of this work we
consider £k — oo, such that the k-constraint vanishes. Fig. 2
shows the state diagram of the resulting d-sequence, where
p, denotes the probability of the transition back to state
one, which results in the occurrence of symbol “one”. The
capacity of such a sequence can be given by [12]

C(d,00) =logy A (8)

with A being the largest real root of 2%*t! — 2¢ — 1 = 0. For
so called ideal or max-entropic sequences, the dk-spectrum is
given in [12]. For the special case k — oo, it can be written

1 pidtDw |2
1 TN —eiw)
X(w) == 9
) F sin? (%) ‘1 L eittne 27 ®)
Ad(A—eiw)

where F = ﬁ (ZEL — L) is the expectation of the run-

length. Intuitively, X (w) narrows down with increasing d. This
then impacts the remaining bandwidth for the transmission
pulse A(t).

IV. FILTER DESIGN
A. Gaussian Pulses

Simulations with a Gaussian transmission pulse were con-
ducted to obtain general insights on the system performance.
Under the consideration of FTN signaling and the spectral
constraints, the achievable rate will be defined as

L [bits per 3dB-interval],

(10)
2 f3dB Mask

Lo = Ipcu
where I, is the information rate per channel use (pcu), i.e.,
per T, fs = % is the signaling rate, and f34p Mask 18 the 3dB-
frequency of the spectral mask. In Fig. 3 (a) Ip, is depicted
for different d- and SNR-values. For very high SNR it can be
seen, that until a certain value of f; is reached, I, remains
constant at the values C(d,c0). At higher fy, I, starts to
decrease due to longer filter length w.r.t. the symbol duration
(and, hence, higher ISI) in order to comply with the spectral
mask. It can be concluded that after weighting by /5/2 faus s
said point is the maximum of the achievable rate ..

It was found that those maxima of I,¢, relate to the filter
coefficients of the discrete representation h of h(t). In the case
of the applied binary signaling in order to achieve the input
capacity C(d,0), zero-crossing (ZC) must not be erased.
For independent input symbols, this would correspond to
evaluating the eye opening of the filter. However, for the RLL-
sequences this means, that the filter must be such that a block
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Fig. 3. For a Gaussian filter and M = 1: (a) information rates pcu for
SNR=20dB and very high SNR (SNR — o0) and (b) the minimum eye
opening ¢ and zero-crossing visibility € of the corresponding filter
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Fig. 4. Example for transmitted and received sequence for M =1, d = 2

of d 4+ 1 consecutive alike symbols cannot be erased. This
will be further termed Visibility of Zero-Crossings”. Recall
that the filter h(¢) is symmetric. Let y; be the quantized and
sampled channel output for an input sequence xf*_’i withz; =1
and ¢ = % Then

e =min (X - h) (11)

is half the minimum eye opening for any filter h(t) with
discrete representation h. The matrix X contains in every line
a valid RLL-sequence x/ " with 2; = 1. For the visibility of
ZC only a subset of X has to be considered: £ = min(X - h),
where X contains all RLL input sequences of length L., + 1
given (a) x; = 1 (as before) and (b) the surrounding x;;
symbols are also equal to 1, with j = —| 4], —[4|+1, ..., [2].

The difference between both concepts is again illustrated in
Fig. 4: For the exemplary filter and d = 2, ¢ < 0, i.e. a positive
transmitted symbol z; can be flipped, which is happening to
the light blue symbols in the figure. However, the ZC visibility
€ > 0, i.e. thanks to the dark blue symbol the receiver still
knows that before there has been a sequence of three ones,
which is the minimum runlength for d = 2.

This is confirmed by the second part of the simulation
results in Fig. 3 (b), where € and € are depicted. Following



the vertical lines in both parts of the figure, it can be seen
for very high SNR: When & > 0 also I, = C(d, c0) holds.
However, this setup is very noise sensitive as can bee seen for
SNR = 20dB, where the eye opening € < 0 covers better the
behaviour of I;.,. Hence, if noise resilience is desired, the eye
opening is a suitable optimization objective.

B. Convex Optimization

It can be seen that the filter g = [g1, 92, ..., gn,] of length
N, with the corresponding transfer function in frequency
domain G(w) has to be optimized such that |G(w)| < U(w),
where the U(w) results from the combination of the spectral
mask and the code spectrum of z'. This is not necessarily a
convex problem, however, Wu and Boyd [13] found that it
is possible to solve such kind of problem by replacing the
optimization variable g by its autocorrelation

12)

where (1) holds due to Equation (2). This yields always a
convex problem

find h = [hl,hz,...,hNh’]T
subject to 0 < H(w;) < U?(w;), wi € i=1,...,m;

where all w; are equidistantly distributed over the frequency
range of interest (2. Due to the method being developed for
discrete filters, 2 C [0,7]. In order to assure that the full
characteristic of the spectral mask can be captured within
[0, 7], the resolution during optimization has to be augmented.
A resolution grid of Ny = 3 sample points per symbol duration
T, is chosen.

C. Waveform Optimization

The eventual goal of the waveform optimization is to
maximize or at least increase the information rate. However,
it can only be computed numerically for the channel model
established in Section II. This prevents us from using the
information rate directly as objective regarding the waveform
optimization. In Section IV-A, the eye opening has been
introduced as suitable optimization objective. Recall that the
filter is not discrete but just represented by a set of sampling
points according to the oversampled grid N;. Due to the
oversampling at the receiver, M of said Nj filter samples per
symbol are of interest as they contribute to the received signal.

When maximizing ¢ as proposed in Section IV-A, the
structure of the input sequence is the main influence factor.
The minimum eye opening will be maximized depending
on the allowed d-constrained input sequences, such that the
optimization problem over h from Section IV-B results to

maximize ¢
subject to 0 < H(w;) < U?(w;), w; € .

< (13)
min (Xh) > ¢

1
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Fig. 5. Optimized pulses for M =1 (ﬂ = f\/(QfgdB‘Md*k))

V. NUMERICAL EVALUATION
A. Filter Optimization Results

The optimization was implemented using CVX, a convex
optimization toolbox [14]. Thereby, we found that a filter
length of Nj, = 13 is sufficient for the implementation in terms
of a complexity-accuracy-tradeoff. The results are depicted
in Fig. 5. It can be observed that with increasing signaling
rate, due to the required increase in narrowness in frequency
domain, the filter response becomes wider and flatter in time
domain. As mentioned before, the computed filter values are
calculated on a grid %i, N = 3.

B. Achievable Rate and Bit Error Performance

In order to evaluate the system performance, the achievable
rate as stated in Eq. (10) has been chosen as as metric.
Simulation-based computation of a lower bound for Iy, is
applied [15] based on the forward recursion of the BCJR [16]
algorithm. It holds

lim lI(X";Y”)
2~ logy W(Y™) + —logy, W(Y"[a").

The auxiliary channel W (-) was chosen as proposed in [17]

Pr(Y, = y;lz, 4" ") = Pr(Y, = y;|z]_) (15)

1 1 -
B / 2nm72 P (—2 ((z0 = )R (20 — u»T)) dz,
Y

i

with u, = HU a:ff L., and the quantization region
Y;: = {z1|Q1{z1} = y,}. The symbol error rate is determined
using symbolwise MAP sequence detection. For all simula-
tions, the SNR is defined as

E[s*()]
No 2 f3dB.Mask

fS

SNR = (16)

The high SNR results depicted in Fig. 6 confirm that the
application of RLL sequences is superior in terms of maximum
achievable rate compared to independent uniformly distributed
inputs (d=0). This is due to their increased ISI robustness
which enables higher f; while still achieving /., = C(d, 00)
despite increased ISI by longer filters. Furthermore, pulse
optimization leads to a considerable performance improvement
(of 10 to 20 percent) compared to non-optimized pulses. In
Fig. 7 it can be seen that the symbol error rate (SER) remains
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Fig. 7. Symbol error rate results for an SNR of 20 dB and M =1

roughly stable during optimization (the black dots mark the
corresponding rate maximums).

The dependency of the maximum achievable rate on the
SNR is depicted in Fig. 8. Exemplarily, the origins of the
performance improvements are labeled in the figure. It can be
observed that threefold oversampling w.r.t. the signaling rate
improves the low SNR performances but has less influence on
the high SNR performance. Twofold oversampling was con-
sidered as well, however, it leads to sampling at zero-crossings
and therefore ambiguities in the BCJR decoder. Furthermore,
waveform optimization as well as the combination of RLL
input and FTN can produce significant performance increases.

VI. CONCLUSION

The performance of a spectral constrained AWGN channel
and RLL input sequences was considered. It was observed that
higher d-constrained inputs allow for higher signaling rates,
which results in an increased achievable rate compared to
independent uniformly distributed symbols. It was found that
the eye opening is a suitable suboptimal optimization objective
for the waveform design which allows for convex optimization.
Significant performance improvements (10 to 20 percent) in
terms of achievable rate were observed by filter optimization
in comparison to Gaussian shaped filtering.
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Fig. 8. Achievable rate for different SNR scenarios
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