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Abstract—In many typical mobile communication receivers
the channel is estimated based on pilot symbols to allow for
a coherent detection and decoding in a separate processing
step. Currently much work is spent on receivers which break
up this separation, e.g., by enhancing channel estimation based
on reliability information on the data symbols. In the present
work, we discuss the nature of the possible gain of a joint
processing of data and pilot symbols in comparison to the case of
a separate processing in the context of stationary Rayleigh flat-
fading channels. In addition, we derive a new lower bound on the
achievable rate for joint processing of pilot and data symbols.

I. INTRODUCTION

Virtually all practical mobile communication systems face
the problem that communication takes place over a time
varying fading channel whose realization is unknown to the
receiver. However, for coherent detection and decoding an
estimate of the channel fading process is required. For the
purpose of channel estimation usually pilot symbols, i.e.,
symbols which are known to the receiver, are introduced into
the transmit sequence. In conventional receiver design the
channel is estimated based on these pilot symbols. Then, in a
separate step, coherent detection and decoding is performed.

In recent years, much effort has been spent on the study
of iterative joint channel estimation and decoding schemes,
i.e., schemes, in which the channel estimation is iteratively
enhanced based on reliability information on the data symbols
delivered by the decoder, see, e.g., [1], [2]. In this context, the
channel estimation is not solely based on pilot symbols, but
also on data symbols. This approach is an instance of a joint
processing of data and pilot symbols in contrast to the separate
processing in conventional receivers. To evaluate the payoff for
the increased receiver complexity with joint processing, it is
important to study the possible performance gain that can be
achieved by a joint processing, e.g., in form of an iterative
code-aided channel estimation and decoding based receiver,
in comparison to a separate processing.

Therefore, in the present work we will evaluate the perfor-
mance of a joint processing in comparison to synchronized
detection with a solely pilot based channel estimation based
on the achievable rate. Regarding the channel statistics we
assume a stationary Rayleigh flat-fading channel as it is
usually applied to model the fading in a mobile environment
without a line of sight component. Furthermore, we assume
that the power spectral density (PSD) of the channel fading
process is compactly supported, and that the fading process
is non-regular [3]. Moreover, we assume that the receiver is

aware of the law of the channel, while neither the transmitter
nor the receiver knows the realization of the fading process.

For the case of synchronized detection with a solely pilot
based channel estimation there exist already bounds on the
achievable rate [4]. In contrast, for the case of joint processing
there is not much knowledge on the achievable rate. Very
recently, in [5] the value of joint processing of pilot and data
symbols has been studied in the context of a block-fading
channel. To the best of our knowledge, there are no results con-
cerning the gain of joint processing of pilot and data symbols
for the case of stationary fading channels. Thus, in the present
work, we give a lower bound on the achievable rate with joint
processing of pilot and data symbols. Besides this lower bound
on the achievable rate with a joint processing of pilot and data
symbols, we identify the nature of the possible gain of a joint
processing in comparison to a separate processing.

II. SYSTEM MODEL

We consider a discrete-time zero-mean jointly proper Gaus-
sian flat-fading channel with the input-output relation

y = Xh+ n (1)

with the diagonal matrix X = diag(x). Here the diag(·) oper-
ator generates a diagonal matrix whose diagonal elements are
given by the argument vector. The vector y = [y1, . . . , yN ]

T

contains the channel output symbols in temporal order. Anal-
ogously, x, n, and h contain the channel input symbols, the
additive noise samples, and the channel fading weights. All
vectors are of length N .

The samples of the additive noise process are i.i.d. zero-
mean jointly proper Gaussian with variance σ2n.

The channel fading process is zero-mean jointly proper
Gaussian with the temporal correlation characterized by
rh(l) = E[hk+lh

∗
k]. Its variance is given by rh(0) = σ2h,

and, due to technical reasons, it is assumed to be absolutely
summable, i.e.,

∑∞
l=−∞ |rh(l)| <∞. The PSD of the channel

fading process is defined as

Sh(f) =

∞∑
m=−∞

rh(m)e−j2πmf , |f | ≤ 0.5. (2)

We assume that the PSD exists, which for a jointly proper
Gaussian fading process implies ergodicity. Furthermore, we
assume the PSD to be compactly supported within the interval
[−fd, fd] with fd being the maximum Doppler shift and
0 < fd < 0.5. This means that Sh(f) = 0 for f /∈ [−fd, fd].
The assumption of a PSD with limited support is motivated by
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the fact that the velocity of the transmitter, the receiver, and
of objects in the environment is limited. To ensure ergodicity,
we exclude the case fd = 0.

The transmit symbol sequence consists of data symbols with
an average power σ2x and periodically inserted pilot symbols
with a fixed power σ2x. Each L-th symbol is a pilot symbol. The
pilot spacing is chosen such that the channel fading process
is sampled at least with Nyquist rate, i.e.,

L < 1/(2fd). (3)

In the following we use the subvectors xD containing all
data symbols of x and xP containing all pilot symbols of x.
Correspondingly, we define hD, hP , yD, yP , nD, and nP .

The processes {xk}, {hk} and {nk} are assumed to be mu-
tually independent. The mean SNR is given by ρ = σ2xσ

2
h/σ

2
n.

III. THE NATURE OF THE GAIN BY JOINT PROCESSING OF

DATA AND PILOT SYMBOLS

Before we quantitatively discuss the value of a joint pro-
cessing of data and pilot symbols, we discuss the nature of
the possible gain of such a joint processing in comparison to
a separate processing of data and pilot symbols. The mutual
information between the transmitter and the receiver is given
by I(xD;yD,yP ,xP ). As the pilot symbols are known to the
receiver, the pilot symbol vector xP is found at the RHS of
the semicolon. We separate I(xD;yD,yP ,xP ) as follows

I(xD;yD,yP ,xP )
(a)
= I(xD;yD|yP ,xP ) + I(xD ;yP |xP )

+ I(xD;xP )
(b)
= I(xD;yD|yP ,xP ) (4)

where (a) follows from the chain rule for mutual information
and (b) holds due to the independency of the data and pilot
symbols. The question is, which portion of I(xD;yD|yP ,xP )
can be achieved by synchronized detection with a solely pilot
based channel estimation, i.e., with separate processing.

A. Separate Processing

The receiver has to find the most likely data sequence xD

based on the observation y while knowing the pilots xP , i.e.,

x̂D=arg max
xD∈CD

p(y|x)= arg max
xD∈CD

p(yD|xD,yP ,xP ) (5)

with the set CD containing all possible data sequences xD .
The probability density function (PDF) p(yD|xD,yP ,xP )
is proper Gaussian and, thus, completely described by the
conditional mean and covariance

E [yD|xD,yP ,xP ] = XDE [hD|yP ,xP ] = XDĥpil,D (6)

cov[yD|xD,yP ,xP ] = XDRepil,DXH
D + σ2nIND (7)

where XD = diag(xD) and IND is an identity matrix of
size ND ×ND with ND being the length of nD. The vector
ĥpil,D is an MMSE channel estimate at the data symbol time
instances based on the pilot symbols, which is denoted by the
index pil. Furthermore, the corresponding channel estimation
error epil,D = hD − ĥD is zero-mean proper Gaussian and

Repil,D = E
[
epil,De

H
pil,D|xP

]
is its correlation matrix, which

is independent of yP due to the principle of orthogonality.

Based on (6) and (7) conditioning of yD on xD,yP ,xP is
equivalent to conditioning on xD, ĥpil,D,xP , i.e.,

p(yD|xD,yP ,xP ) = p(yD|xD, ĥpil,D,xP ) (8)

as all information on hD delivered by yP is contained in ĥpil,D

while conditioning on xP . Thus, (5) can be written as

x̂D=argmax
xD∈CD

p(yD|xD,ĥpil,D,xP)=argmax
xD∈CD

p(y|xD ,ĥpil,xP).

(9)

For ease of notation in the following we will use the metric on
the RHS of (9) where ĥpil corresponds to ĥpil,D but also con-
tains channel estimates at the pilot symbol time instances, i.e.,
ĥpil = E [h|yP ,xP ]. Based on ĥpil, (1) can be expressed by

y = X(ĥpil + epil) + n (10)

where epil is the estimation error including the pilot symbol
time instances. As the channel estimation is an interpolation,
the error process is not white but temporally correlated, i.e.,

Repil = E
[
epile

H
pil|xP

]
(11)

is not diagonal, cf. (21). Thus, the PDF in (9) is given by

p(y|xD, ĥpil,xP ) = CN
(
Xĥpil,XRepilX

H + σ2nIN

)
(12)

where CN (μ,C) denotes a proper Gaussian PDF with mean μ
and covariance C and where IN is the N×N identity matrix.1

Note that corresponding to (8), we can also rewrite (4) as

I(xD;yD|yP ,xP ) = I(xD;yD|ĥpil,xP )
(a)
= I(xD;yD|ĥpil)

and where (a) holds as the pilot symbols are deterministic.
However, typical channel decoders like a Viterbi decoder

are not able to exploit the temporal correlation of the channel
estimation error. Therefore, the decoder performs mismatch
decoding based on the assumption that the estimation error
process is white, i.e., p(y|xD , ĥpil,xP ) is approximated by

p(y|xD, ĥpil,xP ) ≈CN
(
Xĥpil, σ

2
epil

XXH + σ2nIN

)
. (13)

As it is assumed that the channel is at least sampled with
Nyquist frequency, see (3), for an infinite block length N →
∞ the channel estimation error variance σ2epil

is independent
of the symbol time instant [4] and is given by

σ2epil
=

∫ 1
2

f=− 1
2

Sepil(f)df =

∫ 1
2

f=− 1
2

Sh(f)
ρ
L

Sh(f)
σ2
h

+ 1
df (14)

where the PSD of the channel estimation error process Sepil(f)
is given in (21). Hence, the variance of the channel estimation
process, i.e., of the entries of ĥpil, is given by σ2h−σ2epil

, which
follows from the principle of orthogonality.

As the information contained in the temporal correlation of
the channel estimation error is not retrieved by synchronized
detection with a solely pilot based channel estimation, the
mutual information in this case corresponds to the sum of

1Note that for the case of data transmission only (12) becomes p(y|xD) =
CN (0,XRhX

H + σ2
nIN ) as in this case ĥpil = 0 and Repil = Rh.
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the mutual information for each individual data symbol time
instant. As, obviously, by this separate processing information
is discarded, the following inequality holds

lim
N→∞

I(xD;yD|ĥpil)

N
=I ′(xD;yD|ĥpil)≥

L−1
L
I(xDk

;yDk
|ĥpil) (15)

where I ′ denotes the mutual information rate and the index
Dk denotes an arbitrarily chosen data symbol.

As the LHS of (15) is the mutual information of the channel
and the RHS of (15) is the mutual information achievable with
synchronized detection with a metric corresponding to (13)
and a solely pilot based channel estimation, i.e., a separate
processing, the difference of both terms upper-bounds the
possible gain due to joint processing of data and pilot symbols.
The additional information that can be gained by a joint
processing in contrast to separate processing is contained in the
temporal correlation of the channel estimation error process.

Regarding synchronized detection in combination with a
solely pilot based channel estimation, i.e., separate processing,
in [4] bounds on the achievable rate, i.e., on the RHS of
(15), are given. In Fig. 1 these bounds are shown for i.i.d.
zero-mean proper Gaussian data-symbols. These bounds show
that the achievable rate with separate processing is decreased
in comparison to perfect channel knowledge in two ways.
First, time instances used for pilot symbols are lost for data
symbols, and secondly, the average SNR is decreased due to
the channel estimation error variance.

IV. JOINT PROCESSING OF DATA AND PILOT SYMBOLS

Now, we give a new lower bound on the achievable rate for
a joint processing of data and pilot symbols. The following
approach can be seen as an extension of the work in [5] for
the case of a block-fading channel to the stationary Rayleigh
flat-fading scenario discussed in the present work. Therefore,
analogous to [5] we decompose and lower-bound the mutual
information between the transmitter and the receiver as follows

I(xD;yD,yP,xP)
(a)
= I(xD;yD,yP,xP,h)−I(xD;h|yD,yP,xP)

= I(xD;yD,h)−h(h|yD,yP ,xP )+h(h|xD,yD,yP ,xP )

(b)

≥ I(xD;yD,h)−h(h|yP ,xP)+h(h|xD,yD,yP ,xP ) (16)

where (a) follows from the chain rule for mutual information
and (b) is due to the fact that conditioning reduces entropy.
The first term on the RHS of (16) is the mutual information
in case of perfect channel knowledge.

Now we deviate from [5] and rewrite the RHS of (16) as

(16)
(a)
= I(xD;yD,h)− h(h|ĥpil,xP ) + h(h|ĥjoint,xD,xP )

(b)
= I(xD;yD,h)− h(epil|xP ) + h(ejoint|xD,xP )

(c)
= I(xD ;yD,h)−logdet

(
πeRepil

)
+logdet

(
πeRejoint

)
(17)

where for (a) we have substituted the conditioning on yP

by ĥpil, which is possible as the estimate ĥpil contains the
same information on h as yP while conditioning on xP .
Corresponding to the solely pilot based channel estimate ĥpil,

based on xD, xP , yD, and yP , we can calculate the estimate
ĥjoint, which is based on data and pilot symbols. Like ĥpil this
estimate is a MAP estimate, which, due to the jointly Gaussian
nature of the problem, is an MMSE estimate, i.e.,

ĥjoint = E [h|yD,xD,yP ,xP ] . (18)

Thus, for (a) we have substituted the conditioning on yD and
yP by conditioning on ĥjoint in the third term, as ĥjoint contains
all information on h that is contained in yD and yP while xD

and xP are known. For the second term in equality (b) we have
used (10), the fact that the addition of a constant does not
change differential entropy and that the estimation error epil

is independent of the estimate ĥpil. Analogously, for the third
term we used the separation of h into the estimate ĥjoint and
the corresponding estimation error ejoint which depends on xD

and xP and is independent of ĥjoint. Finally, (c) holds as the
estimation error processes are zero-mean jointly proper Gaus-
sian. The error correlation matrices are given by (11) and by

Rejoint = E
[
ejointe

H
joint|xD,xP

]
. (19)

The estimation error ejoint depends on the distribution of
the data symbols xD . It can be shown that the differential
entropy rate h′(ejoint|xD,xP ) = limN→∞ 1

N h(ejoint|xD,xP )
is minimized for a given average transmit power σ2x if the
data symbols have constant modulus (CM). Due to lack of
space the proof given in [6] is not shown here.

Thus, with (16) and (17) a lower bound for the achievable
rate with joint processing of data and pilot symbols is given by

I′(xD;yD,yP ,xP ) = lim
N→∞

1

N
I(xD;yD,yP ,xP )

≥ lim
N→∞

1

N

{
I(xD ;yD,h)−log det

(
Repil

)
+log det

(
Rejoint,CM

)}
(a)
= lim

N→∞
1

N
I(xD ;yD,h)−

∫ 1
2

− 1
2

log

(
Sepil(f)

Sejoint,CM(f)

)
df (20)

with Rejoint,CM corresponding to (19), but under the assumption
of CM data symbols with transmit power σ2x. Note that the
CM assumption has only been used to lower bound the third
term at the RHS of (17), and not the whole expression at the
RHS of (17). For (a) in (20) we have used Szegö’s theorem on
the asymptotic eigenvalue distribution of Hermitian Toeplitz
matrices [7]. Sepil(f) and Sejoint,CM(f) are the PSDs of the
channel estimation error processes, on the one hand, if the
estimation is solely based on pilot symbols, and on the other
hand, if the estimation is based on data and pilot symbols,
assuming CM data symbols. They are given by [6]

Sepil(f) =
Sh(f)

ρ
L

Sh(f)
σ2
h

+ 1
, Sejoint,CM(f) =

Sh(f)

ρSh(f)
σ2
h

+ 1
. (21)

The first term on the RHS of (20) is the mutual information
rate in case of perfect channel state information, which for an
average power constraint is maximized with i.i.d. zero-mean
proper Gaussian data symbols. Thus, we get the following
lower bound on the achievable rate with joint processing

RL,joint =
L− 1

L
Cperf −

∫ 1
2

− 1
2

log

( ρ
σ2
h

Sh(f) + 1

ρ
Lσ2

h

Sh(f) + 1

)
df (22)
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where Cperf corresponds to the coherent capacity with

Cperf = Eh

[
log

(
1+ρ

|h|2
σ2h

)]
=

∫ ∞

z=0

log (1+ρz) e−zdz (23)

and the factor (L−1)/L arises as each L-th symbol is a pilot.

A. Lower Bound on the Achievable Rate for a Joint Processing
of Data and Pilot Symbols and a Fixed Pilot Spacing

Equation (22) is a lower bound on the achievable rate with
joint processing of data and pilot symbols, for a given pilot
spacing L and stationary Rayleigh flat-fading.

For the special case of a rectangular PSD2 Sh(f), i.e.,

Sh(f) =

{
σ2
h

2fd
for |f | ≤ fd

0 otherwise
(24)

the lower bound in (22) becomes

RL,joint

∣∣
rect.Sh(f)

=
L−1

L

∫ ∞

z=0

log(1+ρz)e−zdz−2fdlog

(
ρ+2fd
ρ
L+2fd

)
.

(25)

B. Lower Bound on the Achievable Rate for a Joint Processing
of Data and Pilot Symbols and an Arbitrary Pilot Spacing

The lower bound in (25) depends on the pilot spacing L
and can be enhanced by calculating the supremum of (25)
with respect to L. In this regard, it has to be considered that
the pilot spacing L is an integer value. Furthermore, we have
to take into account that the derivation of the lower bound in
(25) is based on the assumption that the pilot spacing is chosen
such that the channel fading process is at least sampled with
Nyquist rate, see (3). For larger L the estimation error process
is no longer stationary, which is required for our derivation.3

For these conditions, the lower bound (25) is maximized for

Lopt = �1/(2fd)� (26)

which can be observed based on differentiation of (25) w.r.t.
L and numerical evaluation. Note that Lopt is not necessarily
the L which maximizes the achievable rate.

V. NUMERICAL EVALUATION

Fig. 1 shows a comparison of the bounds on the achievable
rate for separate and joint processing of data and pilot symbols.
On the one hand, the lower bound on the achievable rate
for joint processing in (25) is compared to bounds on the
achievable rate with separate processing of data and pilot
symbols for a fixed pilot spacing, i.e., [4,(22)] and [4,(23)] for
zero-mean proper Gaussian data symbols. As the upper and
lower bound on the achievable rate with separate processing
are relatively tight, we choose the pilot spacing such that the
lower bound on the achievable rate for separate processing in

2Note that a rectangular PSD Sh(f) corresponds to rh(l) = σ2
hsinc(2fdl)

which is not absolutely summable. However, the rectangular PSD can be
arbitrarily closely approximated by a PSD with a raised cosine shape, whose
corresponding correlation function is absolutely summable.

3Periodically inserted pilot symbols do not maximize the achievable rate.
However, we restrict to periodical pilot symbols with a spacing fulfilling (3),
as this enables detection with manageable complexity.
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Fig. 1. Comparison of bounds on the achievable rate with separate processing
to lower bounds on the achievable rate with joint processing of data and pilot
symbols; except of LB joint proc. Lopt, the pilot spacing L is chosen such that
the lower bound for separate processing is maximized; rectangular Sh(f) (24)

[4,(22)] is maximized. Except of very large fd the lower bound
on the achievable rate for joint processing is larger than the
bounds on the achievable rate with separate processing. This
indicates the possible gain while using joint processing of data
and pilot symbols for a given pilot spacing. The observation
that the lower bound for joint processing for very large fd
is smaller than the achievable rate with separate processing
indicates that the lower bound is not tight for these parameters.

On the other hand, also the lower bound on the achievable
rate with joint processing and a pilot spacing that maximizes
this lower bound, i.e., (25) with (26), is shown. Obviously,
this lower bound is larger than or equal to the lower bound
for joint processing while choosing the pilot spacing as it is
optimal for separate processing of data and pilot symbols. This
behavior arises from the effect that for separate processing in
case of small fd a pilot rate is chosen that is higher than
the Nyquist rate of the channel fading process to enhance the
channel estimation quality. In case of a joint processing all
symbols are used for channel estimation anyway. Therefore, a
pilot rate higher than Nyquist rate always leads to an increased
loss in the achievable rate as less symbols can be used for data
transmission.
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[7] U. Grenander and G. Szegö, Toeplitz Forms and Their Applications.
Berkeley, CA, U.S.A.: Univ. Calif. Press, 1958.

Int. Zurich Seminar on Communications (IZS), March 3-5, 2010

77




