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Abstract—We develop a method for the determination of local
regions in time in which a channel can be approximated as
stationary. Contrary to previous results in literature relying on
to some extent arbitrary measures and thresholds, we consider
a realistic (flat fading) channel estimator and relate the size of
local quasi-stationarity regions to the degradation of the mean
squared channel estimation error due to mismatched statistics. As
the evaluation of the mean squared error turns out to be difficult,
we give an approximate expression. Using channel measurements,
we exemplarily evaluate the local quasi-stationarity regions based
on the actual and the approximate mean squared error, and we
find that the results show strong similarities.

I. INTRODUCTION

An important simplification of the statistical modeling of
linear wireless channels is the assumption of first and sec-
ond order stationarity. These wide-sense stationary (WSS)
and uncorrelated scattering (US) channels are called WSSUS
channels [1]. This assumption results in mathematical sim-
plifications, but it also has a physical justification, as large
scale effects such as shadow fading change the statistics of the
channel only slowly in comparison to the coherence time. In
[1], this leads to the quasi-WSSUS model where the channel is
divided into WSSUS regions. A framework for the treatment of
non-stationary channels, which fulfill the doubly underspread
assumption, is presented in [2].

From the analysis of measured wireless channels [3], [4],
we know that a realistic approach is the assumption of local
quasi-stationarity (LQS) regions, i.e., the approximation of the
channel as a stationary process inside non-stationary regions of
a certain size. An important open problem is the determination
of the size of these regions. Even when restricting to a
comparison of time-varying power spectral densities (PSDs),
various measures can be defined. The usual approach of
selecting, to some extent arbitrary, measures and to compare
them to arbitrary thresholds is far from being satisfactory.
We overcome this problem by relating the non-stationarity
characterization of the channel to an algorithmic view.

Contribution: We describe a method for the determination of
LQS regions in time based on the performance degradation of
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a realistic algorithm. Our concept is based on a comparison of
power spectral densities (PSDs) as in [5]; however, we extend
the approach to a filter using pilot symbols to estimate a time-
varying frequency-flat fading channel from noisy observations.
The concepts are applied to non-stationary doubly underspread
channels. The performance degradation is described by the
degradation of the mean squared error (MSE) of a finite-
length Wiener filter due to mismatched statistical knowledge.
The performance degradation the system engineer is willing
to accept is reflected by a threshold, which determines the
size of the LQS regions. As the MSE evaluation turns out to
be difficult, we also give an approximate expression based
on infinite-length Wiener filtering. Finally, we provide an
exemplary analysis using channel measurements; we observe
that the actual and the approximate evaluation of the MSE
result in the same trends in the LQS regions.

II. SYSTEM MODEL

In the complex baseband, the matched-filtered, symbol-
sampled received signal is given by1

y[m] = h[m]x[m] + n[m] (1)

where the additive noise n[m] is a white jointly proper
Gaussian process with known variance σ2

n > 0 and the time-
varying channel transfer function h[m] is a jointly proper zero-
mean random process independent of n[m]. The transmitted
sequence x[m] consists of data symbols and periodically
inserted pilot symbols with period L at positions m = nL
for n ∈ Z. Without loss of generality, we assume real- and
positive-valued pilot symbols with magnitude σp.

We introduce the normalized Doppler ν = ν′T with the
Doppler ν′ and the symbol duration T . We assume that channel
sampling by pilot symbols fulfills the Nyquist criterion

L <
1

2νmax
(2)

with the maximal (normalized) Doppler frequency νmax =
ν′maxT . The assumption of a maximum Doppler frequency
is realistic as any movement, be it from the transmitter, the
receiver, or the scatterers in the environment occurs with a
finite velocity. Therefore, the channel transfer function h[m]
is bandlimited and a sufficient statistic of h[m] is obtained by
regularly sampling h[m] with period L.

1Strictly speaking, (1) is not a sufficient statistic; however, it is an
approximation for a (Doppler-)dispersion underspread channel.



III. MISMATCHED WIENER FILTERING

We now describe mismatched Wiener filtering for WSS
channels. Here mismatch refers to the use of wrong statistical
knowledge of the channel, but not of the noise. The mis-
matched statistics of the channel correspond to a bandlimited
process fulfilling (2). The considered Wiener filter uses noisy
observations at pilot positions for the estimation of the channel
process. In the matched case the Wiener filter is a linear
minimum MSE (LMMSE) estimator.

A. Finite-Length Filtering

We first consider the finite-length filtering case with Np
pilot symbols and a pilot spacing L. Denoting the filtering
length as N , we have Nd = N − Np data symbols. Without
loss of generality, we assume that the interval starts with a
pilot symbol. The temporally ordered vectors yp, hp, and np
are the noisy observations, the channel, and the noise at pilot
positions, respectively. We thus obtain

yp = hpσp + np. (3)

The mismatched MSE matrix follows as [6]

R̃e = Rh + R̃h;hp

(
R̃hp

+ INp
σ2
n/σ

2
p

)−1

×
(
Rhp

+ INp
σ2
n/σ

2
p

) (
R̃hp

+ INp
σ2
n/σ

2
p

)−1

R̃H
h;hp

− R̃h;hp

(
R̃hp

+ INp
σ2
n/σ

2
p

)−1

RH
h;hp

−Rh;hp

(
R̃hp

+ INp
σ2
n/σ

2
p

)−1

R̃H
h;hp

(4)

where Rh = E
{
hhH

}
is the autocorrelation matrix of

the channel at all positions, Rhp
= E

{
hph

H
p

}
is the au-

tocorrelation matrix of the channel at pilot positions, and
Rh;hp = E

{
hhHp

}
is the cross-correlation matrix between the

channel at all positions and the channel at pilot positions only.
R̃h and R̃h;hp

are the corresponding mismatched correlation
matrices assumed by the estimator. The average mismatched
MSE over all positions is

σ̃2
e,N,L =

1

N
tr
{
R̃e

}
. (5)

Using the real-valued and non-negative PSD of the channel
Ch
(
ej2πν

)
, we obtain

[Rh]k,l =

∫ 1
2

− 1
2

Ch
(
ej2πν

)
ej2π(k−l)νdν (6)

with [Rhp ]k,l = [Rh](k−1)L+1,(l−1)L+1 and [Rh;hp ]k,l =
[Rh]k,(l−1)L+1. The mismatched correlation matrices are ob-
tained analogously with the real-valued and non-negative
mismatched PSD of the channel C̃h

(
ej2πν

)
.

B. Infinite-Length Filtering

In the following, we consider the infinite-length Wiener
filter using observations at pilot positions only. The (noisy)
observations at pilot positions are

y[nL] = h[nL]σp + n[nL] (7)

and estimation is performed on the l-th position relative to the
pilot grid with l = 0, ..., L− 1. It can be shown that the PSD
of the mismatched error process is [6]

C̃e
(
ej2πν

)
= Ch

(
ej2πν

)
+

(
Ch
(
ej2πν

)
+
Lσ2

n

σ2
p

)
×

C̃2
h

(
ej2πν

)(
C̃h (ej2πν) +

Lσ2
n

σ2
p

)2 −
2Ch

(
ej2πν

)
C̃h
(
ej2πν

)
C̃h (ej2πν) +

Lσ2
n

σ2
p

. (8)

The (position-independent) mismatched MSE is obtained as

σ̃2
e,∞,L =

∫ 1
2

− 1
2

C̃e
(
ej2πν

)
dν. (9)

Note that the MSE of the finite-length filtering case σ̃2
e,N,L

converges to the infinite one σ̃2
e,∞,L for N →∞ and assuming

that N = NpL holds [6].

IV. APPLICATION TO NON-STATIONARY CHANNELS

So far we have assumed a WSS channel. In a real scenario,
the wireless channel is non-stationary; however, the channel
can be assumed to be stationary inside small regions [1], [2].
A mismatched Wiener filtering in these assumed stationarity
regions is valid, and thus with the corresponding MSE, we
have a reasonable way to relate the performance of a realistic
channel estimation algorithm to specific channel properties.
However, the resulting MSE, i.e., (5) with (4), does not
have a convenient form for a simple evaluation, e.g., matrix
inversions are required. In contrast, the infinite-length filtering
results in an expression for the MSE, i.e., (9) with (8), that
allows for a simplified evaluation. The infinite-length filtering
approach is strictly speaking not appropriate; however, since
the coefficients of the Wiener filter decay over time and,
as we will see in Section IV-A, common wireless channels
have an effectively finite correlation, it can be considered
as meaningful. Now we show how to adapt the results of
Section III to the estimation of non-stationary channels.

In [2], the class of doubly-underspread (DU) channels
is introduced for time- and frequency-varying channels. In
the special case of only time-varying (frequency-flat fading)
channels as considered here, these channels are dispersion
underspread with a maximal Doppler νmax � 1 and cor-
relation underspread with a maximal correlation in Doppler
∆νmax � νmax. This essentially means that the stationarity
in time Ns = 1

∆νmax
is much larger than the coherence in

time Nc = 1
νmax

, which itself is much larger than 1. The DU
assumption is usually fulfilled for wireless channels, see [3]
for an example in an urban macrocell scenario.

A. Channels with an Effectively Finite Correlation
Due to the correlation underspread property, i.e., Nc � Ns,

we have a time-varying autocorrelation function of the channel
that is approximately zero outside a finite interval, or that
is effectively timelimited. Thus, we assume the channel to
be correlated over a finite interval only2. We will see that

2Note that a strictly bandlimited signal cannot be strictly timelimited, but
only effectively timelimited, see [7] for a detailed discussion.



the estimator of the statistics of the channel presented in
Section V performs a windowing over the channel process;
thus, it is also based on the assumption of a finite correlation
of the channel. The finite-length filtering approach of length
N makes only use of the correlation properties of the channel
for time differences −(N − 1), ..., N − 1, see Section III-A.
Thus, it only uses the channel correlation on an interval of
length N ′ = 2N − 1, i.e., a maximum of N − 1 time instants
in each time direction. We choose N ′ to be equal to the
assumed finite correlation length of the channel, and assume
N ′ to be a multiple of L. Note that we need to choose
Nc � N ′ ≤ Ns for our assumption to be valid. In order
to simplify the exposition, we restrict to a WSS channel for
the remainder of Section IV-A. This leads to

Ch
(
ej2πν

)
=

N−1∑
∆m=−(N−1)

Rh[∆m] e−j2π∆mν . (10)

Due to the finite correlation assumption, we can substitute
Rh[∆m] by the inverse discrete Fourier transform (DFT) of
samples of Ch

(
ej2πν

)
; thus, we obtain

Ch
(
ej2πν

)
=

1

N ′

N−1∑
k′=−(N−1)

Ch

(
ej2π

k′
N′
) N−1∑
∆m=−(N−1)

e
j2π∆m

(
k′
N′−ν

)
.

(11)

1) Finite-Length Filtering: In the finite-length filtering case
of length N , we can insert (11) into (6) to obtain the correla-
tion matrices using samples of the matched and mismatched
PSD of the channel as

[Rh]k,l =
1

N ′

N−1∑
k′=−(N−1)

Ch

(
ej2π

k′
N′
)
ej2π(k−l) k′

N′

[
Rhp

]
k,l

=
1

N ′

N−1∑
k′=−(N−1)

Ch

(
ej2π

k′
N′
)
ej2π(k−l)L k′

N′

[
Rh;hp

]
k,l

=
1

N ′

N−1∑
k′=−(N−1)

Ch

(
ej2π

k′
N′
)
ej2π((k−1)−(l−1)L) k′

N′

and accordingly for the mismatched case. In matrix notation,
we obtain

Rh = F̆Hh C̆hF̆h

Rhp
= F̆Hh,LC̆hF̆h,L; R̃hp

= F̆Hh,L
˘̃ChF̆h,L

Rh;hp = F̆Hh C̆hF̆h,L; R̃h;hp = F̆Hh
˘̃ChF̆h,L. (12)

The N ′ × N matrix F̆h and the N ′ × Np matrix F̆h,L are
sub-matrices of the N ′ ×N ′ DFT matrix F̆:

[F̆h]k,l = [F̆]k,l = 1/
√
N ′ exp (−j2π(k − 1)(l − 1)/N ′)

[F̆h,L]k,l = 1/
√
N ′ exp (−j2π(k − 1)(l − 1)L/N ′) (13)

i.e., F̆h contains the first N columns of F̆, and F̆h,L contains
only the columns of F̆h coinciding with pilot positions. The
N ′×N ′ matrices C̆h and ˘̃Ch are diagonal matrices containing

regular samples of the matched and mismatched PSD of the
channel, respectively:

[
C̆h

]
k,k

=

Ch
(
ej2π

k−1
N′

)
, for 1 ≤ k ≤ N ′+1

2

Ch

(
ej2π

k−1−N′
N′

)
, for N ′+1

2 < k ≤ N ′

and accordingly for the mismatched case3.
2) Infinite-Length Filtering: In the infinite-length filtering

case, we can insert (11) and its mismatched equivalent into
(8) to obtain the PSD of the error process. As this still
necessitates an integration over the PSD of the error process
to obtain the MSE in (9), we perform an approximation often
made in the literature, where an integration over a continuous
variable is replaced by a summation over (available) samples
of that variable. One should, however, be careful under what
conditions such an approximation is reasonable. Rewriting
(10), we obtain

Ch
(
ej2πν

)
=

∞∑
∆m=−∞

Rh[∆m] rectN−1 [∆m] e−j2π∆mν

= Ch
(
ej2πν

)
~

sin(πνN ′)

sin(πν)
, −1

2
≤ ν < 1

2
(14)

with rectN−1[m] = 1,∀|m| ≤ N − 1 and 0 else, and with
~ denoting a circular convolution. We call a PSD that fulfills
(14) a smooth PSD, as such a PSD changes slowly over ν due
the circular convolution with the smoothing function. From
(8), we can deduce that the maximal Doppler of C̃e

(
ej2πν

)
is

equal to the maximum of the maximal Dopplers of Ch
(
ej2πν

)
and C̃h

(
ej2πν

)
; this implies that the coherence times are the

same as well, and thus we can conclude that a smooth PSD
of the channel results in a rather smooth PSD of the error.
Defining

ˇ̃Ce
(
ej2πν

)
= C̃e

(
ej2πν

)
~

sin(πνN ′)

sin(πν)
, −1

2
≤ ν < 1

2
(15)

we get a representation based on the sampled PSD as in (11)

ˇ̃Ce
(
ej2πν

)
=

1

N ′

N−1∑
k=−(N−1)

ˇ̃Ce

(
ej2π

k
N′
) sin (π (νN ′ − k))

sin
(
π νN

′−k
N ′

) .

Approximating the error process as finitely correlated on
an interval of length N ′, i.e., C̃e

(
ej2πν

)
≈ ˇ̃Ce

(
ej2πν

)
,

the required samples of ˇ̃Ce
(
ej2πν

)
are obtained from the

mismatched error PSD C̃e
(
ej2πν

)
in (8) and accordingly for

the matched case. In [6], we show that for rectangular PSDs
of the channel process with 1

2L−
1

2N ′ < νmax <
1

2L , this rather
heuristic approximation leads to bounds on the MSEs obtained
by finite-length filtering.

3Note that our decomposition of the correlation matrices in (12) is dif-
ferent from the singular value decomposition used in, e.g., the mismatched
(frequency correlation-based) estimator in [8].



B. Time-Dependent Power Spectral Density

The local scattering function (LSF) is an extension of the
scattering function for WSSUS channels to the non-stationary
case [2]. In the case of a frequency-flat fading channel, it is
a time-dependent PSD in the Doppler domain. We adapt the
approach in [2] to discrete-time channels:

Ch
(
m; ej2πν

)
=

∞∑
∆m=−∞

Rh[m; ∆m]e−j2π∆mν (16)

where Rh[m; ∆m] = E {h[m]h∗[m−∆m]} is the correlation
function of the channel. Note that a WSS channel has a
constant LSF over time and is uncorrelated in Doppler.

The LSF has some deficiencies with respect to the PSD of a
stationary process, e.g., it is not guaranteed to be real-valued
and non-negative. For DU channels, it is possible to define
generalized LSFs (GLSFs) which are smoothed versions of the
LSF and do not have the above deficiencies [2]. In the discrete-
time and frequency-flat fading case, we define the GLSF as

C
(Φ)
h

(
m; ej2πν

)
=

∞∑
m′=−∞

∫ 1
2

− 1
2

Ch

(
m′; ej2πν

′
)

× Φ
(
m−m′; ej2π(ν−ν′)

)
dν′ (17)

with

Φ
(
m; ej2πν

)
=

K∑
k=1

γk

∞∑
∆m=−∞

g∗k[−m]gk[−m−∆m]e−j2π∆mν

where gk[m] are windowing functions normalized to unit-
energy, K is their number, and γk ≥ 0 fulfills

∑K
k=1 γk = 1.

GLSFs of DU channels are real-valued, non-negative, and
approximately equivalent to the LSF [2].

C. Mean Squared Error

We now describe the evaluation of the MSE based
on the time-dependent and sampled PSD C

(Φ)
h [m; k] =

C
(Φ)
h (m; ej2πk/N

′
).

1) Finite-Length Filtering: For the finite-length filtering
case, we obtain the mismatched MSE at time instant m using
statistical knowledge at time instant m′ as

σ̃2
e,N,L[m,m′] =

1

N
tr
{
R̃e[m,m

′]
}

(18)

with the mismatched MSE matrix adapted from (4) with (12)

R̃e[m,m
′] = F̆Hh C̆hF̆h + F̆Hh

˘̃ChF̆h,L(
F̆Hh,L

˘̃ChF̆h,L + INp
σ2
n/σ

2
p

)−1 (
F̆Hh,LC̆hF̆h,L + INp

σ2
n/σ

2
p

)
×
(
F̆Hh,L

˘̃ChF̆h,L + INp
σ2
n/σ

2
p

)−1

F̆Hh,L
˘̃CH
h F̆h

− F̆Hh
˘̃ChF̆h,L

(
F̆Hh,L

˘̃ChF̆h,L + INpσ
2
n/σ

2
p

)−1

F̆Hh,LC̆
H
h F̆h

− F̆Hh C̆hF̆h,L

(
F̆Hh,L

˘̃ChF̆h,L + INp
σ2
n/σ

2
p

)−1

F̆Hh,L
˘̃CH
h F̆h.

The matched MSE at time instant m is obtained as

σ2
e,N,L[m] =

1

N
tr {Re[m]} (19)

where the matched MSE matrix

Re[m] = F̆Hh C̆hF̆h − F̆Hh C̆hF̆h,L

×
(
F̆Hh,LC̆hF̆h,L + INpσ

2
n/σ

2
p

)−1

F̆Hh,LC̆
H
h F̆h

follows from this mismatched one with ˘̃Ch = C̆h. The dif-
ference to Section IV-A1 consists in the use of the (diagonal)
time-dependent PSD matrices with[
C̆h

]
k,k

=

{
C

(Φ)
h [m; k − 1], for 1 ≤ k ≤ N ′+1

2

C
(Φ)
h [m; k − 1−N ′], for N ′+1

2 < k ≤ N ′[
˘̃Ch

]
k,k

=

{
C

(Φ)
h [m′; k − 1], for 1 ≤ k ≤ N ′+1

2

C
(Φ)
h [m′; k − 1−N ′], for N ′+1

2 < k ≤ N ′
.

2) Infinite-Length Filtering: For the infinite-length filtering
case, we obtain the mismatched MSE based on (9) and
the finite correlation approximation of the error process in
Section IV-A2. This leads to the replacement of the integration
in (9) by a summation. Thus, with (8), the mismatched MSE
at time instant m using statistical knowledge at time instant
m′ simplifies to

σ̃2
e,∞,L[m,m′] =

1

N ′

N−1∑
k=−(N−1)

C̃e

(
m,m′; ej2π

k
N′
)

=
1

N ′

N−1∑
k=−(N−1)

(
C

(Φ)
h [m; k] +

(
C

(Φ)
h [m; k] +

Lσ2
n

σ2
p

)

×
C

(Φ)
h

2
[m′; k](

C
(Φ)
h [m′; k] +

Lσ2
n

σ2
p

)2 −
2C

(Φ)
h [m; k]C

(Φ)
h [m′; k]

C
(Φ)
h [m′; k] +

Lσ2
n

σ2
p

)
(20)

where the index ∞ denotes the approximate evaluation and
C̃e
(
m,m′; ej2πν

)
is the (time-dependent) error PSD at time

m using statistical knowledge of the channel at time m′. The
matched MSE at time instant m simplifies to

σ2
e,∞,L[m] =

1

N ′

N−1∑
k=−(N−1)

C
(Φ)
h [m; k]

σ2
p

Lσ2
n
C

(Φ)
h [m; k] + 1

. (21)

With σ̃2
e,∞,L[m,m′] and σ2

e,∞,L[m], we have found approx-
imate, but simplified, evaluations of the mismatched and
matched MSE, respectively. In [6], we show that for rectangu-
lar PSDs of the channel process with 1

2L −
1

2N ′ < νmax <
1

2L ,
σ2
e,N,L[m] ≥ σ2

e,∞,L[m] holds.

D. Local Quasi-Stationarity

In order to relate the size of LQS regions to a performance
measure, we use the MSE degradation at time m due to the
use of mismatched statistics of the channel, i.e., the statistics
of the channel at time m′:

ηN,L[m,m′] =
σ̃2
e,N,L[m,m′]

σ2
e,N,L[m]

− 1 (22)

The finite-length filtering case is denoted by the index N and
the approximate one, based on infinite-length filtering and the



finite correlation approximation of the error process, by sub-
stituting N by∞. We choose a threshold ηth corresponding to
the maximum acceptable performance loss due to mismatched
statistics of the channel. This threshold thus has a meaning
and its choice can be well motivated. Defining the set

MN,L[m] = {m′ | ηN,L[m,m′] < ηth} (23)
we obtain time-dependent LQS times

TLQS,N,L[m] = |CN,L[m]|T (24)
where CN,L[m] is the connected subset of MN,L[m] contain-
ing m and having maximum cardinality. In [6], we show that
for rectangular PSDs of the channel process with 1

2L −
1

2N ′ <
νmax <

1
2L and a pilot spacing L = 1, the approximate MSE

degradation is equal to the MSE degradation based on finite-
length filtering. The same holds for the resulting LQS regions.

V. ANALYSIS OF A MEASURED CHANNEL

We estimate C(Φ)
h [m; p] from a single measurement run by

applying the estimator in [9] to the flat fading setting:

Ĉ
(Φ)
h [m; p] =

Tmeas

T

1

K

K−1∑
k=0

∣∣∣∣∣
dN ′/(2L)e−1∑
m′=−bN ′/(2L)c

g∗k[m′]

× h((m+m′)Tmeas)e
−j2πL pm′

N′

∣∣∣∣∣
2

(25)

for −bN ′/(2L)c ≤ p ≤ dN ′/(2L)e − 1 and Ĉ(Φ)
h [m; p] = 0

else. Here h(mTmeas) denotes the measured samples of the
(continuous-time) channel. We choose the measurement sam-
ples to be the pilot symbols, i.e., Tmeas = LT . The urban
macrocell channel measurements used here are relevant for the
3GPP Long Term Evolution, see [3] for details. We consider
vertically polarized propagation at 2.5 GHz with the uniform
linear array at base station (BS) 1 at a height of 25 m as
transmitter (TX) and the lower uniform circular array of the
mobile terminal (MT) on track 9a-9b as receiver (RX). The
specific link consists of an antenna at the TX and the antenna
oriented to the right of the MT at the RX. We have verified
the DU assumption ∆νmax � νmax � 1; in [3], we show
that it is fulfilled with ∆νmax ≈ 0.03

L and νmax ≈ 0.31
L .

The windows gk[m] in (25) are chosen as discrete prolate
spheroidal sequences [10] with length N ′

L = 29. This results
in a coherence time Tc = NcT ≈ 0.04 s, N ′T = 0.38 s,
and a stationarity time Ts = NsT ≈ 0.43 s. We thus fulfill
Nc � N ′ ≤ Ns. The number of windows is K = 4. We
perform the analysis on a zero-mean channel, i.e., we remove
the time-dependent mean, estimated using 29 time instants and
a frequency bandwidth of 5 MHz, from the channel. Then we
use (25) to estimate the GLSF and additionally average the
estimate over a bandwidth of 5 MHz to improve the estimation.

In Fig. 1, we show exemplarily the LQS regions dLQS
based on the MSE degradation with (18), (19) and with (20),
(21). We see that both LQS regions show strong similarities.
The approximate LQS regions seem to lower-bound the LQS
regions based on finite-length filtering. This is supported by
σ2
e,N,L[m] ≥ σ2

e,∞,L[m] for rectangular PSDs of the channel
process with 1

2L −
1

2N ′ < νmax <
1

2L , which is shown in [6].
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Fig. 1. LQS regions with ηth = 0.1, N = 44, L = 3, and the average
signal-to-noise ratio |h(mTmeas)|2σ2

p/σ
2
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VI. CONCLUSION

We have developed a method to determine LQS regions in
time, i.e., regions in which a channel can be approximated
as stationary in time. Contrary to previous results in the
literature, we relate the size of LQS regions to the performance
degradation of a realistic channel estimator. The estimator is a
finite-length Wiener filter estimating a time-varying frequency-
flat fading channel. The performance degradation is described
by the MSE degradation and the threshold is chosen according
to the performance loss one is willing to accept. Furthermore,
we have given an approximate expression of the MSE, which
allows for a simplified evaluation. Exemplarily, we have
evaluated the actual and the approximate MSE using channel
measurements, and we have observed that the resulting LQS
regions show strong similarities in their evolution.
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