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Abstract

The reconstruction of interconnections in networks of interacting units is a transdisci-

plinary challenge that has not been met satisfactorily yet. The reconstruction of stochastic

processes is of particular interest because many important and puzzling systems, like gene

regulatory networks, neural circuits and the climate system, are exposed to or even driven

by noise. Two approaches to reconstruct networks for these systems have been established

over the last decade: The Bayesian network approach that focuses on the inference of con-

ditional dependency networks and the thresholding approach that reconstructs e�ective

networks of pairwise statistical dependence. Yet, it is still an open question if and how

these networks re�ect physical interactions of the underlying dynamical process. In this

thesis, we address this fundamental question by studying the capability of both methods

to infer physical interaction under idealized conditions. First, we address Bayesian infer-

ence methods and show that time-continuity leads to spurious correlations. Second, we

investigate the performance of thresholding approaches and show which parameters of the

system determine the reconstruction quality. And last, we introduce a new method to

infer physical relationships in continuous-time random processes and test its performance

on surrogate data. Our research reveals conceptual challenges of present reconstruction

methods and aims on meeting them e�ectively by introducing a new perspective.
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1 INTRODUCTION

1. Introduction

From the gene regulatory networks in our cells to neural circuits in the brain, from power grids

supplying electricity to social networks with our friends or colleagues. Networks - networks

of interacting units pervade our lives. Most of them exhibit peculiar collective dynamical

properties, yet we are just beginning to understand them properly.

In recent years, technological and scienti�c progress made it feasible to establish network

science. A rapidly growing transdisciplinary branch in the science of complex systems that

attempts to unravel the secretes of these irregular discrete systems. Systems that are suc-

cessfully modeled by a network. A network is an abstract structure that is solely de�ned by

entities equipped with dynamical properties and their interrelations.

The main question in this �eld is:

How does the structural connectivity of these networks relate to their dynamical properties?

The structural connectivity, or topology, of a network is often believed (or build) to be closely

linked to its function. The most prominent example is the mammalian brain. Its aston-

ishing properties like cognition, memory and learning are directly related to the dynamical

network formed by its neurons and their physical interconnections [11]. Other examples are

the gene regulatory network and the protein-protein interaction network. Both are chemical

networks of inhibitory (repressive) and excitatory (inductive) in�uences formed by genes and

proteins [10, 21]. These networks regulate large parts of the cellular metabolism and control

the cell di�erentiation process [38]. Further examples exist in disciplines like climate sci-

ence [12,41,42], engineering [45], epidemiology [25] and economics [19].

These examples illustrate that important systems in nature and society are strongly dependent

on the topology of their underlying network structure. Yet, the structure of many networks

is still unknown because (a) their connections are not directly accessible and (b) it is still an

open question how to infer topologies only from dynamical features, e.g., time series. This is

known as the inverse problem of network science [40]:

Does the dynamics of a system yield its topology?

For many systems even the interaction with the network is unpractical or impossible making

the task of reverse engineering its topology even more challenging: Perturbing and measuring
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1 INTRODUCTION

single genes in the cellular gene regulatory network is time intensive and costly. Controlled

perturbations of many neurons in a large populations is technically di�cult. Signi�cant pertur-

bations of the earth's climate system or the stock market are close to impossible and ethically

questionable. Still, knowing the structure of those systems would lead to tremendous break-

throughs like new insights into the inner workings of our brain, new medical treatments or

better prediction of climate change.

Reconstruction methods often tackle two distinct types of systems: deterministic systems

(e.g., [7]) and stationary stochastic processes. The reconstruction of stochastic processes is of

particular interest because most systems are governed by �uctuations or noise. These �uctu-

ations originate from hidden variables, chaos or intrinsic stochasticity and render the system

stochastic in total. For some systems, like the brain or gen regulatory networks, noise is even

an essential part of its function [27,39]. Present methods to inference structures in stationary

random processes can be divided in two classes: Bayesian network approaches and threshold-

ing approaches [43].

The Bayesian network approach focuses on the reconstruction of the network of conditional

statistical dependencies. For this purpose, the space of possible network structures has to be

searched for the best topology that explains the measured data. This can either be done by

machine learning algorithms and scoring strategies [6, 14, 30] or by iterative logical reduction

of the solution space [33, 35]. Since logical deduction involves estimation of high dimensional

probability densities, which is problematic and computationally costly, machine learning algo-

rithms are usually preferred in the literature. Nevertheless, both strategies face the challenge

of searching a solution space that grows super-exponentially with the network size.

The Bayesian approach is quite successful for discrete-time models [46], in which the dynami-

cal Bayesian network coincides with the structural network de�ned by the process. And even

though it was already applied for continuous-time models in [35], it is still unclear if and how

time-continuity e�ects Bayesian strategies.

Hence, the �rst question we address in this thesis is:

How does time-continuity interfere with Bayesian network reconstruction approaches?

8



1 INTRODUCTION

Thresholding approaches include all forms of thresholding of measures of statistical dependence

(e.g., Pearson correlation [32,41] or mutual information [5,12,29]). Among all measures, Pear-

son correlation is by far the most popular used in the literature [43, p. 2]. These methods

generate undirected 'e�ective' networks. However, despite their popularity, one basic question

regarding this approach has not been answered yet:

Which types of physical interactions networks are reconstructible by thresholding methods?

In this thesis, we concentrate on the reconstruction of physical interactions in stationary

stochastic processes without interfering with the system dynamics.

We use the very general inductive causation algorithm, which has been proposed by Pearl [33,

p. 52 �.] and has been applied to dynamical systems by Runge et al. [35], and test its perfor-

mance analytically using a continuous-time model (Sec. 3.1). It is revealed, that the recon-

struction algorithm does not perform as predicted due to the time-continuity of the chosen

process. But, even though the concept of a Bayesian network fails in theory to describe

continuous-time dynamical systems, it might still be a good approximation for practical use.

We investigate the dynamical and topological dependencies of correlation thresholding in an

idealized setting, both analytically and numerically (Sec. 3.2). Our results indicate that thresh-

olding methods have two major downsides: First, even in the idealized case, its reconstruction

performance strongly depends on the network topology. Secondly, we show that all topologies

are theoretically reconstructible in the weak coupling limit for in�nite time series. In practice

however, statistical �uctuations caused by �nite time series prevent the reconstruction pre-

cisely in this regime.

We develop a novel inference method for linear systems based on inversion of the covariance

matrix (Sec. 3.3). Our approach exhibits some similarities with [8, 34] but constitutes an

extension to directed networks. We show that our method greatly outperforms correlation

thresholding. Moreover, unlike correlation thresholding covariance inversion is able to recon-

struct directed networks and is applicable for systems with correlated noise. For in�nite time

series, even the noise strengths are reconstructible.

This thesis is divided in three parts: In the �rst part we provide the necessary theoretical

foundation, introduce notations and discuss established reconstruction methods (Sec. 2). The

9
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second part contains our �ndings and a detailed discussion of each result (Sec. 3). In the

last part we summarize our results and list the consequences for future scienti�c research

(Sec. 4). Moreover, since many questions had to be left unanswered, we provide ideas for

further research in this �eld based on our deliberations.

10



2 THEORETICAL BACKGROUND

2. Theoretical Background

In this section we present the necessary theoretic basis of graph theory, dynamical systems,

stochastic processes and numerics. Furthermore, we present and discuss two state of the art

reconstruction methods.

2.1. Graph Theory

It will become clear that networks with di�erent topological features are di�erently di�cult to

reconstruct. The de�nitions and algorithms in this section help to discuss and to investigate

this phenomenon.

Graph theory is a mathematical �eld that is concerned with the characteristics of graphs.

Graphs are structures that laymen would call webs due to everyday life experience with arach-

noid legacies. These structures consist of entities, called vertices, and their interconnections,

called edges. Edges can be directed if the connection between vertices has only one direction,

or undirected, if the connection is bidirectional. A graph with only directed edges is called

directed and a graph with only undirected edges is called undirected.

Every undirected edge can be represented as a tuple of directed edges pointing in opposite

directions. Also, every directed graph has an undirected representation which is generated by

replacing all connections between two connected vertices with an undirected edge. Directed

graphs are more general since the �rst transformation is injective and the latter transforma-

tion is surjective.

To summarize:

De�nition 2.1.1 (directed graph). A directed graph G = (V,E) is a tuple of a set of vertices

V and a set of edges E, so that every edge e = (v, w) ∈ E is a tuple of two vertices v, w ∈ V .
An edge e = (v, w) denotes a directed connection from w to v.

11



2 THEORETICAL BACKGROUND

2.1.1. Basic De�nitions

Some rather basic de�nitions of graph theory are necessary to determine quantitative di�er-

ences between the networks we are about to examine.

Adjacency Matrix

De�nition 2.1.2 (adjacency matrix). The adjacency matrix A ∈ {0, 1}N×N of a graph

G = (V,E) with

vertices i ∈ V = {1, . . . , N} is a N ×N matrix in which every entry Aij = 1 if and only if the

edge (i, j) ∈ E, i.e. if there exists a connection from j to i. All other entries of A are zero.

Aij =





1 if (i, j) ∈ E

0 otherwise
(2.1)

Degree and Degree Distribution

De�nition 2.1.3 (degree). Let G = (V,E) be an undirected graph. Then the degree ki of a

vertex i ∈ V is the number of edges attached to i.

De�nition 2.1.4 (degree distribution). The degree distribution pk is the histogram of ki over

all i ∈ V .

Since the number of incoming and outgoing connections of a vertex is generally not identical in

a directed graph , we de�ne the indegree and outdegree of a vertex analogously. Both degrees

have their own degree distribution.

Knowing the degree distributions of a graph is not su�cient to determine its topology. How-

ever, the distributions can serve as a valuable indicator what types of structures are present

in the graph.

For instance, graphs with scale-free degree distribution (which follow a power-law for large k)

possess many nodes of low degree, so called leaves, which are connected to nodes of high

degree, so called hubs. These graph are likely to contain clusters or hierarchical structures.

12
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Hence, the indegree and outdegree distribution serve as the �rst topological �ngerprint of a

graph.

Laplace Matrix

The Laplace matrix L ∈ N
N of a graph is a special representation of its adjacency matrix

A ∈ {0, 1}N with many useful properties.

De�nition 2.1.5 (Laplace matrix). The Laplace matrix L of a graph with adjacency matrix A

is given by

Lij = −Aij + δij

N∑

l=0

Ail , (2.2)

where δij is the Kronecker delta.

Hence, the diagonal entries of L contain the indegree ki = Lii of node i.

The Laplace matrix L is singular: det(L) = 0.

Clustering Coe�cient

Another useful indicator for topological features is the clustering coe�cient ci of a vertex i.

De�nition 2.1.6 (clustering coe�cient). Let G = (V,E) be an undirected graph with adja-

cency matrix A. Then the local clustering coe�cient ci of i ∈ V is de�ned as

ci =
numbers of connected neighbors of i

maximal number of possible connections among neighbors of i
(2.3)

The clustering coe�cient is a measure for the percentage of connected neighbors of i and is

thus an indicator for the local connectedness of a graph. It is only de�ned for undirected

graphs and can be computed using the adjacency matrix A via

ci =

∑
j,k AijAjkAki(∑

j Aij

)(∑
j Aij − 1

)

=
(A3)ii
k2
i − ki

. (2.4)

The mean clustering coe�cient c :=
∑
i ci
|V | of a graph corresponds to the probability that two

neighbors of a randomly chosen vertex are connected.

13
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Regular Topology: k-Rings

k-rings are one-dimensional periodic lattices. We introduce two di�erent types of k-rings:

De�nition 2.1.7 (undirected k-ring). Let k = 2n with n ∈ N, then an undirected k-ring

R = (V,E) is a graph whose vertices can be ordered (v1, v2, . . . , vN ) such that every vertex is

connected to the k/2 next and the k/2 preceding vertices in the ordering counted periodically.

The directed equivalent is only slightly modi�ed.

De�nition 2.1.8 (directed k-ring). A directed k-ring R = (V,E) is a graph whose vertices

can be ordered (v1, v2, . . . , vN ) such that every vertex vi has incoming connections from the

next k vertices in the ordering counted periodically.

All vertices of an undirected k-ring have degree k and all vertices of a directed k-ring have in-

and outdegree k.

2.1.2. Random Graphs

Random graphs are used to generate ensembles of networks with certain topological features.

Here, we introduce the Erd®s-Rényi model (ER), Watts-Strogatz model (WS) and Barabási-

Albert model (BA).

These random graph algorithms only generate undirected graphs. Since we need to create

directed graphs, we introduce appropriate modi�cations for each model.

De�nition 2.1.9 (random graph). A random graph is a probability distribution over graphs,

or an algorithm how to construct a graph involving randomness.

In this sense, random graphs are implicit graphs without explicit topology.

De�nition 2.1.10 (graph ensemble). A set of graphs generated by the same random graph

algorithm under the same conditions (e.g., using the same parameters) is called an ensemble.

Equivalently, an ensemble is a set of graphs drawn from the same probability distribution over

graphs.

Erd®s-Rényi model

An Erd®s-Rényi graph (ER graph) is the simplest version of a random graph: Every connec-

tion is present with a probability p, thus connections are statistically independent. In theory

14
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every graph is possible but of course not equally likely.

The typical directed ER graph has binomial in- and outdegrees degrees distributions with

mean k = 1
N

∑
i ki = p(N − 1) and variance σ2

k = 1
N

∑
i(ki − k)2 = p(1− p)(N − 1).

ER graphs are well discussed in the literature (e.g., [18]).

ER Algorithm: In this thesis, we construct directed ER graphs by

distributing M connections randomly in an empty graph with N

vertices.

The probability for two randomly chosen vertices i, j to be connected via a directed edge i← j

is p = M
N(N−1) . This way we guarantee a prede�ned number of connections in the graph.

For our studies, it is irrelevant that edges in this model are not uncorrelated for �nite M .

Watts-Strogatz model

Network scientists usually want to generate graphs that are very close to those observed in

nature. Real networks are sometimes grid-like (e.g. regular atom structures in crystals) and

few are ER-like, but most graphs are something in between. The regime between fully regular

and fully random is well covered by the Watts-Strogatz model (WS model) [44].

The following random graph algorithm was introduced by Watts and Strogatz after interest-

ing topological features of social networks had been found. Research suggest that networks

of human relations posses a feature that is now well known as small-world property: a high

clustering coe�cient (friends of friends are often also friends) in combination with a small av-

erage shortest path length, the average distance between individuals (the famous �six degrees

of separation�).

Since rings show a high clustering coe�cient but also large shortest path length and ER graphs

display the opposite properties, the natural idea was to generate hybrids.

WS algorithm: Start with an undirected k-ring with size N . Then,

delete every edge with rewiring probability q. Afterwards, redistribute

the deleted edges randomly in the graph.

For q = 0 the k-ring topology is not changed and for q = 1 an ER graph is generated. All

graphs produced by intermediate q are neither fully regular nor fully random. For small

15
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rewiring probability 0.003 < q < 0.01 the graphs show small-world behavior. In this thesis

the small-world regime is not of interest; we use the WS model to generate the full spectrum

between rings and ER graphs.

The classical WS model has to be modi�ed to generate directed graphs. Also, we like to

exclude graphs whose k-ring topology was not changed, even though q 6= 0. We introduce the

following changes:

WS1 (WS2) algorithm: Start with a directed k-ring of size N and

disconnect the source (target) of M edges. Afterwards, redistribute

the loose ends randomly within the graph.

WS3 algorithm: Start with a directed k-ring of size N and delete M

edges. Afterwards, redistribute these edges randomly within the graph.

The WS1 model keeps the indegree constant while the WS2 model kepps the outdegree con-

stant.

Ensembles of the WS1, WS2 and WS3 model are de�ned by three parameters: the number of

nodes N , the connection density ρ = k
N−1 ∈ [0, 1] and the rewiring probability q = M

kN ∈ [0, 1].

Fig. 2.1 shows all three modi�ed SW algorithms for N = 10 and di�erent values of ρ and q.

(a) (b) (c)

Figure 2.1: Examples for the modi�ed Watts-Strogatz models. graphs of size
N = 10, density ρ = 0.3 and rewiring probability q = 0.5 generated by (a) the WS1 model ,
(b) the WS2 model and (c) the WS3 model.

Alternatively, it is also possible to modify the WS algorithm such that in- and outdegrees are

randomized individually. By detaching targets of edges with probability qin and sources with

16
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probability qout the in- and outdegree distribution are randomized di�erently. This de�nes

the WS4 algorithm.

WS4 algorithm: Start with a directed k-ring of size N . Then detach

the target of Min edges and the source of Mout edges. Then redis-

tribute the loose ends randomly within the graph.

An ensemble of the WS4 algorithm is de�ned by four parameters: the number of nodes N ,

the connection density of the graph ρ = k
N−1 and the rewiring probabilities qin = Min

Nk and

qout = Mout

Nk .

Barabási-Albert model

Another very important class of random graphs are those with power law degree distribution.

These so called scale-free graph can be found in nature quite often (e.g., the Internet, social

networks, protein-protein interaction networks [2]). The most popular model for generating

graphs with this property is the Barabási-Albert model (BA model) [1, p. 71].

The desired shape of the distribution is achieved by introducing preferential attachment and

grows: In each step an edge is added to the graph to which new edges are drawn randomly. The

probability for a vertex to get a connection to the new vertex increases linearly with its degree.

BA model: Start with a completely connected graph of N0 nodes. Suc-

cessively, add a new vertex tho the graph and connect it randomly to

k vertices.

The probability pi to select vertex i is given by

pi =
ki∑
j
kj

(2.5)

Stop when the graph has N vertices.

For our purposes it is necessary to extend the BA model such that directed instead of undi-

rected graphs are created. In addition, we here introduce modi�cations to enable a continuous

switching between ER graphs and scale-free graphs.

17
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BA1 (BA2) model: Start with an empty graph of size N . Chose each

vertex once as a the target (source) of k edges. The sources (targets)

for these k edges are chosen randomly among the other N −1 vertices.

The probability pi to chose vertex i to be among the k sources (targets)

is given by

pi(s) =
(1− s) + s(ki,in + ki,out)

(1− s)(N − 1) + s
∑

j(kj,in + kj,out)
, (2.6)

where ki,in is the indegree and ki,out is the outdegree of node i.

s ∈ [0, 1] is the �scale-freeness� of the graph.

The �rst k connections are always chosen randomly.

The BA1 model keeps the indegree, the BA2 model the outdegree constant. For s = 0 an

ER-like graph with constant indegree (outdegree) is generated. For s = 1 a scale-free graph

is produced similar to the classic BA model but with a star-shaped graph in its core. Unlike

the classic BA model, connectedness can not be guaranteed.

For graphs with randomized in- and outdegree, we introduce another algorithm.

BA3 model: Generate a BA1 or BA2 graph. Flip each connection with

probability 1
2 if possible.

Ensembles generated by these three algorithms depend on the number of nodes N , the con-

nection density ρ = k
(N−1) ∈ [0, 1] and the coe�cient s ∈ [0, 1] which determines the �scale-

freeness� of the graph.

Fig. 2.2 shows the BA1 algorithm in di�erent states. Fig 2.3 con�rms that the modi�ed BA

model returns graphs with almost scale-free degree distribution.

18
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(a) (b) (c)

Figure 2.2: Three stages of the BA1 model. Di�erent states of the BA1 algorithm for
(s, ρ) ≈ (1, 0.3). (a) The �rst connection is chosen randomly, (b) after the �fth iteration, (b)
end result after bρN(N − 1)c connections have been generated. The result displays strong
clustering, a feature well known for scale-free graphs.
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Figure 2.3: The BA1 model returns scale-free degree distributions for s = 1. (a)
For increasing s the outdegree distribution transforms smoothly from binomial to scale-free.
(b) The log-log plot shows approximately a power law distribution for s = 1 (red). The
BA1 model is more accurate for small degrees than the BA model (plus-markers). Shown are
graphs of size N = 400 with a connection density of ρ = 0.04.
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2.2. Dynamical Systems and Networks of Physical Interaction

We introduce dynamical systems and specify the concept of dynamical processes on graphs.

In the literature, there is no agreement on the de�nition of the term �network�, since its a

very pictorial concept that serves multiple purposes. Hence, when speaking about network

reconstruction it is necessary to clarify what type of network is meant. In this thesis, network

reconstruction refers to the inference of the �network of physical interaction�, a network which

is de�ned by the graph of interactions between the state space variables of a dynamical system.

Dynamical System

A dynamical system is a tuple (T,M,Φ) of a set of times T ⊆ R, a set M called state space or

phase space, and an evolution function Φ that determines how a state x ∈M evolves in time

Φ : M × T →M . (2.7)

This function has to ful�ll the intuitive conditions

Φ(x, 0) = x Φ(Φ(x, t1), t2) = Φ(x, t1 + t2) (2.8)

associated with time evolution. Given an initial state x0 ∈M and a time t ∈ T the evolution

function Φ(x, t) = xt returns the state xt ∈M that x0 evolved into after the time t has passed.

Classical examples of dynamical systems are iterated maps and systems of �rst order ordinary

di�erential equations (ODEs).

A system of �rst order ODEs is a function ϕ(x) that de�nes the derivative of x ∈M in respect

to time t ∈ R

ẋ :=
d
dt
x = ϕ(x) . (2.9)

Any system of ODEs can be reformulated as a system of �rst order ODEs.

The derivative ϕ de�nes an evolution function via

Φ(x, t) = x+

∫ t

0
ϕ(x)dt . (2.10)
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Networks of Physical Interactions

Consider a dynamical systemD = (R,RN ,Φ) de�ned by a system of �rst order ODEs ẋ = ϕ(x)

which can be expressed such that

ẋi = ϕ(x)i = fi(xi) +
∑

i 6=j
Aijgij(xi, xj) . (2.11)

fi is called the auto-dependency function of xi, gij 6= 0 is called the coupling function of xi

and xj , and A ∈ {0, 1}N×N is called adjacency matrix.

Then, we de�ne a graph G = (V,E) with a vertex set V = {1, . . . , N} and an edge set E

in which each vertex i ∈ V is associated with exactly one element xi of the state space

(x1, . . . , xN ) ∈ RN . Two vertices in i, j ∈ V , i 6= j, are connected via a directed edge i← j if

and only if the evolution of xi depends explicitly on xj , i.e. Aij 6= 0. Hence, A is the adjacency

matrix of the graph G.

In this ways, the dynamical system D can be understood as a dynamical process on the graph

G. G is called the network of physical interactions or structural network of the dynamical

system D.

The simplest class of networks are de�ned by systems of linear �rst order ODEs

ẋ = Jx , J ∈ RN×N , (2.12)

ẋi = (Jii +
∑

j 6=i
Jij)xi

︸ ︷︷ ︸
fi(xi)

+
∑

j 6=i
Jij(xj − xi)
︸ ︷︷ ︸
Aijgij(xi,xj)

, (2.13)

where J is the Jacobian matrix

Jij =
∂(ẋi)

∂xj
. (2.14)

Despite their simplicity, these systems are of general importance, because according to the

Hartman-Grobman theorem any dynamical system can be approximated by a linear dynamical

system in the vicinity of a �xed point, a point x0 in state space with ϕ(x0) = 0 [37].
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2.3. Probability and Stochasticity

The reader will �nd de�nitions and examples of the most basic concepts of probability and

stochastic theory in this section. This summary includes the basic knowledge for the under-

standing and the analysis of random processes.

2.3.1. Random Variable

A random variable is a well de�ned mathematical concept. However, like many mathematical

concept, its exact de�nition involves an extensive explanation of the structures in which it

is embedded (sample space, σ-algebra, etc.). For this reason, instead of providing detailed

explanations, we refer to a standard textbook (e.g., [24]) and introduce the term �random

variable� in a physically more useful manner.

Let Ω be a set of atomic outcomes of a random experiment, an experiment involving ran-

domness. Then any subset ω ⊆ Ω is called an event, it is equipped with a probability

P (ω) ∈ [0, 1]. A random variable X is a function mapping an event ω to a numerical repre-

sentation X(ω) = x, e.g. x ∈ N, x ∈ R or x ∈ R3. This way we can assign probabilities for

the numerical values x.

For example, imagine two dice. The atomic outcomes of throwing two dice are the combina-

tion of their pips, hence, Ω = {{ , }, { , }, . . . , { , }, { , }}. The probability of the

outcome ω = Ω/{ , } is P (Ω/{ , }) = 35
36 . The sum of pips x shown after a throw is a

random variable X. The probability for x < 12 is P (x < 12) = P (X(Ω/{ , })) = 35
36 .

In this thesis the set of atomic outcomes Ω is usually uncountable and random variables X are

usually continuous. Hence, probabilities for atomic outcomes ω ∈ Ω are zero for any function

P . In this case, one de�nes a probability density p(X(ω)=x) for an appropriate subset A ⊆ Ω.

P (ω ∈ A) =

∫

ω′∈A

p(ω′) dω′ ⇒ P (x ∈ X(A)) =

∫

x′∈X(A)

p(x′) dx′ (2.15)

As from now on neither the meaning nor the structure of Ω is of any interest. X itself has

become a random experiment de�ned by its probability density p(X=x) or short p(x).
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2.3.2. Probabilities and Statistic Independence

Let X, Y be two random variables, then the probability for both X =x and Y = y is called

joint probability P (x, y) while the probabilities for each X = x and Y = y individually are

called marginal probabilities P (x) and P (y).

The probability for X = x given Y = y is called conditional probability P (x|y).

Joint, marginal and conditional probability are related by

P (x, y) = P (x|y) · P (y) = P (y|x) · P (x) . (2.16)

This important relationship is often called the chain rule of probability calculus and can be

generalized to

P (x1, x2, . . . , xn) = P (xn) ·
n−1∏

i=1

P (xi|xi+1, . . . , xn) . (2.17)

De�nition 2.3.1 (statistic independence). Two random variables X and Y are called sta-

tistically independent (short: X ⊥⊥ Y ) if and only if P (x|y) = P (x) and thus if their joint

probability factorizes.

X ⊥⊥ Y ⇔ P (x, y) = P (x) · P (y) (2.18)

De�nition 2.3.2 (conditional independence). Two random variables X,Y are conditionally

independent given a third random variable if their joint conditional probability factorizes.

(X ⊥⊥ Y ) | Z ⇔ P (x, y|z) = P (x|z) · P (y|z) (2.19)

Only continuous random variables will be considered in this thesis. It is necessary to formulate

the statements made above for probability densities instead of probabilities.

Fortunately, it is easy to show that two random variables X, Y are statistically independent
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if and only if their joint probability distribution factorizes:

A,B ⊆ Ω (2.20)

P (x ∈ X(A), y ∈ Y (B)) =

∫

X(A)

∫

Y (B)

p(x, y) dy dx

=

∫

X(A)

∫

Y (B)

p(x)p(y) dy dx

=

∫

X(A)

p(x) dx
∫

Y (B)

p(y) dy = P (x ∈ X(A)) · P (y ∈ Y (B)) (2.21)

Hence, all statements made for the probability P , are also true for the probability density p.

2.3.3. Stochastic Processes and Markov Property

A random variable depending on time is called a stochastic process.

Let X(t) be such a stochastic process. This means for times (t1, t2, . . .) with t1 > t2 > . . .

X(t) produces a sequence (x1, x2, . . .). The behavior of X(t) is fully described by the joint

probability density p(x1, t1;x2, t2; ...). This also de�nes a conditional probability

p(x1, t1;x2, t2; . . . ;xn, tn|y1, τ1; y2, τ2 . . .) =
p(x1, t1;x2, t2; . . . ;xn, tn; y1, τ1; y2, τ2; . . .)

p(y1, τ1; y2, τ2; . . .)
(2.22)

where for all n, tn > τ1 > τ2 > . . . . We conceive the conditional probability as the probability

of X(t) to be x1 at t1, x2 at t2 and so on, on condition that X(t) was y1 at τ1, y2 at τ2 et

cetera.

In many cases it is su�cient to reduce the number of former states the conditional probability

depends on. This means that the future states of X(t) do not depend on the whole history of

the random variable but only on a �nite subset of k former states.

p(x1, t1; . . . ;xn, tn|y1, τ1; y2, τ2 . . .) = p(x1, t1; . . . ;xn, tn|y1, τ1; . . . ; yk, τk) (2.23)

This feature is called kth order Markov property and the corresponding processes kth order

Markov processes.

In physics dynamic systems are usually de�ned by di�erential equations. Since the deter-
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ministic trajectories of these systems do not cross in state space, the future evolution is fully

determined by one point in the past. Hence, these processes are �rst order Markov processes.

p(x1, t1;x2, t2; ...;xn, tn|y1, τ1; y2, τ2 . . .) = p(x1, t1;x2, t2; ...;xn, tn|y1, τ1) (2.24)

2.3.4. Average

The average or mean of a function f(X) of a random variable X is computed by integrating

over all possible states weighted by their probability, i.e.

〈f(X)〉x :=

∫
f(x)p(x) dx . (2.25)

〈·〉x is called average over state space. A stationary random process X(t) is called ergodic, if

the time average 〈·〉t equals the average over state space 〈·〉x for all functions f(X(t)). Hence,

〈f(X(t))〉t = lim
T→∞

1

T

∫ T

0
f(x(t)) dt (2.26)

=

∫
f(x(t))p(x) dt = 〈f(X(t))〉x . (2.27)

2.3.5. Langevin equation, White Noise and Stochastic Di�erential Equation

Named after the French physicist Paul Langevin (∗1872, d1946), the Langevin equation is a

system of �rst order di�erential equations involving randomness. It is a so called stochastic

di�erential equation (SDE).

For x ∈ RN , the most general form can be written as

ẋ = f(x, t) + g(x, t)η(t) (2.28)

with g(x, t) ∈ R
N×N . η(t) ∈ R

N is a �white noise� vector, that is a strongly �uctuating

multivariate random process with zero mean and an autocorrelation of

〈ηi(t)ηj(t)〉x = δijδ(t− t′) (2.29)
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where δij is the Kronecker delta, δ(t − t′) is the δ-distribution and 〈·〉x is the average over

state space. Since the covariance of this non-continuous process diverges, η(t) is ergodic.

The Langevin equation for x de�nes a random process X.

SDEs are often written in di�erential form. The di�erential form of the Langevin equation is

dx = f(x, t)dt+ g(x, t)dW (t) , (2.30)

where dW (t) := η(t)dt. W (t) is the multivariate Wiener process (see below).

2.3.6. Wiener Process

The Wiener process is the basis of many stochastic di�erential equations. It is named after

the American mathematician Norbert Wiener (∗1894, d1964).

We need the properties of the Wiener process for numerical simulations.

The Wiener process is de�ned by the Langevin equation

Ẇ = η(t) ⇒ W (t) = w0 +

∫ t

t0

η(t′) dt′ . (2.31)

in which η(t) is white noise. Hence, the Wiener process is integrated white noise.

Since |η(t)| < ∞, W (t) is a continuous random process. The evolution of its probabil-

ity distribution is expressed by the partial di�erential equation (a Fokker-Planck equation)

[15, Eq. 3.8.1]

p(w, t|w0, t0) =
1

2
∂2
w p(w, t|w0, t0) (2.32)

also known as di�usion equation.

For precisely known initial conditions p(w0, t0) = δ(w − w0) the solution of this partial di�er-

ential equation is [15, Eq. 3.8.7]

p(w, t|w0, t0) =
1√

2π(t− t0)
e
− 1

2
(w−wo)2

(t−t0) . (2.33)
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Thus, the probability density function of theWiener process is a Gaussian with variance
√
t− t0.

Since the variance of this process diverges as t→∞, the Wiener process is ergodic.

2.3.7. The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process (OU process) is a continuous random process named after

the Dutch physicists Leonard Ornstein (∗1880, d1941) and Georg Uhlenbeck (∗1900, d1988).

It describes a linear dynamical system driven by white noise. Hence, it is a �rst order ap-

proximation in the vicinity of a �xed point of any dynamical system that is exposed to rapid

�uctuations. For this reason, the OU process is of general importance. It has been used to

model stock market dynamics [31] and gene-regulatory networks [13].

The OU process for x ∈ RN is de�ned by the Langevin equation

ẋ = Jx+Bη(t), (2.34)

here J,B ∈ RN×N are constant matrices. Hence, the process is linear. J is the Jacobi matrix

of the underlying dynamical system. B is called noise input matrix.

For known initial conditions x0 := x(t0), the process has an analytic solution [15, Eq. 4.4.43]

x(t) = eJ(t−t0)x0 +

t∫

t0

eJ(t−t′)B dW (t′) , (2.35)

where W (t) is the Wiener process (see Sec. 2.3.6).

If the process initially has a Gaussian shaped probability density, all higher order momenta

of the probability distribution vanish. Thus, it will stay Gaussian. The same holds for

deterministic initial conditions. Also, the Ornstein-Uhlenbeck is ergodic, because all states of

state space can be reached from all initial conditions.

Next, we derive joint and conditional probability densites of the OU process.
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Mean

The mean of X(t) is computed using Eq. 2.35. If the mean of X0 := X(t0) is x0, the mean

of X(t) is given by

〈X(t)〉x = eJ(t−t0) 〈X0〉x︸ ︷︷ ︸
x0

+

t∫

t0

eJ(t−t′)B 〈η(t′)〉x︸ ︷︷ ︸
=0

dt′ = Utx0 . (2.36)

Here, we de�ned Ut := eJt.

Covariance Matrix

The conditional covariance matrix Σ(t, t | t0) is the covariance matrix of X(t) on condition

that the probability distribution of X0 := X(t0) has a covariance matrix of Σ(t0). It has an

analytic solution which is again calculated using Eq. 2.35:

Σ(t, t | t0) = 〈X(t)X(t)ᵀ〉x − 〈X(t)〉x〈X(t)ᵀ〉x

= Ut−t0 (〈X0X
ᵀ
0〉x − 〈X0〉x〈Xᵀ

0〉x)︸ ︷︷ ︸
Σ0

Uᵀ
t−t0 +

t∫

t0

〈X0η
ᵀ(t′)〉x︸ ︷︷ ︸

=0

BᵀUᵀ
t−t′ dt

′

+

t∫

t0

Ut−t′B 〈η(t′)X0
ᵀ〉x︸ ︷︷ ︸

=0

dt′ +

t t∫∫

t0 t0

Ut−t′B 〈η(t′)η(t′′)ᵀ〉x︸ ︷︷ ︸
=δ(t′−t′′)1

BᵀUᵀ
t−t′′ dt

′dt′′

= Ut−t0Σ(t0)Uᵀ
t−t0 +

t∫

t0

Ut−t′BB
ᵀUᵀ

t−t′ dt
′ , (2.37)

where the matrix Ut := eJt is de�ned as in the previous paragraph.

The delayed covariance matrix Σ(t + τ, t | t0), or autocorrelation function, is the covariance

matrix between X(t) and its future values X(t+ τ). If the probability distribution at t = t0

has a covariance matrix of Σ(t0), it is given by

Σ(t+ τ, t | t0) = 〈X(t+ τ)X(t)ᵀ〉x − 〈X(t+ τ)〉x〈X(t)ᵀ〉x

= Ut+τ−t0Σ(t0)Uᵀ
t−t0 +

t∫

t0

Ut+τ−t′BB
ᵀUᵀ

t−t′ dt
′ . (2.38)
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with τ ≥ 0.

If all eigenvalues of J have negative real part, the dynamical system has a stable �xed point

at x = 0. In this case, the process becomes stationary after in�nite time. To compute

the covariance matrix of the stationary state Σ0, we only have to take the limit t0 → −∞ for

Σ(t, t | t0):

Σ0 =

t∫

−∞

Ut−t′BB
ᵀUᵀ

t−t′ dt
′

=

∞∫

0

eJt
′
BBᵀeJ

ᵀt′ dt′ (2.39)

Partial integration leads to a fundamental algebraic relation between J,B and Σ0 [15, Eq. 4.4.51],

the Lyapunov equation

JΣ0 + Σ0J
ᵀ = −BBᵀ . (2.40)

Taking the same limit for Σ(t + τ, t | t0) leads to the time shifted covariance matrix of the

stationary state

Στ := lim
t0→−∞

Σ(t+ τ, t | t0) = UτΣ0 . (2.41)

The covariance matrix for negative time shifts is de�ned by Σ−τ := Σᵀ
τ .

Probability Densities

Here, we compute important probability densities. The calculations can also be found in [26].

We derive the joint probability density p(x, τ ;x0, 0) for being in state x at time t = τ and at

x0 at time t = 0 in the stationary state by applying the chain rule

p(x, τ ;x0, 0) = p(x, τ | x0, 0) · p(x0) . (2.42)

Since

p(x, τ | x0, 0) ∝ exp

{
−1

2
[xᵀ(τ)− x0

ᵀUᵀ
τ ] Σ(τ, τ | 0)−1 [x(τ)− Uτx0]

}
(2.43)
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and

p(x0) ∝ exp

{
−1

2
xᵀ

0Σ−1
0 xᵀ

0

}
, (2.44)

the joint probability distribution is given by

p(x, τ ;x0, 0) ∝ exp



−

1

2


x0

x




ᵀ
Σ−1

0 + Uᵀ
τ Σ(τ, τ | 0)−1Uτ Uᵀ

τ Σ(τ, τ | 0)

Σ(τ, τ | 0)−1Uτ Σ(τ, τ | 0)−1




x0

x





 .

(2.45)

Thus, the covariance matrix Σ of the joint distribution has to ful�ll

Σ−1 =


Σ−1

0 + Uᵀ
τ Σ(τ, τ | 0)−1Uτ Uᵀ

τ Σ(τ, τ | 0)

Σ(τ, τ | 0)−1Uτ Σ(τ, τ | 0)−1


 . (2.46)

A matrix inversion yields

Σ =


Σ0 Σᵀ

τ

Στ Σ0


 . (2.47)

2.4. Global Thresholding of Pairwise Measures of Statistic Dependence

In this section, we present a class of reconstruction methods that has become a standard

method in the statistical analysis of networks: Thresholding of pairwise measures of statisti-

cal dependence.

We present the basic idea of the method and introduce Pearson correlation and mutual infor-

mation, popular measures of statistical dependence for linear and nonlinear systems. Then, we

show that Pearson correlation su�ciently describes statistical dependencies between variables

of the Ornstein-Uhlenbeck process.

In the last part, we explain instantaneous thresholding and maximal thresholding, two di�erent

thresholding methods.
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2.4.1. The Method

Analyzing dynamical systems by global thresholding of pairwise measures of statistical depen-

dence works exactly like indicated by the name.

First, the statistical dependence between pairs of state space variables is calculated using a

suitable measure (e.g., Pearson correlation, mutual information or transfer entropy). Subse-

quently, an appropriate global threshold is chosen to classify pairs as connected or unconnected:

Any pair of variables correlated less than the threshold is considered unconnected and any

pair whose statistical dependence lies above the threshold is said to be connected. This de�nes

a so called �e�ective network�.

Slightly di�erent networks are constructed depending on which measure is chosen as well as

how and where the values are thresholded. Hence, thresholding statistical dependencies is

rather a family of reconstruction methods than just a single method.

The e�ective network re�ects the most correlated variable pairs of a system. Correlations help

to estimate the reaction of a dynamical system to changes. Even though, the exact changes

in the behavior can not be predicted explicitly, at least it is possible to predict which parts of

the system are likely not to change.

In order to estimate the statistical dependence between variables their joint and marginal

probability distributions have to be estimated. Often, the necessary statistic is taken from

the time series of the process implying that the process is in a stationary state.

The question remains how the e�ective network (given by the most correlated state space

variables) is related to the network of physical interactions (given by the dynamical system it-

self). Arguments exist that support that e�ective and physical network have to be connected:

If two units are physically interacting, they are very unlikely to be statistically independent.

Thus, assuming that real interaction lead to statistical dependence is a reliable approximation

of reality (see: stability [33, p. 31]). Given this assumption, the logical opposite should also

be true: If two variables are not statistically dependent they can not be physically connected

in any way.

In addition, if the interaction channels are noisy, directly interacting units should be statis-

tically more dependent than indirectly communicating units (see: data processing inequal-

ity [9, Sec. 2.8]). Hence, if the pairwise statistical dependencies are thresholded at a suitable
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value, it could be possible to separate non-existing from existing connections.

At least, this is the chain of reasoning. If this was true, the problem of reconstructing the

network of physical interactions would be relaxed to �nding the right threshold of statistical

dependence. Unfortunately, heterogeneous connection strengths and second order e�ects can

render physically unconnected variables more dependent than physically connected variables.

Thus, the e�ective network and the network of physical interactions do not coincide in general.

Nevertheless, this method has convincing advantages:

First, it is simple and intuitive. For many measures (e.g., Pearson correlation) it is even pos-

sible to estimate con�dence intervals, so that only a few data points are needed to generate

useful results.

Secondly, even though the resulting e�ective network may not be the actual physical network

behind the process, the numbers themselves have an interpretable meaning. The edges re-

constructed by thresholding are usually called functional links and the matrices of pairwise

statistical dependence e�ective connectivity matrices.

And last, thresholding is model free. As long as the analyzed time series are stationary and a

suitable measure of statistical dependence is used, the results re�ect the e�ective interaction

within the network. Consequently, this method is widely used in many �elds of science.

Considering the simplicity of this method, scientists have become creative to improve its

ability to detect physical interactions. The ARCACNE algorithm [29], for example, tries to

�x the problem of false positive connections by deleting the weakest connection in a circle of

size 3 using information theoretic arguments.

2.4.2. Pearson Correlation

The simplest way to estimate stochastic dependencies of two random variables X, Y is the

Pearson correlation coe�cient Cxy. The measure is traditionally used in almost all disciplines

that are accustomed to statistics and probabilistic statements, like medicine or social science.

In many cases it is even the obligatory standard measure for scienti�c journals.
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Pearson correlation is de�ned as the normalized cross-covariance Σxy of two variables

Cxy :=
Σxy√

Σxx · Σyy

. (2.48)

In order to generalize the analysis for time series of processes in a stationary state it is

convenient to introduce a time delay τ that makes it possible to track the changes of Cxy

regarding future and past values of X and Y .

Cxy(τ) :=
Σxy(τ)√
Σxx · Σyy

(2.49)

Here Σ(τ) is the delayed covariance matrix of the joint probability density p(x, y). And Σxx

and Σyy are the diagonal elements at time delay τ = 0.

If the joint probability density p(x, y) is Gaussian and X and Y are non-correlated, i.e.

Cxy = 0, the joint probability distribution factorizes p(x, y) = p(x) · p(y) and both vari-

ables are statistically independent by de�nition.

Since higher order momenta of the joint probability distribution are not considered, Pearson

correlation does only re�ect statistical dependencies for Gaussian probability densities. These

distributions are mostly generated by linearly related random variables, so that Pearson cor-

relation does not re�ect statistical dependencies in nonlinear systems.

Cxy can take values in the interval [−1, 1]. If Cxy = 1 the trajectories of X(t) and Y (t) are

related by a linear deterministic equation X = m · Y + c with m > 0. For Cxy = −1 the same

is true for negative m.

We de�ne conditional correlation Cx|y of two Gaussian distributed random variables X, Y

as the normalized covariance Σx|y of the conditional joint probability distribution p(x|y).

Σx|y can be computed via

Σx|y = Σxx − ΣxyΣ
−1
yy Σyx . (2.50)

This formula can be derived by p(x|y) = p(x, y)/p(y) (see AppendixA.2).

Keep in mind, that X and Y can be multivariate processes, so that Cx|y is a matrix.
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2.4.3. Mutual Information

Mutual information and other information theoretic measures of statistical dependence in

nonlinear systems have become popular lately. Here, we introduce delayed mutual informa-

tion, derive mutual information for the OU process and show that for this process Pearson

correlation is actually su�cient to measure statistical dependencies.

In the late 1940's, the American mathematician Claude E. Shannon (∗1916, d2001) proposed

a way to quantify and measure information. His idea was mathematically so convenient and

general that it is now used as a solution for many problems in other �elds.

The most convincing feature of the introduced measure is the possibility to quantity statistic

dependencies in any kind of relationship. As such, it is a helpful tool to analyze the depen-

dencies in complex systems which are often nonlinear and of unknown nature.

Shannon's information H(X) of a random variable X with probability distribution p(x) is

basically an entropy. For a continuous random variable it is de�ned as the integral

H(X) := −
∫
p(x) log (p(x)) dx . (2.51)

For two random processes X,Y , this entropy can be displayed as a Venn diagram (Fig. 2.4).

The entropy of the combined process H(X,Y ) is the sum of the individual entropies H(X),

H(Y ) minus the entropy they have in common I(X;Y )

H(X,Y ) := −
∫∫

p(x, y) log (p(x, y)) dxdy

= −
∫∫

p(x, y) log (p(x, y)) dxdy +H(X)−H(X) +H(Y )−H(Y )

= H(X) +H(Y )−
∫∫

p(x, y) log (p(x, y)) dxdy

+

∫∫
p(x, y) log (p(x)) dxdy +

∫∫
p(y) log (p(x, y)) dxdy

= H(X) +H(Y )−
∫∫

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy

︸ ︷︷ ︸
:=I(X;Y )

. (2.52)
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H(x) H(y) H(x) H(y)

I(x,y)

Figure 2.4: Venn Diagramm for Mutual Information, Left side: If X and Y are
statistically independent they share no information. Hence H(X,Y ) = H(X) +H(Y ) and
I(X;Y ) = 0. Right side: If the variables are statistically dependent they have information
in common. Thus I(X;Y ) 6= 0

I(X;Y ) is called mutual information of X and Y .

Mutual information has convincing properties: It is always positive and only zero if X and

Y are statistically independent [9, Eq. 2.90]. Since this holds for all probability distributions,

mutual information I(X;Y ) is a terri�c pairwise measure of statistical dependence.

Mutual information of two variables X, Y is symmetric, i.e. I(X;Y ) = I(Y ;X). For station-

ary random processes with asymmetric physical interactions, e.g., X → Y , it is convenient to

break the symmetry of mutual information I(X;Y ) by introducing a time delay τ .

The delayed mutual information is de�ned by

Iτ (X;Y ) =

∫ ∫
p(x, τ ; y, 0) log

(
p(x, τ ; y, 0)

p(x)p(y)

)
dxdy , (2.53)

where p(x, τ ; y, 0) is the joint probability density of X being in state x are time t0 + τ and Y

being in state y at time t0. Since the process (X,Y ) is in a stationary state, the joint distribu-

tion only depends on the time delay τ and the marginal distributions are time independent.

Delayed mutual information of negative time delays is de�ned by I−τ (X;Y ) := Iτ (Y ;X).

2.4.4. Mutual Information of the Ornstein-Uhlenbeck Process

Based on the probability distributions of the Ornstein-Uhlenbeck process (OU process, Sec. 2.3.7),

we compute the delayed mutual information between two state space variables and show that

it solely depends on their Pearson correlation coe�cient. The calculation can be found in [26].

The delayed mutual information of two variables Xi, Xj ∈ {X1, . . . XN} of a stationary mul-
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tivariate process is given by

Iτ (Xi;Xj) :=

∫∫
p(xi, τ ;x0j , 0) log

(
p(xi, τ ;x0j , 0)

p(xi)p(x0j)

)
dxidx0j , (2.54)

p(xi, τ ;x0j , 0) is the joint probability distribution of the time shifted state between two vari-

ables, p(xi) is the marginal distribution of one variable.

For the OU process, we already calculated the joint probability distribution of the global

time shifted state p(x, τ ;x0, 0) and the probability distribution of the stationary state p(x0).

The low-dimensional densities p(xi, τ ;x0j , 0) and p(xi) are computed by integrating the high-

dimensional densities p(x, τ ;x0, 0) and p(x0) over all but the required variables. We get

p(xi) =

∫
· · ·
∫
p(x0) dx1 . . . dxi−1dxi+1 . . . dxN

=
√

2πΣ0,ii
−1

exp

{
− x2

i

2Σ0,ii

}
(2.55)

p(xi, τ ;x0j , 0) =

∫
· · ·
∫
p(x, τ ;x0, 0) dx1 . . . dxi−1dxi+1 . . . dxNdx0,1 . . . x0,j−1dx0,j+1 . . . dx0,N

=
√

(2π)2 det Σ′
−1

exp

{
−1

2
(xj , xi)Σ

′−1(xj , xi)
ᵀ
}

(2.56)

where Σ0 is the covariance matrix of the stationary state (Eq. 2.39), Στ is the time shifted

covariance of the stationary state calculated (Eq. 2.41) and

Σ′ =


Σ0,jj Σᵀ

τ,j,i

Στ,i,j Σ0,i,i


 . (2.57)
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Hence,

Iτ (Xi;Xj) =

∫∫
p(xi, τ ;x0j , 0) log

{√
Σ0,iiΣ0,jj

det(Σ′)

}
dxidx0j

− 1

2

∫∫
p(xi, τ ;x0j , 0)(x0j , xi)Σ

′−1(x0j , xi)
ᵀ dxidx0j

+
1

2

∫∫
p(xi, τ ;x0j , 0)

(
x2
i

Σ0,ii
+

x2
0j

Σ0,jj

)
dxidx0j

= log

{√
Σ0,iiΣ0,jj

det(Σ′)

}
−

2Σ0,iiΣ0,jj − 2Σ2
τ,ij

2 det Σ′
+

1

2

Σ0,ii

Σ0,ii
+

1

2

Σ0,jj

Σ0,jj

= log

{√
Σ0,iiΣ0,jj

Σ0,iiΣ0,jj − Σ2
τ,ij

}

= −1

2
log

{
1−

Σ2
τ,ij

Σ0,iiΣ0,jj

}
= −1

2
log
{

1− C2
ij(τ)

}
, (2.58)

where Cij(τ) is the Pearson correlation coe�cient.

Since the logarithm is monotone, this proves that Pearson correlation correctly captures the

statistical dependencies between variables of the OU process.
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Figure 2.5: Di�erent types of thresholding return di�erent results. Two stationary
systems each with statistically di�erently depending units. (a) is reconstructible by instan-
taneous thresholding: at τ = 0 the curves are separable by the dashed threshold. (b) is
reconstructible by maximum thresholding: regarding only the maximal values the curves for
existing and non-existing connections are separable.
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Instantaneous Thresholding and Maximum Thresholding

Two members of the family of thresholding methods are often used in the literature: instan-

taneous thresholding and maximum thresholding.

Let {in}n∈N and {jn}n∈N be two time series and

cij(τ) = f({in+τ}n∈N, {jn}n∈N) (2.59)

be a measure of statistical dependence including a delay τ , so that cij(−τ) := cji(τ)

Instantaneous thresholding compares only values at time delay zero cij(0). Because the mea-

sure is symmetric, i.e. cij(0) = cji(0), the directions of the dependencies can not be deduced.

Hence, only undirected graphs are reconstructed.

Maximum thresholding considers the maximum correlation value cij,max = max
τ

cij(τ). This

way, an asymmetry is introduced that can be used to make statements about the direction of

the connection. By intuition causality implies that the cause always precedes its e�ect [23],

so that cij,max with a positive time delay suggests that changes in j cause changes in i, hence

j → i. However, this immediately raises the issue of reconstructing asymmetric bidirectional

connections so that the reconstruction of actual directed networks remains problematic.

In the literature, instantaneous thresholding is the more popular method, most likely due to

its simplicity. When comparing both methods regarding their ability to reconstruct networks

of physical interaction, we �nd examples of processes which are only fully reconstructible by

one of the two methods (Fig. 2.5).

2.5. Bayesian Approach

In this section, we present the Bayesian network approach to network reconstruction. While

thresholding measures of statistical dependence focuses on the reconstruction of e�ective con-

nections, the Bayesian approach aims at the reconstruction of conditional statistical depen-

dencies.

In the �rst part of this section, we introduce the concept of a Bayesian network. In the

second part, we introduce dynamical Bayesian networks which extend the concept of Bayesian

networks to random processes and dynamical systems. In the last part, we introduce the
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powerful inductive causation algorithm (IC∗ algorithm) proposed by Pearl [33, Sec. 2.6], an

algorithm that reconstructs all Bayesian networks for a given probability distribution. It was

used by Runge [35] to reconstruct physical dependencies in random processes.

2.5.1. Bayesian Network

A Bayesian network is a graphical representation of a set of random variables and their con-

ditional dependencies.

We have already seen that the joint probability density of a set of random variables can

be decomposed in conditional probability densities by the chain rule (Eq. 2.17), but not all

conditional dependencies have to depend on all remaining variables.

In a Bayesian network illustrating such a decomposition, every variable Xi is represented by a

vertex. Directed edges are drawn from Xj to Xi if the conditional probability of Xi depends

explicitly on Xj . This de�nes directed acyclic graphs (DAGs).

Fig.2.6 shows the Bayesian network for the decomposed joint probability

P (X,Y, Z, V ) = P (X|Y,Z, V ) · P (Y |Z) · P (Z|V ) · P (V ) , (2.60)

which is not unique.

For a given probability distribution the corresponding Bayesian network is unique up to edge

orientations that do not create or destroy so called v-structures, i.e. converging edges, whose

source vertices are not connected by an edge [33, p. 19].

Y

V

X

Z

Y

V

X

Z

Y

V

X

Z

Figure 2.6: Example of Three Bayesian network Representations for the Same
Joint Probability Ditribution, The network on the left represents the joint probabil-
ity decomposition P (X,Y, Z, V ) = P (X|Y,Z, V )P (Y |Z)P (Z|V )P (V ). The networks on the
right constitute equivalent representations. The graph is not unique because the connections
V → Z and Z → Y can be reversed without destroying or creating a v-structure.
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2.5.2. Dynamical Bayesian Networks

Dynamical Bayesian networks have been developed to study the relationships between state

space variables in multivariate random processes.

It should be made clear that the network of physical interactions is not the Bayesian network of

the system. Networks of physical interactions are de�ned by a stochastic dynamical systems,

for instance a Langevin equation or another multivariate random process. In these systems

the concept of time is crucial. Information about state changes di�use through these systems

from one variable to another with an intrinsic velocity. For Bayesian networks, the concept

of time is of no importance. It only re�ects conditional dependencies in joint probability

distributions.

For this reason, let us consider the joint probability distribution p(x2, t2;x1, t1;x0, t0) of three

successive states X0, X1, X2 at times t0 < t1 < t2 of a multivariate �rst order Markov

process in a stationary state. Because of its Markov property, it can certainly be written as

p(x2, t2;x1, t1;x0, t0) = p(x2, t2|x1, t1) · p(x1, t1|x0, t0) · p(x0, t0) (2.61)

and because of its stationarity it only depends on time di�erences

p(x2, t;x1, t− τ ;x0, t− 2τ) = p(x2, t|x1, t− τ) · p(x1, t− τ |x0, t− 2τ) · p(x0, t− 2τ) .

(2.62)

This already de�nes a Bayesian network between the successive states x0, x1 and x2 called a

dynamical Bayesian network.

If discrete-time systems like

xi,t = fi(xi,t−τ ) +
∑

j 6=i
Aijgij(xi,t−τ , xj,t−τ )

︸ ︷︷ ︸
discrete-time network

+
∑

j

Bijηj(t)

︸ ︷︷ ︸
noise term

, (2.63)

with time step τ and white noise η(t) are considered, the conditional probability density
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between successive states can be decomposed even more:

p(xi,t| . . . , xj,t−τ , . . .) ⇔ Aij 6= 0 (2.64)

Since A is the adjacency matrix of the network of physical interactions, a link in the dynamical

Bayesian network re�ects a physical connection. Hence, reconstructing the Bayesian network

structure between successive time steps leads to a reconstruction of the network of physical

interactions.

Fig.2.7 illustrates an example for N = 3 variables. The network of physical interactions in

Fig.2.7a has the dynamical Bayesian network representation displayed in Fig.2.7b.

YX Z

(a)

YX ZYX Z

t

t-2τ

t-τ

(b)

Figure 2.7: Chain topology and its dynamical Bayesian network representation.
(a) shows a network of physical interactions, (b) shows is Bayesian representation in case of
a discrete-time random process with time step τ

2.5.3. Inductive Causation Algorithm

Here, we explain the inductive causation algorithm (IC∗ algorithm). An algorithm that was

proposed for the reconstruction of Bayesian networks by Pearl [33, Sec. 2.6].

Bayesian network reconstruction approaches have become a benchmark. They split into two

groups: direct methods and scoring methods. Direct methods try to reconstruct the Bayesian

network using conditional statistical dependencies and machine learning algorithms. Scoring

methods search the solution space of all possible Bayesian networks trying to �nd the one

structure that explains the measured statistic the best. Often, scoring methods involve max-
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imization a likelihood function or include the assumption of a particular model.

Both approaches have to deal with a solution space that grows super-exponentially.

Here, we introduce the IC∗ algorithm because it can be treated analytically later on.

In a Bayesian network a v-structure is fundamentally distinguishable from other patterns

This is the basic idea of the IC∗ algorithm. Consider the following three structures:

1: X → Y → Z , 2: X ← Y → Z , 3: X → Y ← Z

Then for the v-structure (3) it is true that X and Z are statistically independent (short:

X ⊥⊥ Z) and that they are not statistically independent given Y (short: (X ⊥⊥6 Z) | Y ). For
the others the other two structures, the opposite is true: X ⊥⊥6 Z and (X ⊥⊥ Z) | Y .
In case of the Bayesian networks (1) and (2), the variable Y is a so called separating context S

under which X and Z become independent. A context can consist of a set of variables, but is

of course not allowed to include the considered variables X and Z themselves.

Let us consider a Bayesian network of variables in which not all variables have been observed.

The unobserved variables are so called hidden variables or latent variables and denoted by U .

When taking hidden variables into account, we can de�ne three di�erent connections types

between two variables X, Y (modulo the direction):

1. X → Y , a direct causal in�uence of X on Y , which can not be distinguished from . . .

2. . . .X → U → Y , where U acts as a mediator for the connection. And . . .

3. . . .X ← U → Y , where U serves as a common input for X and Y .

The knowledge about an edge can be summarized in the following notation (see also Tab. 2.1):

If we know that there is a connection between X and Y but we do not know its nature then

we write X − Y . We write X → Y , if we know that there has to be a direct or meditated

causal in�uence of X on Y or that both share a common input. For a common input we write

X ↔ Y and for a known directed in�uence we write X
∗−→ Y .
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Abbreviation Possible Connections

X − Y X ← Y , X ← U ← Y , X → Y , X → U → Y and X ← U → Y

X → Y X → Y , X → U → Y and X ← U → Y

X ↔ Y X ← U → Y

X
∗−→ Y X → Y and X → U → Y

Table 2.1: The IC∗ classi�cation table. Four di�erent abbreviations summarize four
di�erent degrees of knowledge.

The knowledge about a connection can be gradually increased in three steps:

First, infer whether X − Y : Following the de�nition of conditional dependence, interaction

can only be present if X and Y are statistically dependent in every context S,

hence (X ⊥⊥6 Y ) | S for all S. If this is the case, we are allowed two write X − Y .
Secondly, if X − Y , check whether X → Y : This is more complicated. According to Pearl

we have to �nd a variable Z and a context S for which (X ⊥⊥ Z) | S and (Y ⊥⊥6 Z) | S. These
conditions rule out that X and Y are only interacting via X

∗←− Y . The directed connection

from Y to X can not be present because if (Y ⊥⊥6 Z) | S, either (a) Y and Z are directly

connected Y − Z or (b) we found a v-structure Y → S ← Z. So, let as assume X
∗←− Y was

true:

In case (a) there would be an �information �ow� between Y and Z in which S is not involved.

Hence, (X ⊥⊥6 Z) | S, contradicting the assumption.

Case (b) leads to the same contradiction: Knowing something about S and Z leads to knowl-

edge about Y due to Z → S ← Y . Knowing something about Y leads to knowledge about X

due to X
∗←− Y . Hence, knowing something about Z and S leads to knowledge about X, so

that X and Z can not be statistically independent given S, i.e. (X ⊥⊥6 Z) | S.
Both cases (a) and (b) lead to contradictions, so that X

∗←− Y can not be true.

And last, verify that X
∗−→ Y . This is done by �nding a variable Z that is a potential cause

for X, and a context S, such that (Y ⊥⊥6 Z) | S and (Y ⊥⊥6 Z) | S ∪X . This guarantees that

some of the information transfered from Z to Y has to be passed through X, hence X
∗−→ Y .

The question remains in which order the variables should be compared. This is answered
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by an algorithm proposed by Peter Spirtes and Clark Glymour, the PC algorithm [36]. The

main problems are the sheer number of combinatorial possibilities and the estimation of high

dimensional probability densities. Spirtes and Glymour suggest beginning with two dimen-

sional probability densities to infere Xi ⊥⊥6 Xj | ∅ ∀i 6= j and then increasing the number of

variables in the context set gradually.

By using the IC∗ algorithm, it is possible to infer all possible conditional decompositions

of a given joint probability or joint probability density.

2.6. ROC curves

Receiver operator characteristic (short: ROC or ROC curve) provide a method to visualize

and evaluate the quality of binary classi�ers.

A binary classi�er is a functions h which classi�es whether a sample v ∈ M belongs to a

certain class (h(v) = True) or not (h(v) = False). M is called sample space.

h : M→ {False,True} (2.65)

Let M+ ⊆ M be the set of samples actually belonging to class and let M− ⊆ M be a

set of samples not belonging to that class. Let them have cardinalities N+ := |M+| and
N− := |M−|, so thatM =M+ ∪M− and N := |M| = N+ +N−. Then a perfect classi�er

has to ful�ll the conditions

v ∈M+ ⇔ h(v) = True (2.66)

v ∈M− ⇔ h(v) = False . (2.67)

However, real classi�ers are usually imperfect; they produce false classi�cations.

These failures can either be false positive, if a sample is incorrectly classi�ed as a member

of the class, or false negative, if a member of the class is not identi�ed as such. Correctly

categorized samples constitute true positive or true negative classi�cations accordingly.

Let T +, T −,F+,F− ⊆ M be the subsets of true positive, true negative, false positive and
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false negative classi�cations. Hence,

T + ∪ F− =M+ (2.68)

T − ∪ F+ =M− . (2.69)

The fraction of true positive classi�cations with respect to the overall numbers of positive sam-

ples is called true positive rate t+ = |T +|
|M+| or sensitivity and f− = |F−|

|M+| is called false negative

rate. True negative rate or speci�city t− and the false positive rate f+ are de�ned analogously.

Every non-trivial classi�er depends on parameters which determine its output. In this thesis,

all classi�ers depend on a one dimensional criterion: the threshold. By varying this threshold

and measuring sensitivity and speci�city, a �nger print of performance in f+-t+ space is ob-

tained. This �nger print is called ROC curve.

Depending on the shape of the curve the quality of the classi�er can be extracted visually.

For example, consider the witless random classi�er which decides at random with a probability

p if a sample is classi�ed positively. For large N+ the true positive rate is then t+ ≈ p·N+

N+ = p.

Same holds for the false positive rate in case of largeN− since f+ ≈ p·N−
N− = p. Hence, t+ = f+.

This is why the ROC of every random classi�er lies on the identity in f+-t+ space.

The ROC curve of ideal classi�er has to intersect the point (0, 1) in f+-t+ space because no

false positives and false negatives are produced for some criterion value. These two extreme

cases and an intermediate case are shown in Fig. 2.8 which illustrates the generation of the

ROC curve for a one-parameter classi�er.

When separating two classes by thresholding of a criterion value, the curve start at (0, 0)

and end at (1, 1). If both sets can be separated, the classi�er is perfect and the ROC has a

rectangular shape. The area under the curve will be exactly one. Otherwise the integral will

lead to smaller values. As a result, the area under the curve (AUC) is often used as a quality

measure for classi�ers.

Our measure of choice will instead be derived from the minimal sum of false negatives and
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false positives. We de�ne the quality measure ϑ as follows:

ϑ := 1−min
Θ

(
f+(Θ) + f−(Θ)

)
(2.70)

Graphically, it is the minimal `1-distance from the point of perfect reconstruction (0, 1) to the

ROC curve minus one. ϑ is one for perfect reconstruction and zero for any classi�cation worse

than random guessing.
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Figure 2.8: Generating and interpreting ROC curves. (a) shows how ROC curves are
generated. The number of false positives F+ and true positives T + depend on the threshold.
(b) displays the corresponding ROC curve in red. For each threshold (f+, t+) is plotted to
get a curve in f+-t+ space.

2.7. Simulating Random Processes

In this paragraph, we introduce the Euler-Maruyama algorithm, a numerical integration

scheme for stochastic di�erential equations.

For our analysis it is necessary to generate trajectories of the Ornstein-Uhlenbeck process.

There are two possible ways to generate the required data sets:

Since the Ornstein-Uhlenbeck process has an analytic solution (see Eq. 2.35) and the prob-

ability density of the conditional probability distribution p(xn+1, tn + ∆t|xn, tn) is known

(see Eq. 2.37), the �rst option is to compute the mean 〈Xn+1〉x and the covariance Σn+1,n+1

analytically for the next time step based on the current state of the process xn. The next
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state xn+1 is then drawn from this multivariate normal distribution. The respective equations

are

Σn+1,n+1 =

∫ ∆t

0
eJ(∆t−τ)BBᵀeJ

ᵀ(∆t−τ) dτ (2.71)

x̄n+1 = eJ∆txn , (2.72)

where ∆t it the time step between the data points.

If no further assumptions are made these equations have to be solved analytically, either with

pen and paper or the help of computational power, or numerically. This gives rise to new

problems since analytic solutions are only feasible for small or regular networks and numerical

solution are computationally extremely expensive for large networks.

Still, once eJ∆t and Σ∆t,∆t are computed data sets for any step size can be generated.

The simpler solution is to integrate the Langevin equation numerically using an iterative

numerical integration scheme. The classical integration method for the Ornstein-Uhlenbeck

process is the Euler�Maruyama method.

Consider a multivariate stochastic di�erential equation

ẋ = f(x) + g(x)η(t), (2.73)

then the sequence of successive states x0,x1, . . . ,xM separated by a time step ∆t is described

by

xn+1 = xn +

tn+∆t∫

tn

f(x(t)) dt+

tn+∆t∫

tn

g(x(t))η(t) dt . (2.74)

A zero order Taylor expansion of f(x(t)) and g(x(t)) at tn yields

xn+1 ≈ xn + f(xn)∆t+ g(xn)

tn+∆t∫

tn

dW (t), (2.75)

47



2 THEORETICAL BACKGROUND

where W (t) is the multivariate Wiener process discussed in Sec. 2.3.6.

Since W (t) is a Gaussian distributed random process, the di�erence

tn+∆t∫

tn

dW (t) = W n+1 −W n = W∆t (2.76)

is also a Gaussian distributed random process. We have shown thatW∆t has zero mean and

and a covariance matrix of ΣW∆t
=
√

∆t1. Thus, a zero order Taylor expansion leads to the

iterative integration scheme

xn+1 = xn + f(xn)∆t+ g(xn)
√

∆tΨ, (2.77)

in which Ψ is a multivariate Gaussian random variable with zero mean and

a covariance matrix ΣΨ = 1. This scheme is known as the Euler-Maruyama method.

In general the Euler-Maruyama method has deterministic order one (i.e. the deterministic

truncation error is of order O(∆t2)), weak order of convergence 1 and strong order of conver-

gence 1
2 . In the special case of the Ornstein-Uhlenbeck process the Euler-Maruyama method

strongly converges of order one because it coincides with the Milstein method [17, Sec. 4.7.3.2].

Weak and strong order of numerical SDE integration schemes give information about the ac-

curacy of the statistical properties of the simulated processes [17, Sec. 4.7.3.1].
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3. Results

After establishing a theoretic basis, we now present the insights and results of our own re-

search. This part of the thesis is divided in three chapters:

In the �rst chapter (Sec. 3.1), we show that the IC∗ algorithm (Sec. 2.5.3), a reconstruction

method for Bayesian dependency networks, does not apply to continuous-time processes in

principle.

In the second chapter (Sec. 3.2), we turn towards the easier, but scienti�cally very relevant,

thresholding of pairwise measures of statistical dependence (Sec. 2.4.1).

We discuss general performance issues and examine the performance of correlation threshold-

ing under idealized conditions. It is shown that the reconstruction performance of correlation

thresholding depends on the topology itself. Also, we �nd analytically that correlation thresh-

olding is best for weakly coupled systems and networks with regular indegree.

In the last chapter (Sec. 3.3), we introduce covariance inversion. A new method for the recon-

struction of physical dependency networks of linear homogeneous systems driven by additive

noise. For in�nite time series this method is always successful. A numerical analysis shows

promissing results for time series with reasonable length. More importantly, we demonstrate

that this method does not depend on the topology and outperforms correlation thresholding

when it comes to the reconstruction of non-regular topologies.

3.1. Inductive Causation and Temporal Continuity

In this section, we discuss how time-continuity in�uences the Bayesian network approach in

respect to its ability to reconstruct networks of physical interaction. For this purpose, we

use the Ornstein-Uhlenbeck process (Sec. 2.3.7) and see if a simple chain structur can be re-

constructed by means of the IC∗ algorithm (Sec. 2.5.3). This algorithm returns all suitable

Bayesian networks for a set of random variables given their joint probability distribution.

We have shown in Sec. 2.5 that the dynamical Bayesian network between successive states

of a discrete-time random process coincides with the network of physical interactions. To

what extent does this hold for continuous-time processes like the Ornstein-Uhlenbeck process

(OU process)? The question is: Are we able to reconstruct a dependency network such as
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the one shown in Fig. 2.7 using the IC∗ algorithm for homogeneous OU processes from time

series?

This process is given by the stochastic di�erential equation

ẋi = −xi + β
∑

j

Aij · (xj − xi) + ηi(t) , (3.1)

where β is the coupling coe�cient and A is the adjacency matrix. For the vector X =

(X1, X2, X3) = (X,Y, Z), the adjacency matrix corresponding to the network of Fig.2.7a is

given by

A =




0 0 0

1 0 0

0 1 0


 . (3.2)

Let us assume that we measure the process time in intervals of τ . The joint probability

density p(xt,xt−τ ,xt−2τ ) in the stationary state is a multivariate Gaussian with zero mean

and covariance matrix given by

Σ =




Σ0 Στ Σ2τ

Σᵀ
τ Σ0 Στ

Σᵀ
2τ Σᵀ

τ Σ0


 , (3.3)

where Σ0 is the stationary covariance matrix given by Eq. 2.39) and Σt is the delayed covariance

matrix of the stationary state given by Eq. 2.41 derived in Sec. 2.3.7. Using Eq. 2.40 and

Eq. 2.41 Σ can be computed analytically.

In order to reconstruct the chain structure of the given network, it is necessary to show

that (Xt−2τ ⊥⊥ Zt) | {Yt−τ , Zt−τ}. Since the probability distribution is Gaussian, statistical

dependence is captured by Pearson correlation, so that it is su�cient to show that Xt−2τ

and Zt are uncorrelated given Yt−τ and Zt−τ . For this purpose the corresponding conditional

correlation matrix is calculated. First, we integrate the Gaussian joint probability distribution

over all variables except Xt−2τ , Zt, Yt−τ and Zt−τ and get a Gaussian with zero mean and
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covariance matrix

Σ′ =




Σ0,zz Στ,zy Στ,zz Σ2τ,zx

Στ,zy Σ0,yy Στ,yz Στ,yx

Στ,zz Στ,yz Σ0,zz Στ,zx

Σ2τ,zx Στ,xy Στ,zx Σ0,xx




(3.4)

for the vector X ′ = (Zt, Yt−τ , Zt−τ , Xt−2τ )ᵀ. Then, the conditional covariance matrix is

computed by means of Eq. 2.50:

ΣXt−2τ ,Zt | Yt−τ ,Zt−τ =


Σ0,zz Σ2τ,zx

Σ2τ,zx Σ0,zz


−


Στ,zy Στ,zz

Στ,yx Στ,zx




Σ0,yy Σ0,yz

Σ0,yz Σ0,zz



−1
Στ,zy Στ,yx

Στ,zz Στ,zx




(3.5)

Finally, this matrix is normalized according to Cij|Y =
Σij|Y√

Σii|Y Σjj|Y
to obtain the conditional

correlation matrix C(Xt−2τ , Zt | Yt−τ , Zt−τ ).

We use the same procedure for C(Yt−2τ , Zt | Xt−τ , Zt−τ ). Both conditional correlations are

compared to test whether the process is inferred as X → Y → Z or Y → X → Z.
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Figure 3.1: Continuous-time leads to spurious correlations. (a) The conditional cor-
relations C(Xt−2τ , Zt|Yt−τ , Zt−τ ) and C(Yt−2τ , Zt|Xt−τ , Zt−τ ) are non-zero for every �nite
τ 6= 0. Hence, the unmodi�ed IC∗ algorithm would consider X and Z to be connected. The
graph was generated for β = 2. (b) A sketch of the actual Bayesian network representation
of the continuous-time stochastic process in Fig.2.7a. Conditioning on nodes separated by
�nite time steps does not stop the �ow of information because countless other nodes exist
illustrated by arrows. These nodes transfer information around the context.
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It is shown in Fig.3.1a that the conditional correlation between Zt and Xt−τ only vanishes for

time delay τ = 0. As a result, the vertices are statistically independent only for τ = 0 which

constitutes only a trivial case because (X ⊥⊥ Y ) | X for all Y . Following the argumentation of

the IC∗ algorithm the considered variables should have been statistically independent instead.

This means, that the IC∗ algorithm fails to reconstruct the Bayesian network.

Why is this so? Because the the OU process is continuous in time. The process does not work

as a �nite Bayesian network (Fig.2.7b) but rather as the Bayesian network with in�nitely

many nodes (sketched in Fig.3.1b). The vertex Xt−2τ does not communicate with Xt−τ and

Yt−τ but instead with vertices located an in�nitesimal step into the future Xt−2τ+dτ and

Yt−2τ+dτ . These are, for their part, connected to vertices another in�nitesimal time step into

the future and so on. The context S = {Yt−τ , Zt−τ} we choose to separate Xt−2τ and Zt did

not prevent the information �ow indicated by shaded arrows (Fig.3.1b). The only context

separating Xt−2τ and Zt is S′ = {Yt−dt, Zt−dt}.
In consequence, even for in�nite time series this method is not able to identify non-existing

links. Instead, a thresholding procedure would have to be introduced to decide which variables

are unconnected.

Moreover, even a thresholding procedure does not solve this problem in general because for

larger time delayes τ (bad time resolution) C(Xt−2τ , Zt|Yt−τ , Zt−τ ) < C(Yt−2τ , Zt|Xt−τ , Zt−τ )

so that the chain structure Y → X → Z would be preferred.

Thus, in theory, the powerful IC∗ is not applicable for continuous-time processes without

further modi�cations. However, in many cases �nite Bayesian networks might remain a good

approximation for the correct in�nite representations of continuous-time random processes, so

that the IC∗-algorithm might still be helpful.

3.2. Performance of Thresholding of Pairwise Measures of Statistical

Dependence

In this chapter we examine the performance of thresholding of pairwise measures of statistical

dependence (Sec. 2.4) under ideal conditions. We investigate how good the method can ulti-

matley become and obtain qualitative rules for its usage.

To exclude estimation errors and computationally intensive simulations, both, the analyzed
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system and the measure of statistical dependence, are kept simple.

The performance of this method is tested using the example of correlation thresholding (CT).

Since Pearson correlation re�ects statistical dependence only in the case of Gaussian dis-

tributed random variables (Sec. 2.4.2), we choose the stationary Ornstein-Uhlenbeck process

(OU process, Sec. 2.3.7) as the underlying system. Since the correlation matrix of this process

can be obtained analytically, we refrain from numerical simulations and conduct a fully ana-

lytic analysis.

This chapter contains �ve sections:

In the �rst section we de�ne and explain the conditions that we believe to be ideal for correla-

tion thresholding (CT). In the process we show that the correlation curves of the OU process

depend on the topology of the network as well as its dynamic properties.

The second chapter contains a list of common reconstruction issues caused by the topology

regarding thresholding of pairwise measures of statistical dependence.

In the third chapter we investigate the in�uence of the dynamical parameters on CT. We show

that strongly coupled systems are not reconstructible by CT in general and that the method

works best for weakly coupled systems.

The last two chapters are dedicated to topologically induced reconstruction errors of CT.

Here, the analysis is done half analytically and half numerically. We reveal that CT works well

for networks with regular indegree (e.g. regular ring structures are always reconstructible).

However, analyzing topologies with more complex indegree distribution leads to a dramatic

decrease of the reconstruction performance.

3.2.1. Ideal Conditions and Parameters of Correlation Thresholding

In the following section, we describe the model used for the analysis of correlation threshold-

ing (CT). The model stresses the arguments why CT should lead to a reconstruction of the

dependency network (Sec. 2.4.1) and re�ects conditions that we believe to be ideal for this

method.

It was already mentioned that the dynamical system of our choice is the Ornstein-Uhlenbeck

process (OU process) because the probability distribution of its stationary state is a Gaussian.
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Hence, Pearson correlation correctly re�ects statistical dependencies in this system. For the

OU process, these correlations can be obtained analytically. This prevents statistical �uctua-

tions and estimation errors from compromising our results.

Since a stationary state is required, the Jacobi matrix J has to be negative de�nite, otherwise

the trajectories simply diverge.

Furthermore, arbitrary connection weights are a general hindrance for the reconstruction by

thresholding because thresholding only classi�es between connections and non-connections.

Weakly connected variables, however, are intuitively statistically less dependent than strongly

connected variables. This implies that even simple networks could become non-reconstructible

if the weights are chosen accordingly. We choose the connection weights of our model to be

globally constant to avoid this particular scenario.

For the same reason, arbitrary auto-dependencies and noise strengths are not ideal because

these parameters de�ne the time scale of each vertex and thereby rescale the connection

weights for each node individually.

In addition, we assume independent noise sources for each vertex. Allowing vertices to share

noise sources results in correlations which are not related to the connections between the ver-

tices and thus infer with the reconstruction based on correlations.

A summary of these considerations yields

� stationary OU process

� constant auto-dependency α ≥ 0

� independent noise sources

for each vertex

� constant connection weights β ≥ 0

� globally constant noise strength γ ≥ 0

� perfect correlation estimation, in�nitely

long time series .

It is important to mention that these assumptions do not lead to a network model that it easier

to reconstruct in all cases, but instead stresses the argument why thresholding of measures of

statistical dependence should lead to the actual network behind the dynamics in the �rst place.

This fully speci�es the model given by

ẋi = −αxi + β
N∑

j=1

Aij · (xj − xi) + γηi(t) , (3.6)

54



3 RESULTS

where N is the number of nodes, α is the auto-dependency, β is the coupling constant, γ is

the noise strength and A is the adjacency matrix of the system.

Fortunately, the covariance of the OU process has an analytic solution so that we neglect

errors due to false estimation of correlation.

In vector notation Eq. 3.6 reads

ẋ = −(α1 + βL)︸ ︷︷ ︸
=J

x+ γ1︸︷︷︸
=B

η(t) (3.7)

with Laplace matrix Lij = −Aij + δij
∑
j
Aij . Gershgorin's Theorem guarantees that the

Jacobi Matrix J is indeed negative de�nite (see Appendix A.1). The delayed covariance of

the stationary state is given by Eq. 2.41 which states

Στ = eJτΣ0 = eJτ
∞∫

0

eJtBBᵀeJ
ᵀt dt

= γ2e−(α1+βL)τ

∞∫

0

e−2αte−βLte−βL
ᵀt dt . (3.8)

Rescaling time to t′ = βt and de�ning the dynamical constant δ := 2α
β yields

Στ =
γ2

β
e−

δ
2
τ

︸ ︷︷ ︸
independent of i, j

e−Lτ
∞∫

0

e−δte−Lte−L
ᵀt dt . (3.9)

The correlation curves Cτ are generated by normalizing Στ via Cτ,ij =
Στ,ij√

Σ0,iiΣ0,jj
. Thus, the

factor γ2

β cancels. Since the Laplace matrix L depends only on the adjacency matrix A, the

Pearson correlation curves Cτ are functions of the time delay τ , the dynamical constant δ and

the topology A.

Cτ,ij = f(τ, δ, A) (3.10)

3.2.2. Main Reconstruction Issues

In this section, we illustrate the main challenges that occur when trying to reconstruct graphs

by correlation thresholding. Each class of challenges is accompanied by an illustrative example

55



3 RESULTS

generated with the linear homogeneous model introduced in the last section.

(1) The Common Cause Problem

If two nodes have sources in common it is possible that they are more correlated with each

other than with one of their input nodes. This issue, in the literature referred to as common

cause problem, is illustrated by Fig. 3.2. In this example the problem will not be solved by

any method that thresholds statistical dependence globally.
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Figure 3.2: Common Cause Problem, (a) Blue arrows denote existing connections, red
arrows denote non-existing connections. Dashed arrows mark possible false positive or false
negative edges. (b) The plot shows, that the non-existing connection between X1 and X2 is
more correlated than the existing connection between each X-Y pair.

(2) Relay Problem

If the connection from one variable to another is directed, indirect and relayed via several

intermediate nodes it can happen that the indirectly connected nodes are statistically more

dependent than nodes that are actually connected. We call this the relay problem.

Correlation thresholding then reconstructs a structure in which the relay function of the

intermediate nodes is not visible. For some networks, like gene regulatory networks, this

might be problematic since the important role of the mediating structure (the relaying nodes)

can not be inferred. In Fig. 3.3 we show a simple structure of six nodes which displays this

problem.
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Figure 3.3: Relay Destruction, (a) Blue arrows denote existing connections, red arrows
denote non-existing connections. Dashed arrows mark possible false positive or false negative
edges. (b) Second order e�ects render the reconstruction challenging: Either none of the
edges from X1 to the mediating nodes Yi is inferred or a non-existing direct dependency from
X1 to X2 is deduced as well.

(3) Subgraph Dilemma

Often the network of physical interactions is not reconstructible by global thresholding while

for a nontrivial partition each subgraph itself would be fully reconstructible by an individual

threshold. Especially networks in which the local connection density varies strongly possess

this feature. We refer to this problem as subgraph dilemma.

Fig. 3.4 illustrates this problem. The subgraphs, each containing rings of four nodes, are fully

reconstructible themselves while the complete network is not.

Even though it might seem trivial, the existence of the subgraph dilemma has far reaching

consequences.

First, the larger the system the more di�erent local topological variations are possible. As

a consequence, larger networks are in principle more di�cult to reconstruct than smaller

networks.

Also, this problem illustrates in a simple way that the search for problematic patterns within

the graph, called pattern matching, does not lead to insights about the reconstructibility of

the network. Even though structures are known to be problematic, their inner correlations

change when exposed to external signals. The network is more than the sum of its parts.

Hence, to decide whether a certain topology is reconstructible by global thresholding or not,
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the whole graph has to be taken into account.
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Figure 3.4: Subgraph Dilemma. (a) Blue arrows denote existing connections, red arrows
denote non-existing connections. Dashed arrows mark possible false positive or false negative
edges. (b) Each subgraph consisting only of X- or Y vertices would be reconstructible while
the �gure proves that the uni�cation is not.

3.2.3. The In�uence of the dynamical constant δ

Here, we discuss the in�uence of the dynamical constant δ on the reconstruction of physi-

cal interactions for the homogeneous Ornstein-Uhlenbeck process (OU process) by correlation

thresholding (CT). We show that common cause and relay structures are reconstructible for

weak coupling and not reconstructible for strong coupling.

Assuming that the qualitative behavior of integrated and modi�ed structures of this kind is

the same, we conclude that every weakly coupled system is reconstructible by CT.

We have shown in Sec. 3.2.1 that the correlation curves Cτ of the OU process depend on

the time shift τ , the dynamical constant δ and the adjacency matrix A (see Eq. 3.10). The

dynamical constant is de�ned as δ := 2α
β , i.e. the fraction of the auto-dependency α and the

coupling coe�cient β. Hence, small δ corresponds to strong coupling and large δ corresponds

to weak coupling.

How do the correlation curves depend on δ?

58



3 RESULTS

To answer this question, we analyze simple typical model structures that have proven to in-

duce problematic higher order correlation e�ects: The common cause problem and the relay

structure, which were introduced in the previous section. For a more general analysis we

consider an arbitrary number of intermediate vertices.

Even though these structures are unlikely to be embedded in larger networks in their pure

form without incoming connections and incoming connections will always alter correlations

signi�cantly, they still model the qualitative behavior of higher order correlation e�ects cor-

rectly. Hence, learning how the statistical dependencies in these two structures change when

changing δ is an helpful indicator for the behavior of more complex networks.

We proceed as follows:

First, we compute the instantaneous covariance matrix of the OU process by solving the

integral given by Eq. 3.9 for τ = 0. Hence,

Σ0 =
γ2

β

∞∫

0

e−δt e−Lte−L
ᵀt

︸ ︷︷ ︸
=:Λ(t)

dt . (3.11)

For this purpose, we calculate the matrix Λ, which is determined by the topology, and integrate

element-wise.

Then, we compute the Pearson correlation matrix C0 using C0,ij =
Σ0,ij√

Σ0,iiΣ0,jj
.

Common Cause

We show that common cause structures with more than one intermediate node are always

reconstructible in the weak coupling limit and never reconstructible in the strong coupling

limit. The network structure of the high order common cause problem is shown in Fig. 3.5a.

Let Z = (X,Y )ᵀ X ∈ R
2, Y ∈ R

m be the vector of random variables and let each ele-

ment of Y be a source node of each element of X. Then, the adjacency and the resulting
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Laplacian for Z have the form

A =




0 0 1 1 · · ·
0 0 1 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




⇒ L =




m 0 −1 −1 · · ·
0 m −1 −1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




. (3.12)

Here, m is the number of source nodes. The matrix power of L yields

Ln =




mn−1L n 6= 0

1 n = 0

n ∈ N . (3.13)

Thus, the matrix exponential is given by

e−Lt =

∞∑

n=0

(−t)n
n!

Ln

= 1 +
∞∑

n=1

(−t)nmn−1

n!
L

= 1 +
e−mt − 1

m
L . (3.14)

Hence,

Λ := e−Lt · e−Lᵀt = 1 +
e−mt − 1

m
(L+ Lᵀ) +

(
e−mt − 1

m

)2

LLᵀ (3.15)

with

LLT =




m2 +m m 0 · · ·
m m2 +m 0 · · ·
0 0 0 · · ·
...

...
...

. . .




, (3.16)
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so that the entries of Λ are given by

Λ11 = Λ22 = 1 + 2(e−mt − 1) +
m2 +m

m2
(e−mt − 1)2 (3.17)

Λ33 = . . . = ΛNN = 1 (3.18)

Λ12 =
(e−mt − 1)2

m
(3.19)

Λ13 = . . . = Λ1N = Λ23 = . . . = Λ2N = Λ13 = −e
−mt − 1

m
. (3.20)

All remaining entries not de�ned by Λ = Λᵀ are zero.

Integration of

Σ0,ij =
γ2

β

∞∫

0

e−δtΛ(t) dt (3.21)

yields

Σ0,11 = Σ0,22 =
γ2

β

1

m

{
1

δ
− 2

m+ δ
+

m+ 1

2m+ δ

}
(3.22)

Σ0,33 = . . . = Σ0,NN =
γ2

β

1

δ
(3.23)

Σ0,12 =
γ2

β

2m

δ(m+ δ)(2m+ δ)
(3.24)

Σ0,13 = . . . = Σ0,1N = Σ0,23 = . . . = Σ0,2N = Σ0,13 =
γ2

β

m

δ(m+ δ)
. (3.25)

Normalizing yields two di�erent correlation values: The correlation

Cxx =
2m

δ2 +mδ + 2m
(3.26)

between the non-connected nodes X1 and X2. And the correlation

Cxy =

√(
1 +

m

(δ +m)

)
1

(δ2 +mδ + 2m)
(3.27)

between one element of X and one element of Y .

These correlations depend on δ and m and have interesting properties:

First of all, Cxx and Cxy both decrease monotonically with increasing dynamical constant δ.
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(for Cxy see Appendix B.1.1). This con�rms our intuition that weaker coupling causes weaker

correlations.

In the limit of δ → 0, i.e. in�nitely strong connections, the correlations become

Cxx

∣∣∣
δ=0

= 1 and Cxy

∣∣∣
δ=0

=
1√
m
. (3.28)

Hence, in this case the trajectories of X1 and X2 are identical. This is reasonable, because

X1 and X2 both get the same input from within the network (the source nodes Y ) and the

additional in�uences of the noise sources on each element of X are negligible in the strong

coupling limit.

Elements ofX and Y are less correlated since each source node in Y has to share the in�uence

on a node in X in equal proportions with the other source nodes. Apparently, the system is

not reconstructible for strongly coupled nodes (and m ≥ 2) because Cxx > Cxy.

For the weak coupling limit we substitute ∆ = 1
δ and take the limit ∆ → 0. Here both

correlation values are zero. This is expected because for ∆ = 0 nodes are not connected at all.

However, the functions increase di�erently with ∆. A second order Taylor expansion around

∆ = 0 yields

Cxx

∣∣∣
∆=0
≈ 2m∆2 +O(∆3) and Cxy

∣∣∣
∆=0
≈ ∆ +O(∆3) . (3.29)

So, while Cxx increases quadratically for small ∆, Cxy increases linearly. Thus, Cxy increases

faster. We conclude that common cause structures are reconstructible in weakly coupled sys-

tems.

Fig. 3.5b shows the regime in which the common cause problem is reconstructible in blue.

For each m there is a �nite δ so that the network becomes reconstructible. Cxx − Cxy = 0

de�nes a boundary for the non-reconstructible and reconstructible regime.
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Figure 3.5: Reconstructability in common cause structures. (a) Common cause prob-
lem for m intermediate nodes. Blue/Red arrows denote existing/non-existing connections,
dashed lines correspond to possible false positive or false negative connections. (b) The dif-
ference Cxx − Cxy as de�ned in Eq. 3.26 and Eq. 3.27. The reconstructible regime is shaded
blue, the non-reconstructible regime shaded red.

Relay Structure

We perform the same analysis that was done for the common cause structure (see above)

for the relay structure. It is revealed that relay structures are also always reconstructible in

the weak coupling limit, and never reconstructible in the strong coupling limit if the num-

ber of transmitting nodes exceeds three. All calculation refer to the network shown in Fig. 3.6a.

Here, we de�ne Z = (X2,Y , X1)ᵀ. Each element of Y gets inputs from X1 and each ele-

ment of Y is a source node of X2.

The adjacency matrix and the Laplacian of the network for Z are

A =




0 1 · · · 1 0

0 0 · · · 0 1
...

...
. . .

...
...

0 0 · · · 0 1

0 0 · · · 0 0




︸ ︷︷ ︸
m+2

⇒ L =




m −1 · · · −1 0

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

0 0 · · · 0 0




. (3.30)

63



3 RESULTS

The matrix power of the Laplacian yields

Ln =




mn −1−mn
1−m · · · −1−mn

1−m
m−mn
1−m

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

0 0 · · · 0 0




, (3.31)

where used the geometric series.

Hence, the matrix exponential is given by

e−Lt =




e−mt e−t−e−mt
m−1 · · · e−t−e−mt

m−1
m(1−e−t)−1+e−mt

m−1

0 e−t · · · 0 1− e−t
...

...
. . .

...
...

0 0 · · · e−t 1− e−t

0 0 · · · 0 1




. (3.32)

The matrix Λ and the covariance matrix Σ0 are computed following the same ideas as in the

previous paragraph (see Appendix B.1.2). We �nd four correlation values:

Two for the existing connections X1 → Yi

Cxy =

√(
1 +

1

δ + 1

)
1

δ2 + δ + 2
(3.33)

and Yi → X1

Cyx =
√

2m+ δ
(
2m2 + 4mδ + 2m+ δ3 + δ2(m+ 1)

)
·

√
(m+ δ)(m+ δ + 1)(δ2 + δ + 2) (4m3 + 4m2 + δ5 + δ4(2m+ 4)+

δ3(m2 + 9m+ 5) + δ2(5m2 + 9m+ 2) + δ(10m2 + 2m))
−1

(3.34)

and two for the non-existing connections Yi ↔ Yj

Cyy =
2

δ2 + δ + 2
(3.35)
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and X1 → X2

Cxx = m
√

(2m+ δ)(δ + 2)(m+ δ + 1) ·
√

(m+ δ)(δ + 1)(4m3 + 4m2 + δ5 + δ4(2m+ 4)+

δ3(m2 + 9m+ 5) + δ2(5m2 + 9m+ 2) + δ(10m2 + 2m)
−1
.

(3.36)

Like in the previous example the correlation curves decrease monotonically with δ, con�rming

our intuition that weaker coupling causes weaker correlations (see Appendix B.1.2).

Taking the limits δ → 0 reveals that all correlation values become Cxy = Cyx = Cyy = Cxx → 1.

Each elements of Y copies the trajectory of X1 perfectly because � as mentioned above � the

stochastic e�ects of noise sources are negligible compared to the in�uences of coupled nodes.

Thus, the trajectories of all elements of Y are identical. X2 in turn is coupled in�nitely strong

to each element of Y and copies their trajectories. Ergo: All variables follow the trajectory

of X1.

Even though all correlation values are similar in the strong coupling limit δ → 0, they decrease

di�erently with increasing δ.

First and second order Taylor expansions yield

Cxy

∣∣∣
δ=0
≈ 1− 1

2
δ +

1

8
δ2 +O(δ3) (3.37)

Cyx

∣∣∣
δ=0
≈ 1−

(
1

4
+

1

2m(m+ 1)

)
δ +O(δ2) (3.38)

Cyy

∣∣∣
δ=0
≈ 1− 1

2
δ − 1

4
δ2 +O(δ3) (3.39)

Cxx

∣∣∣
δ=0
≈ 1−

(
1

4
+

1

m+ 1
+

1

2m(m+ 1)

)
δ +O(δ2) . (3.40)

Since
(

1
4 + 1

2m(m+1)

)
< 1

2 for allm ≥ 3, the fastest decreasing correlation value among existing

connections is not Cyx but Cxy which decreases linearly with −1
2δ. Evidently, Cyy decreases

even faster than Cxy.

The problematic correlation value among non-existing connections is Cxx: Cxx decreases slower

than Cxy for four or more transmitting nodes (m ≥ 4) because
(

1
4 + 1

m+1 + 1
2m(m+1)

) ∣∣∣
m≥4

< 1
2 .

Hence, Cxx > Cxy at some point, so that the structure is not reconstructible for more than

three transmitting nodes m ≥ 4 and strong coupling 0 < δ � 1.
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For the weak coupling limit 1
δ =: ∆→ 0, Taylor expansions around ∆ = 0 yield

Cxy

∣∣∣
∆=0
≈ ∆ +O(∆2) (3.41)

Cyx

∣∣∣
∆=0
≈ ∆ +O(∆2) (3.42)

Cyy

∣∣∣
∆=0
≈ 2∆2 +O(∆3) (3.43)

Cxx

∣∣∣
∆=0
≈ m∆2 +O(∆3) . (3.44)

We conclude that relay structures are reconstructible if weakly coupled 1 � δ < ∞ since

the statistical dependencies between connected vertices increase linearly and the dependencies

between unconnected vertices increase only quadratically with ∆.

In Fig. 3.6b the reconstructible regime is shaded blue. Relay structures with less than four

intermediate nodes are always reconstructible.
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Figure 3.6: Reconstructability of relay structures (a) Typical relay structure for
m intermediate nodes. Blue/Red arrows denote existing/non-existing connections, dashed
lines correspond to possible false positive or false negative connections. (b) Contour plot
of Cxx − Cyx as de�ned in Eq. 3.36 and Eq. 3.33. Networks in red shaded regions are not
reconstructible, those in blue shaded areas are reconstructible by global thresholding.

Since common cause structures and relay structures are reconstructible in the weak coupling

limit, we conclude that weakly coupled systems are in general reconstructible by correlation

thresholding for in�nite time series. However, later numerical analysis reveal that stochastic

�uctuations due to �nite time series renders precise estimation of correlation values impos-
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sible for weakly coupled systems (Fig. 3.17). Hence, correlation thresholding has conceptual

limitations.

3.2.4. In�uence of the Topology

Here, we analyze the in�uence of the topology on the reconstruction quality of thresholding of

instantaneous correlations (CT). As before, the underlying system model is the homogeneous

Ornstein-Uhlenbeck process (OU process, Sec. 3.2.1) .

In the �rst paragraph, we show analytically that regular k-rings are always reconstructible by

thresholding of instantaneous correlation.

In the second paragraph, we analyze more complex topologies using di�erent random graph

algorithms and �nd that the reconstruction error mostly depends on three parameters: the

number of nodes N , the connection density ρ and the shape of the indegree distribution.

The reconstruction quality of CT decreases with increasing network size and increasing con-

nection density in the interval ρ ∈ [0, 0.5].

Networks with unimodal indegree distribution are usually harder to reconstruct with increas-

ing distribution width. For instance, CT performs extremely well for networks with constant

indegree, i.e. kin,i = k for all i ∈ 1, . . . , N while Erdös-Renyí networks (ER networks) are

much harder to reconstruct.

Thresholding Homogeneous k-Rings

In this paragraph, we prove that homogeneous Ornstein-Uhlenbeck processes (OU processes)

with k-ring topology can be completely reconstructed by thresholding of instantaneous corre-

lations (CT).

We do this by demonstrating that the correlation between nodes decreases monotonically

with their distance in the ring. In addition, we show that the correlation with the farthermost

connected node is always larger than the correlation with closest unconnected node. Since

connected nodes are closer than unconnected nodes, the combination of both propositions

proves the claim.

The proof contains four steps and holds independent of network size N , connection density

ρ = k
N−1 and dynamical constant δ.
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(1) General Component Equation for Homogeneous OU Processes

The homogeneous OU process is described by the Langevin equation

ẋ = −(α1 + βL)︸ ︷︷ ︸
J

x+ γ1︸︷︷︸
B

η , (3.45)

where L the Laplace matrix of the network, α > 0 is the auto-dependency, β > 0 is the

coupling coe�cient, γ is the noise strength and η(t) is a white noise vector.

The instantaneous covariance matrix Σ0 has to ful�ll Eq. 2.40

JΣ0 + Σ0J
ᵀ = −BBᵀ . (3.46)

Inserting J = −(α1 + βL) and B = γ1 into the equation above yields

Σ0 =
1

2α

{
γ21− β (LΣ0 + Σ0L

ᵀ)
}
. (3.47)

Thus, the components of Σ0 satisfy

Σ0,ij =
1

2α



γ

2δij − (kin,i + kin,j)βΣ0,ij + β


 ∑

{l:i←l}
Σ0,jl +

∑

{l:j←l}
Σ0,li





 (3.48)

⇒ Σ0,ij =
1

2α+ (kin,i + kin,j)β



γ

2δij + β


 ∑

{l:i←l}
Σ0,jl +

∑

{l:j←l}
Σ0,li





 , (3.49)

where δij is the Kronecker delta, kin,i is the in-degree of vertex i and
∑
{l:i←l}

denotes the sum

over all nodes l that are in-neighbors of i.

(2) Symmetries of Σ0 Yield Equation for Components σn := Σ0,i,i+n

So far, only the homogeneity of auto-dependency α, coupling strength β and noise strength γ

was used. The topology of the k-ring determines how to resolve the two sums:

Σ0,ij =
1

2(α+ kβ)

{
γ2δij + β

(
k∑

l=1

Σ0,j,i+l +
k∑

l=1

Σ0,j+l,i

)}
(3.50)
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In a k-ring k = kin,i = kin,j is the in- and out-degree of each node and also the maximum

distance between connected nodes. For this reason 2k + 1 < N . Equality already denotes a

network in which all nodes are connected either by incoming or outgoing connections, so that

a reconstruction is trivial because no unconnected pairs exist.

The topological features of a k-ring yield further conditions:

Due to the fact that such a graph is rotationally symmetric, the covariance between two nodes

only depends on their distance in the ring. Thus, Σ0 is a circulant matrix, i.e. Σ0,i+n,j+n = Σ0,ij

for all n ∈ Z. Σ0 is fully determined by the sequence (Σ0,i,i+n)N−1
n=0 . Also, the correlation values

Cij :=
Σ0,ij√

Σ0,iiΣ0,jj
=

Σ0,i,i+n

Σ0,ii
are just proportional to the covariance values. Hence, threshold-

ing covariance is fully equivalent to thresholding correlation.

For computational reasons, we de�ne the periodic sequence σ=̂(σn)∞n=−∞ with period N and

σn := Σ0,i,i+n. The sequence has to ful�ll σn+N = σn.

In addition, Σ0 is symmetric i.e. Σ0,ij = Σ0,ji, simply because it is an instantaneous covariance

matrix. Hence, the periodic sequence σ also has to ful�ll the condition σn = σ−n for all n ∈ Z.
By use of both symmetries Eq. 3.50 becomes

k∑

l=1

Σ0,i,i+n−l−(δ + 2k)Σ0,i,i+n

k∑

l=1

Σ0,i,i+n+l = −γ
2

β
δi,i+n (3.51)

⇒
k∑

l=1

σn−l−(δ + 2k)σn +
k∑

l=1

σn+l = −γ
2

β
δ0,n . (3.52)

where δ := 2α
β > 0 is the dynamical constant.

(3) Use Fourier Transform to Compute σ

We make use of the periodicity of σ by applying a Fourier transform F [ · ] (see Appendix B.2.1,
B.2.2, B.2.3). F [σ ] can be computed using Eq. 3.52. The inverse Fourier transform of F [σ ]

yields

σn =
γ2

β(δ + 2k + 1)

(
δ0n +

∞∑

l=1

ζ∗lk,n
(δ + 2k + 1)l

)
, (3.53)
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where ζk is the periodic step sequence

ζk,n =





1 if n modN ≤ k or n modN ≥ N − k

0 otherwise
(3.54)

and ζ∗lk is the lth convolution of ζk with itself

ζ∗lk,n =
N−1∑

m=0

ζk,n · ζ∗(l−1)
k,m−n ζ∗1k := ζk . (3.55)

All convolutions ζ∗lk are monotonically decreasing for |n| < N
2 (see Appendix B.2.4), so that

σ is a sum of monotonically decreasing sequences. Hence, σ is monotonically decreasing for

|n| < N
2 .

(4) The Farthermost Connected Node is Always more Correlated Than Closest Unconnected

Node

The di�erence between σk (i.e the covariance of i and the farthermost connected node (i+k))

and σk+1 (i.e the covariance of i and the closest unconnected node (i + k + 1)) is computed

via Eq. 3.52 (Appendix B.2.5). It yields

σk − σk+1 =
1

δ + 2k + 1
(σ0 − σ2k+1) . (3.56)

Eq. 3.53 shows that σ0 > σn for all n mod N 6= 0 because the convolution sequences ζ∗lk are

monotonically decreasing for |n| < N
2 for all l and the Kronecker delta in the sum increases

the value of σ0 even more.

Moreover, σ2k+1 6= σ0 since we chose k such that it ful�lls 2k + 1 < N . Hence,

σ0 − σ2k+1 > 0 ⇒ σk − σk+1 > 0 . (3.57)

σn is monotonically decreasing for |n| < N
2 and the farthermost connected node is more cor-

related than the closest connected node. Hence, connected nodes are strictly more correlated

than unconnected nodes. Thus, k-ring topologies of this model are always reconstructible.
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Figure 3.7: Analysis of the In�uence of the Topology on Correlation Threshold-
ing, To access the reconstruction quality of an ensemble of networks, we compute the recon-
struction quality of each network individually and average over the ensemble. Investigating
ensembles with di�erent topological features leads to insights how the topology in�uences the
reconstruction quality of correlation thresholding (CT).

Thresholding Correlations in Random Graphs

In this paragraph, we use random graph algorithms to investigate the in�uence of topolog-

ical features on correlation thresholding (CT). The chosen model is again the homogeneous

Ornstein-Uhlenbeck processes (OU process).

We �nd that the reconstruction performance of CT depends strongly on the the indegree dis-

tribution of the network itself. Networks with constant indegree are far more reconstructible

than networks with broad indegree distribution. For unimodal indegree distributions the re-

construction quality decreases with the standard deviation of the indegree distribution and the

connection density ρ in the regime ρ ∈ [0, 0.5]. Surprisingly, correlation thresholding of net-

works with unimodal indegree distribution does not explicitly depend on the network size N .

It was mentioned in Sec. 3.2.2 that patterns in the topology of networks of physical interaction

can not be treated separately when discussing CT because incoming connections recon�gure

correlation values. These changes can render integrated patterns reconstructible that are not

reconstructible outside the network (and vice versa). Hence, it is not su�cient to search for

patterns that are known to be not reconstructible by CT in a structural network, to decide

whether the it is reconstructible or not. For this reason each network has to be checked in its

entirety.

Here, we assume that similar topologies generate by the same random graph algorithm lead

to similar reconstruction qualities, and that the appearance of special topologies (like k-rings)
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is so unlikely that they have no in�uence in the average reconstruction quality of an ensemble.

To analyze the in�uence of the topology on the reconstruction quality of CT, we proceeded

as follows (Fig. 3.7):

We generated random graph ensembles with network size N . We �xed the dynamical con-

stant δ and computed the instantaneous covariance matrix Σ0 for each network individually

by solving the Lyapunov equation (Eq. 2.40) numerically by means of the Bartels-Stewart

algorithm [3]. The instantaneous covariance matrix Σ0 yields the instantaneous correlation

matrix C0 by normalization. The correlation matrix C0 was then used to reconstruct the

network by CT. A sliding threshold generated ROC curves (Sec. 2.6) which we evaluated with

the reconstruction quality measure ϑ (Eq. 2.70). The quality values ϑ were then averaged over

the random graph ensemble to assess its mean reconstruction quality.

Using this procedure no lengthy simulations have to be made in order to compute the cor-

relations between variables. Instead, correlations can be accessed directly for time series of

in�nite length. The Bartels-Stewart algorithm computes correlations with machine precision

(Fig. 3.8), so that no signi�cant errors are expected in this respect.

Note, that not the actual adjacency matrix was taken as reference to count false positives

and false negatives, but its undirected representation, because CT is only able to reconstruct

connections without their direction.
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Figure 3.8: The Bartels-Stewart algorithm computes correlations with machine
precision, (a) We compare the analytic solution σn,ana of Eq. 3.53 and numerical solution
σn,num obtained by means of the Bartels-Stewart algorithm for a directed k-ring withN = 500
and k = 50. Every 5th point is plotted. (b) The relative error (σn,ana − σn,num)/σn,ana lies
within machine precision.
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We used this procedure to analyze CT for networks in the domain between regular and ran-

dom generated by the WS1, WS2 and WS3 algorithm (see Watts-Strogatz model Sec. 2.1.2).

In the Watts-Strogatz model each random graph ensemble depends on three parameters: the

network size N , the rewiring probability q and the connection density ρ.

We kept the network size at N = 250, varied q and ρ and generate for each combination ensem-

bles of 100 networks. The Lyapunov equations were solved for a dynamical constant of δ = 2.

The results of this analysis is shown on the left side of Fig. 3.9 (red �gures).

Four general observations can be made:

First, ensembles for q = 0 and ρ = 1 are reconstructible, i.e. the reconstruction quality mea-

sure ϑ is one. This is always true because these networks are k-rings which were shown to be

reconstructible in the last paragraph.

Secondly, networks with constant indegree (generated by the WS1 algorithm) are mostly re-

constructible except those in the regime of highly randomized connections q ≈ 1 and low

connection density ρ (Fig. 3.9a).

Thirdly, keeping the outdegree constant and randomizing the indegree instead decreases the

reconstruction quality signi�cantly (Fig. 3.9c). In this case, the reconstruction quality exhibits

a global minimum at (q, ρ) = (1, 0.5), i.e. for dense Erdös-Renyí networks. In fact, recon-

structing networks in this regime is not much better than random guessing. Keep in mind

that ρ = 0.5 corresponds to networks in which almost every pair of nodes is connected either

by an incoming or an outgoing connection. Also, the indegree distribution of this ensembles

have the largest variance among networks in this setting.

And last, randomizing both, indegree as well as outdegree, does not lead to further changes

in the reconstruction quality (Fig. 3.9e) when compared to only randomizing the indegree.

The almost perfect reconstruction of graphs with constant indegree is a consequence of the al-

most discretely distributed correlation values among connected variables: If every node has the

same number of incoming connections kin (and additional second order e�ects are neglected),

every source node has the same in�uence on this target node as the other kin − 1 source

nodes. Hence, the statistical dependencies between connected nodes are almost everywhere

in the graph the same. Also, second order e�ects become less dominant for acyclic structures
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with increasing kin, because statistical dependencies are blurred over long distances by the

kin source nodes of each node on the path. For constant indegree the decrease in statistical

dependence over one connection is the same for all connections in the network.

The slight decrease in reconstruction quality for WS1 graphs in case of sparse highly random-

ized graphs can be explained by the mean variance of the local clustering coe�cient (Fig. 3.9b).

This measure re�ects the di�erences in the local connection density and has its maximum ru�y

in the same region where the reconstruction quality has its minimum. The low connection

density combined with a heterogeneous local connection density results in networks that con-

sist of weakly connected clusters so that second order e�ects have a strong in�uence.

The qualitative similarities of the reconstruction quality and the standard deviation of the

indegree distribution (compare Fig. 3.9c and Fig. 3.9d) in combination with the simple fact

that an additional randomization of the outdegree distribution has an negligible e�ect on the

reconstruction quality (compare Fig. 3.9c and Fig. 3.9e) lead to the conjecture that the shape

of the indegree distribution is the best indicator for reconstruction errors.

Since the degree distributions of Watts-Strogatz graphs are dominated by the second momen-

tum, i.e. the variance, there might even be a direct relation between the reconstruction quality

and the standard deviation of Gaussian-like indegree distributions.

We used the WS4 algorithm to investigate the behavior of the reconstruction quality in de-

pendence of the variances of the in- and outdegree distribution individually (Fig. 3.10).

The same data is used to generate the scatter plots in which the reconstruction quality is

plotted against the standard deviation of the respective distributions (Fig. 3.11).

Again it is clearly shown that manipulations of the outdegree distribution lead to minor

changes in the reconstruction quality, while small changes of the indegree distribution have

an enormous impact.

This de�nitely con�rms our conjecture: The indegree distribution mostly determines the re-

construction quality of the network.
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(a) randomized outgoing connections
reconstruction quality
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(b) randomized outgoing connections
mean variance of clustering coe�cient
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(c) randomized incoming connections
reconstruction quality
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(d) randomized incoming connections
standard deviation of indegree distribution
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(e) randomized directions
reconstruction quality
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(f) in all three cases
mean average clustering coe�cient

Figure 3.9: Reconstruction quality and graph properties for WS models.
Mean reconstruction quality and mean graph properties for the WS1, WS2 and WS3 model.
Each data point is generated by an ensemble of 100 graphs with N = 250 nodes and δ = 2.
(a) Keeping the indegree distribution constant results in reconstructible graphs. (b) Variance
of the clustering coe�cient with maximum in the same region as (a). (c) Randomizing
incoming connections leads to an strong increase of errors. (d) Standard deviation of indegree
distribution shows qualitatively similar behavior. (e) Additional randomization of outgoing
connections has no signi�cant e�ect. (f) Mean clustering coe�cient does not explain the error
curves.
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Figure 3.10: Changes in the Indegree Distribution have a Strong Impact on the
Reconstruction Quality. The WS4 algorithm is used to examine the in�uence of the in-
and outdegree distribution separately. Randomizing the indegree distribution (qin) leads to
greater changes than randomizing the outdegree distribution (qout). For each data point the
reconstruction quality of 50 networks with N = 250 nodes, a density of ρ = 0.25 and the
respective number of randomized source and target nodes has been averaged. The dynamical
constant was kept constant at δ = 2.
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Figure 3.11: There is no functional connection between the shape of the outdegree
distribution and the reconstruction quality. (a) The reconstruction quality is almost
fully determined by the STD of the indegree distribution, while (b) the STD of the outdegree
distribution contains little information about the reconstruction quality. The data of Fig.
3.10 was used to generate these plots.
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The reconstruction quality of Watts-Strogatz networks also depends on the the connection

density ρ (see Fig. 3.12).

Minimal reconstruction quality is achieved for ρ ≈ 0.5. The reason for this is possibly the

large number of one-directional connections and the relatively small number of non-connected

node pairs: Since second order e�ects have a strong in�uence (as a result of high connection

density) and since the correlations among existing connections are comparatively low (because

most of the connections are only one-directional), relatively many non-existing connections

and a signi�cant amount of existing connections are not classi�ed correctly.

It is also observable that denser graphs with a connection density of ρ > 0.5 are usually

more di�cult to reconstruct than their sparser counterpart with a connection density of

ρ′ = 1− ρ < 0.5. Hence, the reconstruction quality ϑ is not fully symmetric in dependence of

ρ even though its minimum is at ρ = 0.5. Also, statistical �uctuations in the topology have

a stronger impact on the reconstruction quality of denser networks, since the curve becomes

noisier with increasing ρ.

The asymmetry in shape and sensitivity is only natural since ϑ is based on the minimal

weighted sum of false positives and false negatives: While the number of non-connections

decreases with the connection density, the probability of an incorrect classi�cation of non-

connections increases because of second order e�ects. Since the false positive rate is the

percentage of incorrectly classi�ed non-connections, the impact of one false positive on the

quality measure ϑ is ampli�ed in denser graphs. This also increases the sensitivity of ϑ to

topological changes in denser graphs. In contrast, sparse networks are naturally easy to re-

construct since second order e�ects play only a minor role.

Fig. 3.12 also shows that the network size N has only minor in�uences on the reconstruc-

tion quality ϑ if the density is known. Of course, the network size bounds the standard

deviation of the indegree distribution, so that larger networks are more likely to be di�cult

to reconstruct than small networks if the connection density is kept constant.

Hence, the reconstruction quality of networks with unimodal indegree distribution only depend

on the standard deviation of the indegree distribution
√
〈kin〉 and the connection density ρ.
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Figure 3.12: The connection density also determines the reconstruction quality.
Plotting the reconstruction quality ϑ versus the standard deviation of the indegree distribu-
tion

√
〈kin〉 for di�erent density values ρ reveals that the connection density has an impact

on the reconstruction quality independent of standard deviation. Networks with ρ ≈ 0.5 are
hardest to reconstruct. Networks with ρ > 0.5 are harder to reconstruct than networks with
ρ < 0.5: the relationship is not symmetric in connection and non-connection. If the network
density is known, the network N has only minor in�uences on the reconstruction quality since
the scatter plots for N = 250 and N = 125 mostly coincide.
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In addition to the Watts-Strogatz model, we used the analysis scheme of Fig. 3.7 to ex-

amine the performance of correlation thresholding in scale-free graphs using the modi�ed

Barabasí-Albert model (see Sec. 2.1.2). The corresponding algorithms BA1, BA2 and BA3

depend on three parameters: the network size N , the connection density ρ and the scale-

freeness s. We kept the network size at N = 250 and conducted the analysis scheme for δ = 2

(see left graphs of Fig. 3.13).

Again, the reconstruction quality mainly depends on the indegree distribution: A constant

indegree mostly results in reconstructible graphs (Fig. 3.13a). Randomizing the indegree de-

creases the reconstruction error dramatically (Fig. 3.13c) and additional randomization of the

outdegree distribution has no signi�cant e�ect (Fig. 3.13e). Hence, the impact of the indegree

distribution is much stronger than the impact of the outdegree distribution.

However, for scale-free graphs we do not �nd qualitative similarities between the reconstruc-

tion quality and the observed quantities (right side of Fig.3.13). Especially, when comparing

the reconstruction quality (Fig. 3.13c) and the standard deviation of the indegree distribu-

tion in (Fig. 3.13d) no obvious statement can be made. This is not very surprising since the

standard deviation is not the shape determining factor of scale-free distributions. In fact, the

variance of scale-free distributions is often not �nite.
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(a) randomized outgoing connections
reconstruction distance
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(b) randomized outgoing connections
variance of clustering coe�cient
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(c) randomized incoming connections
reconstruction distance
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(d) randomized incoming connections
variance of indegree distribution
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(e) randomized directions
reconstruction distance
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(f) in all three cases
mean clustering coe�cient

Figure 3.13: Reconstruction quality and graph properties for scale-free networks.
For three di�erent modi�cations of the Barabasí-Albert model the mean reconstruction
quality and other global graph properties are computed over an ensemble of 100 random
graphs with n = 250 nodes. (a) Keeping the indegree distribution constant results in re-
constructable graphs. (b) Variance of the clustering coe�cient shows minor similarities. (c)
Randomizing incoming connections leads to an explosion of errors. (d) Variance of indegree
distribution does captures the error's behavior. (e) Additional randomization of outgoing
connections has no signi�cant e�ect. (f) Mean clustering coe�cient does not explain the
error curves.
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3.3. A New Method: Covariance Inversion

In this section, we introduce covariance inversion (CI), a method for the reconstruction of

physical dependencies in linear dynamical systems driven by additive noise.

This section is divided in �ve parts:

In the �rst part, we introduce CI and discuss possible challenges and conceptual advantages

compared to other methods of network reconstruction.

Additionally, an algorithm to reconstruct the matrix of physical dependencies from time series

of homogeneous Ornstein-Uhlenbeck processes (OU processes) is de�ned (Sec. 3.2.1). In the

second part, we discuss the implications of using the Euler-Maruyama scheme (Sec. 2.7) to

simulate the OU process. The last three parts are dedicated to the performance of CI:

First, we examine the in�uence of parameters related to the dynamical system. It is shown

that, in practice, CI displays the best results when dealing with strongly coupled systems.

Then, we investigate if the performance of CI depends on the topology of the dependency

network itself. We �nd that the performance of CI does not depend on the structure of the

network but on its average degree. In the last section we compare covariance inversion (CI)

and correlation thresholding (CT) regarding their performance.

3.3.1. De�nition of Covariance Inversion

Covariance inversion (CI) is an inference method for physical interactions in linear dynamical

systems driven by additive noise. Here, we explain the method as well as its advantages and

possible limitations.

The approach is based on the relationship between the covariance matrix Σ0,

the delayed covariance matrix Στ and the Jacobian matrix J of a stationary OU process.

In Sec. 2.3.7, we de�ned the stationary multivariate OU process as the solution of the SDE

ẋ = Jx+Bη(t) (3.58)
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with negative de�nite Jacobi matrix J , noise input matrix B and white noise η(t) for t→∞.

Independent of B the covariance matrices Σ0 and Στ are connected via

Στ = eJτΣ0 (3.59)

for a time delay τ (for details see derivation of Eq. 2.41).

A simple conversion yields

J =
1

τ
log(ΣτΣ−1

0 ) , (3.60)

where log(·) is the matrix logarithm.

Hence, a reconstruction of the Jacobi matrix J is theoretically possible just by measuring the

instantaneous covariance matrix Σ0 and the delay covariance matrix Στ for a speci�c time

delay τ .

For the homogeneous OU process (Eq. 3.6)

ẋi = −αxi + β

N∑

j=1

Aij(xj − xi) + γηi(t) (3.61)

with white noise ηi(t), adjacency matrix A, auto-dependency α ≥ 0, coupling coe�cient β ≥ 0

and noise strength γ, the Jacobian J is given by

Jij = βAij − δij


α+ β

N∑

j=1

Aij


 . (3.62)

Thus, the adjacency matrix A can be computed element-wise from the Jacobian J via

Aij =





1
βJij i 6= j

0 otherwise
. (3.63)

This method always returns the correct matrix of directed physical dependencies for in�nite

time series. Unlike correlation thresholding, the approach is independent of topology, dynam-

ical parameters as well as time delay τ and even works for correlated noise sources.

The existence of hidden variables, however, depicts a limitation of this approach, since it has
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been shown that hidden variables result in several possible solutions [16,20].

In the following, we call this approach covariance inversion (CI) because it requires an inver-

sion of the instantaneous covariance matrix.

In practice, only �nite time series are available which only provide imperfect estimates of

the matrices required for CI, Σ0 and Στ . Let {xk}Mk=1 be a time series of length M of an

N -dimensional random process X = x ∈ RN , then the unbiased estimator of the general time

shifted covariance matrix Σ∆t·m is

Σ̂∆t·m,ij :=
1

M −m− 1

M−m∑

k=1

(xi,k+m − x̄i)(xj,k − x̄j) (3.64)

with mean x̄i :=
1

M

M∑

k=1

xi,k , (3.65)

where ∆t is the time step between the measurements and m is the delay (or time shift)

measured in ∆t. An estimator Ω̂ is unbiased if its expected value 〈Ω̂〉 corresponds to Ω, that

is 〈Ω̂〉 = Ω.

The naive estimator of the Jacobian matrix given by CI is

Ĵ :=
1

∆t ·m log
(

Σ̂∆t·mΣ̂−1
0

)
(3.66)

It should be clear, that the estimator Ĵ might be problematic for at least three reasons:

First, the estimator could be biased, meaning that the expected value of Ĵ is di�erent from

the actual value of J , i.e. 〈Ĵ〉 6= J . Secondly, the inversion of an estimated matrix is often

troublesome and, �nally, the matrix logarithm may cause problems since it is neither real

nor unique in general. Here, it has to su�ce that the real part of Ĵ , the part of interest, is

unique [22].
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We propose the following scheme to reconstruct the adjacency matrix of the homogeneous OU

processes from time series:

1. Estimate the covariance matrices Σ0 and Στ , for instance, by means of Σ̂∆t·m.

2. Compute the estimated Jacobi matrix Ĵ and take the real part R(Ĵ).

3. Use a threshold Θ to classify every connection j → i whose entry R(Ĵ)ij is above Θ as

existing, and every connection j → i whose entry R(Ĵ)ij is below Θ as non-existing.

This scheme promises good results because entries R(Ĵ)ij of existing connections j → i are

distributed around the coupling coe�cient β, while entries R(Ĵ)ij that re�ect the absence of

a connection j 9 i are distributed around zero (see Eq. 3.62.

For reasons of simplicity, we denote the range of values of the entries of R(Ĵ) with r. If

the time series is long enough, estimation errors are small and the conditional distribution

p(r|connection), i.e. the distribution of the values of the reconstructed Jacobian R(Ĵ) that

correspond to actual connections, and the conditional distribution p(r|non-connection) are

separable by a threshold, so that the value of R(Ĵ)ij becomes a useful criterion to determine

whether a connection from j to i exist or if the variables are unconnected.

The performance of this method can be evaluated using the same procedure as in the previous

chapter, i.e. by creating ROC curves and measuring the reconstruction quality ϑ (Sec. 2.6).

It is obvious that the reconstruction quality of CI depends decisively on the distribution of

the entry values r of the reconstructed Jacobian matrix R(Ĵ).

For in�nite time series and perfect correlation estimation, the conditional distributions

p(r|connection) and p(r|non-connection) are sharply peaked at β and zero respectively. We

approximate these distribution by Gaussian bell curves.

Dividing the entry values r by the connection strength β makes it possible to compare dis-

tributions of reconstructions for di�erent coupling strengths. For this reason we measure the

variances of the distributions p( rβ |·) instead of p(r|·).
The variances of these unimodal conditional distributions are crucial for the reconstruction

quality. For small variances the entry values of connections and non-connections are well

separable, while for larger variances both distributions overlap and become indistinguishable

(Fig.3.14).
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Therefore, the scaling behavior of the reconstruction quality of covariance inversion is best

quanti�ed by the scaling of these variances.
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Figure 3.14: For su�cient estimates R(Ĵ) the conditional distributions are well
separable. The normalized histograms for reconstructed Jacobian entry values r divided
by the coupling strength β. The width of the distributions for connections (green) and
non-connections (red) changes with the quality of the estimation of the covariance matrices.
Lowering the quality (blurred colors) renders the distributions indistinguishable (blue).

3.3.2. Simulating the Homogeneous Ornstein-Uhlenbeck Processes

To simulate the homogeneous OU process we use the Euler-Maruyama integration scheme

(Sec. 2.7). The chosen model has implications for the choice of the integration time step ∆t.

The following analyses are based on the homogeneous OU process

ẋ = Jx+ γη(t) (3.67)

= −(α1 + βL)x+ γη(t) (3.68)

with Jacobi matrix J = −(α1 + βL), Laplace matrix L, auto-dependency α ≥ 0, coupling

coe�cient β ≥ 0 and noise strength γ. η(t) is white noise.

Measuring the time in unites of the intrinsic time scale 1
α and de�ning the dynamical constant
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δ := 2α
β as well as the scaled noise strength γ′ := γ

α yields

ẋ = −(1 +
2

δ
L)x+ γ′η(t) . (3.69)

We generate arti�cial time series by solving the SDE using the Euler-Maruyama scheme

(see Eq. 2.77 and Sec. 2.7 for details). For this SDE the integration scheme yields

xn+1 = xn +

:=J ′︷ ︸︸ ︷(
−1− 2

δ
L

)
xn∆t

︸ ︷︷ ︸
Euler step

+γ′
√

∆tΨ . (3.70)

Since the deterministic Euler-step in the Euler-Maruyama method has stability issues, one

should choose the time step ∆t very carefully. To make sure that the simulations do not

diverge, ∆t should be chosen such that

|λ ·∆t+ 1| ≤ 1 (3.71)

for all eigenvalues λ of the propagation matrix J ′ := −(1+ 2
δL). In general, the time step ∆t

should be chosen as small as possible.

For the chosen model, a rule of thumb can be formulated that enables estimation of ∆t based

on global system parameters (see Appendix C.1). According to this rule, ∆t is a reasonable

choice if

(
1 +

2k

δ

)
∆t ≤ 1 , (3.72)

where δ is the dynamical constant and k is the average degree. This condition is easier to

check than the actual stability condition Eq. 3.71 since the average degree is directly accessible

through the connection density ρ. Even though this rule does not imply stability under all cir-

cumstances, it is still be an useful indicator for which choice of ∆t simulations become unstable.

It is helpful to realize that the matrix J ′ always has an eigenvalue λ′ = −1 because the
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smallest eigenvalue of any Laplace matrix L is zero.

J ′(1, 1, . . . , 1)ᵀ = −1(1, 1, . . . , 1)ᵀ − 2

δ
L(1, 1, . . . , 1)ᵀ

︸ ︷︷ ︸
=0

= −(1, 1, . . . , 1)ᵀ . (3.73)

Applying Gershgorin's theorem (see Appendix A.1), we see that λ′ is the eigenvalue of J ′ with

the largest real part. Hence, there is always an eigenvalue for which the stability condition

Eq. 3.71 just holds.

Fig.3.15a shows the trajectories of the three dimensional system with connections X2 → X1,

X3 → X1 and X3 → X2. It is shown that the measured correlation curves approximate the

analytical curves for in�nite time series (Fig. 3.15b).
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Figure 3.15: Simulated data yields the expected correlation curves. (a) The tra-
jectory of a three dimensional system with connections X2 → X1, X3 → X1 and X3 → X2.
The dynamical constant was set to δ = 2, the noise strength was set to γ′ = 0.1. The time
step was chosen to be ∆t = 0.005.(b) The correlation curves were computed using Eq. (3.65)
for a time series of length M = 500, 000.

3.3.3. Performance of CI: In�uence of the Dynamical Parameters

We examine the performance of covariance inversion (CI) depending on the dynamical pa-

rameters of the homogeneous OU process. The numerical analysis shows that CI is best for

strongly coupled variables and does not depend the noise strength γ′.
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The dynamic behavior of the homogeneous OU process

ẋ = −
(
1 +

2

δ
L

)
x+ γ′η(t) (3.74)

as de�ned in the previous chapter is determined by the dynamical constant δ := 2α
β , the ratio

of auto-dependency α and coupling strength β, as well as the reduced noise term γ′ = γ
α .

In order to investigate the in�uence of these parameters, we conducted a purely numerical

analysis. We generated di�erent data sets for varying δ and γ′ but �xed topology A�x and

measured the reconstruction quality ϑ.

For each choice of δ and γ′ we produced �ve datasets with same length M for two di�erent

time steps that guarantee stability of the Euler integration scheme in this setting.

The time delay τ needed for CI was chosen as small as possible, i.e. τ = ∆t. We only con-

sidered the undirected representation of the network A�x for the reconstruction to produce

results that are comparable to correlation thresholding (CT) for later use.

For the analysis we chose dynamical constants in the interval δ ∈ [0.01, 10.24] and a �xed

noise strength of γ′ = 0.1. The integration was performed using time steps ∆t = 0.0001 and

∆t = 0.0005 for M = 20, 000 integration steps. A�x is an adjacency matrix of a network with

50 nodes generated using the WS2 model with connection density ρ�x = 0.2 and rewiring

probability q�x = 0.25.

Fig.3.16a shows the outcome of this analysis. If the sudden drop in reconstruction quality

for the larger time step is disregarded, both curves show the same qualitative relation. The

performance of covariance inversion is best for small δ, i.e. strongly coupled networks. Sur-

prisingly, the reconstruction quality is better for the larger time step. This behavior is also

visible in Fig.3.16b which shows the variance of the distributions of of the entry values r of the

reconstructed Jacobian R(Ĵ)ij corresponding to connections p(r δ2 |conn.) and non-connections

p(r δ2 |non-conn.). To be able to compare di�erent connection strengths, we normalized the

values of R(Ĵ)ij by dividing by the connection strength 2
δ . This way the conditional distribu-

tions are peaked at zero and one instead of zero and 2
δ .
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Figure 3.16: Reconstruction quality decreases with increasing dynamical constant
δ. (a) Reconstruction quality of CI for di�erent dynamical constants δ and time steps ∆t.
The reconstruction quality for the larger time step is better for all δ > 0.01 than for the
smaller time step. In general, CI is better for strongly coupled networks (δ � 1). (b) The
variances of the conditional distributions p( rβ |connection) and p( rβ |non-connection) increase
sub-exponentially and almost power-law-like with increasing δ. Both distributions have al-
most identical shape. All datasets have the same size M = 20, 000 and simulate the same
network A�x generated with the WS2 algorithm for N = 50 nodes, a connection density of
ρ = 0.2 and a rewiring probability of q = 0.25. The noise strength was set to γ′ = 0.1

The variances scale sub-exponentially and almost power-law-like with the dynamical constant

δ. Also, the variances for the two di�erent conditional distributions are almost equal for all δ.

The sudden drop of the reconstruction quality for ∆t = 0.0005 and δ = 0.01 is an arti-

fact of the Euler-Maruyama integration scheme which becomes unstable for these parameters

(Fig.3.17a). It is shown that for ∆t = 0.0005 in the vicinity of δ = 0.01 the eigenvalues of the

Jacobian matrix J ′ become problematic. In fact, the stability condition |1 + λ∆t| ≤ 1 does

not hold for δ ≈ 0.007, i.e. for δ = 0.01 the integration scheme is at the brink of instability.

The rule of thumb (Eq. 3.72) is also not ful�lled for δ = 0.01 (Fig.3.17b). Thus, inaccurate

datasets due to integration errors prevent the reconstruction.
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Figure 3.17: Stability of the Euler-Maruyama integration scheme.(a) The two largest
values of the stability condition |1 + λ∆t| ≤ 1 for the adjacency matrix A�x used in Fig.3.16
and di�erent time steps ∆t dependent on the dynamical constant δ. For ∆t = 0.0005 and
δ = 0.007 the integration becomes unstable, i.e. the condition is not ful�lled. (b) The
reconstruction quality ϑ dependent on the fraction (1 + 2k/δ)∆t which serves as the rule
of thumb to determine the stability of the numerical integration scheme. 2k∆t/δ should
be smaller then one. The reconstruction quality increases as the fraction approaches this
boundary, where it decreases dramatically.
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Figure 3.18: The reconstruction quality does not depend on the noise strength.
The reconstruction quality ϑ plotted against the noise strength δ for di�erent time steps ∆t.
Changes in γ′ have no in�uence on the reconstruction quality. The dynamical constant was
set to δ = 0.1, the size of the time series is M = 20, 000, the adjacency matrix of the system
is again A�x used in Fig.3.16.
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The same analysis is done for a �xed dynamical constant δ and varying noise strength γ′

(Fig.3.18). The reconstruction quality shows no particular dependency on the noise strength

at all, since the plot shows a horizontal line.

We conclude that covariance inversion is more reliable for the reconstruction of strongly cou-

pled systems.

The unintuitive outcome that datasets generated with larger time steps are easier to recon-

struct is not fully understood yet. We speculate that either bigger time steps result in simu-

lation errors that lead to a virtual increase of the coupling strength or that bigger changes in

the covariance curves help to estimate the Jacobi matrix.

3.3.4. Performance of CI: In�uence of the Topology

In this section, we investigate if topological di�erences interfere with the network reconstruc-

tion by CI. Our analysis is only numerical and reveals that CI has no topological preferences

but that its reconstruction performance scales exponentially with the mean degree k = (N−1)ρ

and the time shift ∆t.

In order to investigate which topological parameters covariance inversion depends on, we

produced datasets of systems with di�erent topology and size while keeping the dynami-

cal parameters constant. We generated di�erent networks by means of the WS2 algorithm

for varying network size N , connection density ρ and rewiring probability q. For each net-

work the Langevin equation of the Ornstein Uhlenbeck process (Eq. 3.74) was integrated for

M = 200, 000 time steps of size ∆t = 0.0001. Afterwards, we reconstructed the dependency

networks from the datasets for di�erent time shifts τ = m∆t using the covariance inversion

method and evaluated the reconstructions utilizing the reconstruction quality measure ϑ.

The dynamical system was set to δ = 50 and γ′ = 0.1. We generated 400 · 11 = 4400

reconstructed Jacobian matrices in total using eight di�erent network sizes, ten di�erent con-

nection densities, �ve di�erent rewiring probabilities and eleven di�erent time shifts.

The size of the datasets M = 200, 000 was chosen such, that the choice of the time shift and

the resulting reduction of the dataset has an negligible e�ect on the covariance estimator. For
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instance, choosing m = 90 instead of m = 1 results in a di�erence of less than 0.05% of the

data points for the estimator of Σm∆t.

In Fig.3.19, we plotted the reconstruction quality ϑ as a function of the time shift m =

τ
∆t = #∆t ordered by connection density ρ for three network sizes. The plots reveal that

the reconstruction quality decreases for increasing network size, density and chosen time shift.

The �ve di�erent topologies generated by �ve di�erent rewiring probabilities q are not labeled.

However, curves with the same color corresponding to di�erent values of q coincide and show

the same behavior. Hence, it is reasonable to assume that the reconstruction quality does not

primarily depend on the topology of the system.
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Figure 3.19: Performance of CI decreases with increasing network size N , con-
nection density ρ and time shift m = #∆t. The reconstruction quality ϑ of covariance
inversion is shown in dependence of the used number of time shifts #∆t. The graphs show
the performance of CI for di�erent network sizes. For each network size 50 networks were con-
structed using the WS2 model for 10 di�erent connection densities ρ and 5 di�erent rewiring
probabilities q ∈ {0, 0.25, 0.5, 0.75, 1}. The density is color-coded.
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Fig.3.20 (left plot) veri�es this conjecture: CI is independent of q. It is illustrated how the

variance of the conditional distributions depends on the topology determining parameter q for

di�erent system sizes N and constant connection densities ρ. The plot shows noisy horizontal

lines which seem to be randomly distributed. However, for each speci�c combination of system

size and connection density, the variances of connection and non-connection distributions

follow the same curve. A general relationship between the variances and the network topology

cannot be deduced. The straight lines suggest that CI is independent of the topology.

The right plot in Fig.3.20 shows the dependency between the variances and the connection

density ρ for di�erent network sizes and constant rewiring probability q. Here, the plots for

constant N and di�erent q coincide. Again, it is observable that variances for non-connection

entry distribution and connection entry distribution show the same behavior. The variances

increase for increasing connection density ρ and they increase faster for larger network sizes

N . The plots con�rm that the reconstruction quality is mostly independent of the system

topology. They also show that the reconstruction primarily depends on the network size and

the connection density.
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Figure 3.20: CI does not depend on the topology of the network q, but on the con-
nection density ρ. (Left) The variances of the conditional distributions p(r δ2 |connection)

and p(r δ2 |non-connection) as a function of the rewiring probability q for constant connection
density ρ and di�erent network sizes N . The straight curves indicate independence. (Right)
Same variances as functions of ρ for constant q. Curves for di�erent q values and the same
network size coincide and reveal a functional connection. The time shift was kept m = 1.
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Figure 3.21: The variance of the distributions is a function of mean degree k
and time shift #∆t. The variance of the distribution of reconstructed Jacobian entry
values corresponding to connection and non-connection as a function of the mean degree
k == ρ(N − 1) for di�erent time shifts #∆t.The plots suggest a functional connection
between the mean variance and the mean degree dependent on the time shift. (Top) Data
plotted in linear scale reveals an almost linear relation between k and the variance of the
distributions. (Bottom) Logarithmic scale shows that larger time shifts result in exponential
scaling for medium mean degree.
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Figure 3.22: Variance scales exponentially with the mean degree k. The data of
Fig.3.21 is used to generate an interpolated plot of the variance of the conditional distributions
p(r δ2 |connection) and p(r δ2 |non-connection) dependent on the time shift m for constant mean
degree k = ρ(N − 1). The data points utilized for the interpolation are plotted as black
dots. (Top) Interpolated heat map with linear scaling. (Bottom) Logarithmic scaling shows
horizontal lines indicating an exponential dependency.
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After excluding the topology of the network as a quality determining parameter, three network

parameters are left: The network size N , the connection density ρ and the time shift m which

is used to reconstruct the Jacobian.

Fig.3.21 shows the variances for di�erent time shifts depending on the mean degree k =

(N − 1)ρ.

Two observations can be made. First, all points for the same time shift lie on a smooth

curve. This indicates that covariance inversion only depends on the product ρ(N −1) and not

on both parameters individually. Secondly, the logarithmic plot shows curves that become

asymptoticly linear for large mean degree. Thus, the scaling for all variances becomes even-

tually exponential. Fig.3.22 shows an interpolation of the variance for di�erent mean degrees

dependent on the time shift. Again, the logarithmic plot reveals an exponential dependency.

3.3.5. Comparison of Covariance Inversion and Correlation Thresholding

In this section, we prove the usefulness of covariance inversion (CI), by comparing it with

correlation thresholding (CT). The latter is a scienti�c standard method and intensively dis-

cussed in Sec.2.4.1. For this purpose, we applied CI and CT to reconstruct networks from

surrogate data and used the quality measure ϑ to evaluate their performance.

We have shown numerically that CI works better for strongly coupled systems (Sec. 3.3.3,

Fig.3.16a). By contrast, we found analytically that CT is always applicable to weakly coupled

systems for in�nite time series (Sec.3.2). But how does CT perform on real data, i.e. �nite

time series?

We compared the reconstruction quality of CT to that of CI for di�erent dynamical constants

δ (Fig.3.23). The analysis was based on the dataset of Fig.3.16a. It is shown that even

though correlation thresholding is theoretically useful for weakly coupled systems (1 � δ)

the practical limitations of time series analysis prevent a reconstruction for large δ for both

reconstruction methods. This limitation is caused by analytical cross-covariance values that

are small compared to the statistical �uctuations of the covariance estimation. The relative

estimation error increases, so that covariance values cannot be inferred reliably. For stronger

coupled systems (δ � 1), the relative estimation error in the entries of the covariance matrix

are smaller, but correlation thresholding fails because second order e�ects render the systems
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non-reconstructible by thresholding of measures of statistical dependence (Sec. 3.2.3).

This is the reason why the maximal performance of correlation thresholding is somewhere in

between strongly coupled and weakly coupled systems (depending on the topology).

In contrast to CT, CI bene�ts from the improved estimation of strongly coupled systems

without drawbacks and therefore shows better results in this dynamical regime. For weakly

coupled systems both methods perform equally unsatisfactory.
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Figure 3.23: Reconstruction methods are best for strong coupling, CI outper-
forms CT. The reconstruction quality measure ϑ plotted versus the dynamical constant δ
for di�erent integration time steps and reconstruction methods. Full lines: covariance in-
version (CI), dashed lines: correlation thresholding (CT). CI reaches maximal performance
for δ → 0 and outperforms CT. Number of nodes N = 50 with adjacency matrix A�x and
dataset as in Fig.3.16 and Fig.3.17

Since the performance of CT depends on the topology, the di�erences in performance between

CT and CI also do.

The question is: Which reconstruction method should be used to reconstruct which kind of

topology? It was shown above, that strongly coupled systems are better reconstructed by

CI, while weakly coupled systems are problematic for both methods. Thus, to answer this

question, we keep the dynamical constant δ at an intermediate value and study how the re-

construction quality scales with increasing network size and increasing number of data points.

Now, the question for each reconstruction method is: How many data points are needed to
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faithfully reconstruct the network of physical interactions?

We chose three di�erent parameter settings for the WS2 random graph algorithm for three

di�erent performance regimes of CT. We picked a setup that is bene�cial for CT (q, ρ) =

(0.01, 0.14), an intermediate setup with (q, ρ) = (0.02, 0.36) and a parameter combination

that lies in the problematic regime of CT (q, ρ) = (0.05, 0.47). For each setting, we con-

structed 25 networks for di�erent network sizes from N = 30 to N = 200 nodes and generated

trajectories using a time step of ∆t = 0.005. These time series were then passed to both

reconstruction methods using di�erent amounts of data points M . The performance of each

method was evaluated utilizing the reconstruction quality measure ϑ. We averaged the recon-

struction quality ϑ over the ensemble of 25 networks to generate heat maps that reveal the

scaling in N and M .

The result of this analysis is shown in Fig.3.24 and in Fig.3.25.

Fig.3.24 shows the reconstruction quality of both methods in comparison. Double logarithmic

plots reveal that the contour lines follow a power law for both reconstruction methods. Also,

the reconstruction quality of CT changes dramatically with the choice of topological param-

eters (q, ρ) while the reconstruction quality of CI is less e�ected by changes in (q, ρ). This

con�rms our expectations (see Sec. 3.2.4).

In Fig.3.25 we display the di�erences in reconstruction quality ϑci − ϑct which show that CI

is superior to CT in most cases. In fact, CT is only more successful than covariance inversion

for (q, ρ) = (0.01, 0.14), i.e. for more or less regular graphs.

For more complex network structures this analysis indicates that CI is the better choice. It

should be noted, that this comparison only involves the reconstruction of the undirected rep-

resentation of the network of physical interactions. Yet, CI is even capable of reconstructing

the directed version. Hence, the performance of CT compared to CI is even worse if the actual

network of physical interactions is considered.
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Figure 3.24: The performances of CT and CI follow power laws depending on
Network Size N and length of time series M . Average reconstruction quality ϑ of
correlation thresholding (left) and covariance inversion (right) depending on the number
of nodes N and the number of data points M . (top) Rewiring probability q = 0.01 and
connection density ρ = 0.14, (center) q = 0.02 and ρ = 0.36, (bottom) q = 0.05 and ρ =
0.47. Data points are drawn as gray dots. Networks are generated by means of the WS2
random graph algorithm. Each data point was averaged over 25 representations. Datasets
are generated by numerical integration of OU processes with δ = 2 and γ = 0.1 using a time
step of ∆t = 0.005. Covariance inversion was performed utilizing a minimal time shift.
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Figure 3.25: CI outperforms CT for irregular structures. The di�erence ϑci − ϑct of
the performance of reconstruction quality ϑci and correlation thresholding ϑct. (a) rewiring
probability q = 0.01 and connection density ρ = 0.14, (b) q = 0.02 and ρ = 0.36, (c) q = 0.05
and ρ = 0.47. We used the same data as for Fig.3.24. Positive regions are shaded blue,
negative regions are shaded red.

100



4 CONCLUSION

4. Conclusion

In this thesis, we studied the reconstruction of networks of physical interactions from stationary

random processes. To investigate principal limits of reconstructibility in a minimal but non-

trivial model, we chose to study homogeneous Ornstein-Uhlenbeck processes. This choice

allows an exact analysis, in particular analytic computations of pairwise correlations. The

homogeneity of the model refers to homogeneous auto-dependency, coupling strength and

noise strength. Using this model, we focused on three basic questions addressing the very

foundations of present network reconstruction approaches:

(1) Does time-continuity interfere with the concept of Bayesian reconstruction methods?

(2) Which networks are reconstructible by thresholding of measures of statistical dependence?

(3) Is it possible to estimate the reconstruction error of thresholding approaches?

In addition, we introduced our own inference approach, covariance inversion, for linear systems

with homogeneous coupling strength and compared our method to correlation thresholding

regarding their performance to reconstruct physical interactions.

In the �rst part of this thesis (Sec. 3.1), we analyzed the promising dynamical Bayesian net-

work approach regarding its capability to cope with continuous-time random processes. We

tested analytically if the powerful inductive causation algorithm (IC∗ algorithm [33, Sec. 2.6])

succeeds in reconstructing a chain topology without further adjustments.

We showed, that already this most basic network structure cannot be easily inferred. Time

continuity causes additional correlations between all unconnected nodes which have at least

one indirectly connected source in common. These spurious correlations cannot be reduced

by any statistical conditioning and for any time lag. Thus, for time-continuous systems, there

is a fundamental di�erence between the network of statistical dependencies and the network

of physical interactions. The Bayesian approach only returns an approximation of the actual

network of physical dependencies even in the ideal case of in�nite time series.

This �nding may have consequences for Bayesian reconstruction approaches which deal with

time-continuous systems [14, 35]. Future usage of Bayesian network approaches for the re-

construction of physical interactions should thus include not only a statistical but also a
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conceptual error analysis.

In the second part (Sec. 3.2), we investigated the performance of thresholding of pairwise

measures of statistical dependence under idealized conditions. In particular, we analyzed the

in�uence of dynamical and topological parameters on thresholding of linear correlations of

Ornstein-Uhlenbeck dynamics.

We showed analytically that weakly coupled systems are in principle reconstructible by this

method because second order e�ects can be neglected. However, numerical analysis of �nite

time series revealed that statistical �uctuations prevent the reconstruction in this regime. In

strongly coupled systems, second order e�ects are dominant and complicate the reconstruction

further.

We proved that regular k-rings are always reconstructible. Moreover, we illustrated for irreg-

ular topologies that the reconstruction quality crucially depends on the indegree distribution

while the outdegrees distribution has only a minor in�uence. For networks with unimodal

indegree distribution, we found that the variance of the indegree distribution and the connec-

tion density are the leading factors controlling the reconstruction quality.

Accordingly, even under idealized conditions, correlation thresholding does not perform well

neither in the weak coupling limit nor in the strong coupling limit. Also, the reconstruction

quality depends crucially on the topology that is ought to be reconstructed.

Hence, our �ndings clearly show that thresholding of measures of statistical dependence has

conceptual limitations and that the topologies returned by these methods often have hardly

any physical meaning.

Since thresholding methods are applied in various �elds, the outcome of many studies may

have to be seen in a di�erent light (e.g., [4, 12, 28, 41] and certainly much more). Still, the

found dependencies help to estimate reconstruction errors if the indegree distribution and the

dynamical properties of the network are known or can be estimated beforehand.

In the third part of this thesis (Sec. 3.3), we introduced covariance inversion as a reconstruction

method for linear systems. For in�nite time series, this method always reconstructs directed

physical interactions perfectly, independent of dynamical parameters, topology or correlated

noise sources. Even noise strengths can be reconstructed. Comparable methods for less gen-
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eral unidirectional networks have been proposed in [8, 34].

We compared covariance inversion to correlation thresholding using surrogate data and found

that our method outperforms correlation thresholding in most reasonable settings. More-

over, covariance inversion is capable of reconstructing directed networks whereas correlation

thresholding is not. These results demonstrate that covariance inversion is applicable in gen-

eral because it easily competes against a well excepted benchmark. However, this method has

one downside. The trajectories of all involved units have to be known. This is rarely the case

in real world scenarios.

Taken together, our �ndings provide parts of answers to the questions raised above.

(1) Time-continuity weakens Bayesian network approaches because correlated but uncon-

nected nodes can in general not be statistically separated in continuous-time systems.

(2) Homogeneous systems with constant indegree, including regular topologies, are well re-

constructible. The best reconstruction performance is achieved for systems with moderate

coupling strengths.

(3) If the dynamical properties and the indegree distribution of the system are known, the

reconstruction error can be estimated by computationally analyzing smaller networks with

the same properties.

Overall we were able to shed some light on the interrelation of physical interactions, condi-

tional dependencies and pairwise statistical dependencies. Our �ndings reveal that current

network reconstruction methods have conceptual limitations when trying to infer physical in-

teractions. In addition, we developed a new promising approach that focuses on eliminating

exactly these limitations.

We hope that this thesis contributes new and helpful insights in the �eld of network recon-

struction and gives fruitful impulses for future research.
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Outlook

We were able to answer some questions about the interrelation of structural, Bayesian and

e�ective networks and even introduced a novel inference method. However, our research raises

new questions that may be answered in future projects.

For instance, we showed that time-continuous processes generate spurious correlations that

represent a challenge for Bayesian reconstruction methods. This raises the question how the

gained knowledge could be used to overcome this challenge and to improve existing inference

algorithms.

Moreover, we have investigated the performance of correlation thresholding which considers

traditionally only correlation values. It seems reasonable that it is possible to conceive an

inference method that takes not only the correlation values but also the correlation curves as

a whole into account.

And most importantly, we developed, covariance inversion, an inference method for linear

systems based on covariance. In the light of the direct relationship between covariance and

mutual information for linear systems (see Appendix C.2), we have to ask ourselves if covari-

ance inversion can be used to infer structural connectivities in non-linear systems. Even if

covariance inversion only yields an approximation of the system, this would still yield a new

approach to the reconstruction of networks.

We believe that answering these questions would lead to tremendous improvements of existing

reconstruction methods and thus would amount to novel and deep insights in the structure

and inner workings of networks that de�ne and determine us and the world we are living in.
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A. Appendix: Theorems

A.1. Gershgorin's Theorem

Theorem 1 (Gershgorin's Theorem). Let A ∈ Kn×n and λ be an eigenvalue of A, then

∃i ∈ {1, . . . n} : ‖λ−Aij‖ ≤
n∑

j 6=i
‖Aij‖ (A.1)

In order to prove Theorem 1 we make use of strictly diagonally dominant matrices.

De�nition A.1.1 (strictly diagonally dominant). Let A be a matrix A ∈ Kn×n, then it is

strictly diagonally dominant if and only if

‖Aii‖ >
n∑

j 6=i
‖Aij‖ ∀i ∈ {1, . . . n} (A.2)

Theorem 2. A strictly diagonally dominant matrix is not singular.

Proof. Let us assume A ∈ Kn×n is strictly diagonally dominant and singular, then

∃u ∈ Kn, u 6= 0 : Au = 0 (A.3)

Let us denote the maximal absolute value of u as ui, then

Aiiui +

n∑

j 6=i
Aijuj = 0 (A.4)

⇔ ‖Aii‖‖ui‖ ≤
n∑

i 6=j
‖Aij‖‖uj‖ ≤

n∑

i 6=j
‖Aij‖‖ui‖ (A.5)

⇒ ‖Aii‖ ≤
n∑

i 6=j
‖Aij‖ E (A.6)

Hence, there is no singular strictly diagonally dominant matrix.

Proof, Gershgorin's Theorem. Let us assume A ∈ K
n×n does not ful�ll Theorem 1. Hence,

there exists an eigenvalue λ for which

‖λ−Aij‖ >
n∑

j 6=i
‖Aij‖ ∀i ∈ {1, . . . , n} (A.7)
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Therefore, the matrix M := λ1 − A is strictly diagonally dominant and for this reason non-

singular. This contradicts that λ is eigenvalue of A. E

Hence, Gershgorin's Theorem holds.

A.2. Conditional Covariance

Let Z = (X,Y ) be a Gaussian distributed multivariate random variable with

mean z0 = (x0,y0) and (A.8)

covariance matrix Σ =


Σxx Σxy

Σᵀ
xy Σyy


 with Σ−1 =


 A B

Bᵀ C


 (A.9)

where A = Aᵀ and C = Cᵀ. For reasons of simplicity, all vectors are row vectors.

We de�ne U := ΣxyΣ
−1
yy . The inverse covariance matrix is given by

A =
(
Σxx − ΣxyΣ

−1
yy Σᵀ

xy

)−1
(A.10)

B = −AU Bᵀ = −UᵀA (A.11)

C = Σ−1
yy + UᵀAU . (A.12)

The joint probability distribution of X and Y is given by

p(x,y) ∝ exp

{
−1

2
(x− x0,y − y0)Σ−1(x− x0,y − y0)ᵀ

}

= exp

{
−1

2
[(x− x0)A(x− x0)ᵀ + (x− x0)B(y − y0)ᵀ

+ (y − y0)Bᵀ(x− x0)ᵀ + (y − y0)C(y − y0)ᵀ]

}

= exp

{
−1

2
[(x− x0)A(x− x0)ᵀ − (x− x0)AU(y − y0)ᵀ

− (y − y0)UᵀA(x− x0)ᵀ + (y − y0)
(
Σ−1
yy + UᵀAU

)
(y − y0)ᵀ

]}

= exp

{
−1

2
[(x− x0)− (y − y0)Uᵀ]A [(x− x0)− (y − y0)Uᵀ]ᵀ

−1

2
(y − y0)Σ−1

yy (y − y0)ᵀ
}
. (A.13)
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The marginal probability distribution of Y is given by

p(y) ∝ exp

{
−1

2
(y − y0)Σ−1

yy (y − y0)ᵀ
}
. (A.14)

Hence, the conditional probability distribution is given by

p(x | y) =
p(x, y)

p(y)

∝ exp

{
−1

2
[(x− x0)− (y − y0)Uᵀ]A [(x− x0)− (y − y0)Uᵀ]ᵀ

}
. (A.15)

This de�nes a normal distribution with

mean x̄0 = x0 + (y − y0)Uᵀ = x0 + (y − y0)Σ−1
yy Σᵀ

xy (A.16)

covariance matrix Σx|y = A−1 = Σxx − ΣxyΣ
−1
yy Σᵀ

xy . (A.17)

For column vectors this reads

mean x̄0 == x0 + ΣxyΣ
−1
yy (y − y0)

covariance matrix Σx|y = Σxx − ΣxyΣ
−1
yy Σᵀ

xy .

(A.18)

(A.19)
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B. Appendix: Correlation Thresholding

B.1. Dependence of Dynamical Constant δ

B.1.1. Common Cause Structure: Calculations

The correlation

Cxy =

√(
1 +

m

(δ +m)

)
1

(δ2 +mδ + 2m)
(B.1)

of Eq. 3.27 is monotonically decreasing in δ for δ ≥ 0. To see this, we prove that products of

positive monotonically decreasing functions are also positive and monotonically decreasing:

Let f(x), g(x)R+ be two positive monotonically decreasing functions in the interval x ∈ [a, b] ⊆ R,
i.e. f ′(x), g′(x) ≤ 0. Then the function h(x) = f(x) · g(x) is also positive and its derivative

h′(x) = f ′(x)g(x)︸ ︷︷ ︸
<0

+ f(x)g′(x)︸ ︷︷ ︸
<0

(B.2)

negative in interval x ∈ [a, b] ⊆ R.
Since Cxy is a product of two functions that are clearly positive and monotonically decreasing

for δ ≥ 0, the correlation Cxy is also monotonically decreasing for δ ≥ 0.

B.1.2. Relay Structure: Calculations

The matrix Λ is given by

Λ11 = e−2mt +
m
(
e−t − e−mt

)2

(m− 1)2
+

(
m(e−t − 1)− e−mt + 1

)2

(m− 1)2
(B.3)

Λ22 = . . . = ΛN−1,N−1 = e−2t +
(
e−t−1

)2
(B.4)

Λ12 = . . . = Λ1,N−1 =
e−t − e−mt
m− 1

e−t +
m(e−t − 1)− 1 + e−mt

m− 1
(1− e−t) (B.5)

Λ1N =
m(e−t − 1)− 1 + e−mt

m− 1
Λ2N = . . . = ΛN−1,N = (1− e−t) ΛNN = 1 . (B.6)

All entries that are not given by Λ = Λᵀ are found to be

Λij = (1− e−t)2 . (B.7)
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The covariance matrix Σ0 is given by

Σ11 =
4m3 + 4m2 + δ5 + δ4(2m+ 4) + δ3(m2 + 9m+ 5) + δ2(5m2 + 9m+ 2) + δ(10m2 + 2m)

δ(m+ δ)(2m+ δ)(δ + 1)(δ + 2)(m+ δ + 1)

(B.8)

Σ22 = . . .ΣN−1,N−1 =
δ2 + δ + 2

δ(δ + 1)(δ + 2)
(B.9)

Σ12 = . . . = Σ1,N−1 =
2m2 + 4mδ + 2m+ δ3 + δ2(m+ 1)

δ(m+ δ)(δ + 1)(δ + 2)(m+ δ + 1)
(B.10)

Σ1N =
m

δ(m+ δ)(δ + 1)
Σ2N = . . . = ΣN−1,N =

1

δ(δ + 1)
ΣNN =

1

δ
. (B.11)

All entries that are not given by Σ = Σᵀ are found to be

Σij =
2

δ(δ + 1)(δ + 2)
. (B.12)

The correlation

Cxy =

√(
1 +

1

δ + 1

)
1

δ2 + δ + 2
(B.13)

of Eq. 3.33 is monotonically decreasing because it is a product of positive monotonically de-

creasing functions (see above).

The correlation

Cyx =
√

2m+ δ
(
2m2 + 4mδ + 2m+ δ3 + δ2(m+ 1)

)
·

√
(m+ δ)(m+ δ + 1)(δ2 + δ + 2) (4m3 + 4m2 + δ5 + δ4(2m+ 4)+

δ3(m2 + 9m+ 5) + δ2(5m2 + 9m+ 2) + δ(10m2 + 2m))
−1

=

√
f(δ,m)

g(δ,m)
(B.14)

of Eq. 3.34 is monotonously decreasing in δ ∈ R+. We prove this by di�erentiating f(δ,m)
g(δ,m) with

respect to δ.

∂δ
f(δ,m)

g(δ,m)
=
g(δ,m) · ∂δf(δ,m)− f(δ,m) · ∂δg(δ,m)

g2(δ,m)
(B.15)
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This derivative is alway negative for δ ≥ 0 because

g(δ,m) · ∂δf(δ,m)− f(δ,m) · ∂δg(δ,m) =

− 5δ12 − δ11(34m+ 30)− δ10(92m2 + 224m+ 78)

− δ9(+128m3 + 680m2 + 640m+ 116)

− δ8(97m4 + 1096m3 + 2129m2 + 1070m+ 105)

− δ7(38m5 + 1018m4 + 3758m3 + 3818m2 + 1162m+ 54)

− δ6(6m6 + 548m5 + 3825m4 + 7006m3 + 4437m2 + 838m+ 12)

− δ5(160m6 + 2256m5 + 7320m4 + 8232m3 + 3432m2 + 392m)

− δ4(20m7 + 718m6 + 4506m5 + 8486m4 + 6246m3 + 1696m2 + 112m)

− δ3(96m7 + 1628m6 + 5068m5 + 6108m4 + 2852m3 + 488m2 + 16m)

− δ2(332m7 + 1708m6 + 3348m5 + 2468m4 + 688m3 + 64m2)

− δ(32m8 + 288m7 + 960m6 + 1120m5 + 480m4 + 64m3)

− (16m8 + 112m7 + 208m6 + 144m5 + 32m4) ≤ 0 . (B.16)

Hence, Cyx is monotonically decreasing for δ ≥ 0.

The correlation

Cxx = m
√

(2m+ δ)(δ + 2)(m+ δ + 1) ·
√

(m+ δ)(δ + 1)(4m3 + 4m2 + δ5 + δ4(2m+ 4)+

δ3(m2 + 9m+ 5) + δ2(5m2 + 9m+ 2) + δ(10m2 + 2m)
−1

=

√
f(δ,m)

g(δ,m)
(B.17)

of Eq. 3.36 is also monotonously decreasing in δ ∈ R+.

We prove this by di�erentiating f(δ,m)
g(δ,m) with respect to δ

∂δ
f(δ,m)

g(δ,m)
=
g(δ,m)∂δf(δ,m)− f(δ,m)∂δg(δ,m)

g2(δ,m)
, (B.18)
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the nominator of which

g(δ,m)∂δf(δ,m)− f(δ,m)∂δg(δ,m) =

− 4δ9m2 − δ8(24m3 + 30m2)− δ7(54m4 + 176m3 + 90m2)

− δ6(58m5 + 386m4 + 510m3 + 138m2)

− δ5(30m6 + 404m5 + 1064m4 + 740m3 + 114m2)

− δ4(6m7 + 204m6 + 1054m5 + 1420m4 + 566m3 + 48m2)

− δ3(40m7 + 508m6 + 1292m5 + 960m4 + 216m3 + 8m2)

− δ2(98m7 + 592m6 + 774m5 + 304m4 + 32m3)

− δ(128m7 + 304m6 + 208m5 + 32m4)− (8m8 + 48m7 + 56m6 + 16m5)

(B.19)

is always negative for δ ≥ 0.

Hence, Cxx is monotonically decreasing for δ ≥ 0.

B.2. Correlation Thresholding in k-rings

B.2.1. Fourier Transform

The Fourier Transform F [ · ] and its inverse F−1[ · ] of a sequence a=̂(a)∞n=−∞ with periodicity

N is given by

α = F [ a ] αm = F [ a ]m :=
N−1∑

n=0

ane
−2π nm

N

a = F−1[α ] an = F−1[α ]n :=
1

N

N−1∑

n=0

αme
2π nm

N .

(B.20)

Inverse Fourier transforms of scalar products of sequences are convolutions of their individual

inverse Fourier transforms: F−1[α · β ] = F−1[α ] ∗ F−1[β ].
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Proof. Let α, β be two sequences with periodicity N and inverse Fourier transforms a =

F−1[α ], b = F−1[β ], then

F−1[α · β ]n =
1

N

N−1∑

m=0

αmβme
2πinm

N (B.21)

=
1

N

N−1∑

m=0

(
N−1∑

l=0

ale
−2πi lm

N

)
βme

2π nm
N (B.22)

=
N−1∑

l=0

al

(
1

N

N−1∑

m=0

βme
2π

(n−l)m
N

)
(B.23)

=

N−1∑

l=0

albn−l = F−1[α ] ∗ F−1[β ] (B.24)

B.2.2. Fourier Transform s := F [σ ]

We de�ne the Fourier transform s := F [σ ] of σ.

The sequence σ has to ful�ll Eq. 3.52

k∑

l=1

σn−l−(δ + 2k)σn +

k∑

l=1

σn+l = −γ
2

β
δ0,n . (B.25)

Multiplying by e−2πinm
N and summing the resulting equation over all m ∈ [0, N − 1] yields

N−1∑

m=0

{
k∑

l=1

σn−le
−2πinm

N − (δ + 2k)σne
−2πinm

N +
k∑

l=1

σn+le
−2πinm

N

}
= −γ

2

β
(B.26)

⇒
k∑

l=1

{
N−1∑

m=0

σn−le
−2πinm

N − δ + 2k

k

N−1∑

m=0

σne
−2πinm

M +
N−1∑

m=0

σn+le
−2πinm

N

}
= −γ

2

β
(B.27)

⇒
k∑

l=1

e−2πi lm
N sm − (δ + 2k)sm +

k∑

l=1

e2πi lm
N sm = −γ

2

β
(B.28)

⇒ sm =
γ2

β

1

δ + 2k − 2
k∑
l=1

cos
(
2π lmN

) . (B.29)
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B.2.3. Inverse Fourier Transform σ = F−1[ s ]

We rewrite sm from above:

sm = F [σ ]m

=
γ2

β

1

(δ + 2k + 1)−
(

2

k∑

l=1

cos

(
2π
lm

N

)
+ 1

)

︸ ︷︷ ︸
:=zk,m

=
γ2

β(δ + 2k + 1)

(
1− zk,m

δ + 2k + 1

)−1

=
γ2

β(δ + 2k + 1)

∞∑

l=0

(
zk,m

δ + 2k + 1

)l
(B.30)

Here, we used the geometric series and the fact that |zk,m| < δ + 2k + 1 for all δ > 0.

zk=̂ (zk,m)∞m=−∞ is a periodic sequence the inverse Fourier transform of which ζk := F−1[ zk ]

yields

ζk,n = F−1[ zk ]n

=
1

N

N−1∑

m=0

zk,me
2πinm

N

=
1

N

N−1∑

m=0

{
2

k∑

l=1

cos

(
2π
lm

N

)
+ 1

}
e2πinm

N

=
k∑

l=−k

1

N

N−1∑

m=0

e2πi
(n−l)m
N =

k∑

l=−k
δnl , (B.31)

which is the periodic step sequence

ζk,n =





1 if n modN ≤ k or n modN ≥ N − k

0 otherwise
. (B.32)

We iteratively de�ne the sequence ζ∗lk of sequences

ζ∗lk := (ζk ∗ ζ∗(l−1)
k ) , ζ∗1k = ζk . (B.33)
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Thus, the inverse Fourier transform σ = F−1[ s ] yields

σn = F−1[ s ]n =
1

N

N−1∑

m=0

sme
2πinm

N

=
γ2

β(δ + 2k + 1)

∞∑

l=0

1

N

N−1∑

m=0

(
zk,m

δ + 2k + 1

)l
e2πinm

N

=
γ2

β(δ + 2k + 1)

{
δ0n +

∞∑

l=1

F−1[ zlk ]n
(δ + 2k + 1)l

}

=
γ2

β(δ + 2k + 1)

{
δ0n +

∞∑

l=1

ζ∗lk,n
(δ + 2k + 1)l

}
(B.34)

Hence, the covariance σn between two nodes i and (i+n) is an in�nite weighted sum of simple

sequences.

B.2.4. Monotony of ζ∗lk

Let ζk be the periodic step sequence

ζk,n =





1 if n modN ≤ k or n modN ≥ N − k

0 otherwise
. (B.35)

and let the sequence of sequences ζ∗lk be de�ned by

ζ∗lk := (ζk ∗ ζ∗(l−1)
k ) , ζ∗1k = ζk . (B.36)

Furthermore, let k,N ∈ N and δ > 0 with 2k + 1 < N .

Then, for all l, ζ∗lk is symmetric (i.e. invariant under n7→−n).

Proof. Mathematical induction.

(Basis)

We note that ζ∗1k =̂ ζk is obviously symmetric. (Inductive Step)
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Let ζ∗(l−1)
k be symmetric. Then, ζ∗lk is also symmetric because

ζ∗lk,−n′ =

N−1∑

m=0

ζk,mζ
∗(l−1)
k,−n′−m =

N−1∑

m=0

ζk,N−mζ
∗(l−1)
k,−n′−(N−m) =

N−1∑

m=0

ζk,mζ
∗(l−1)
k,n′−m = ζ∗lk,n′ (B.37)

More importantly, for all l, ζ∗lk is monotonically decreasing in the interval n ∈ [0, N2 ).

Proof. Mathematical induction.

(Basis)

We note that ζ∗1k =̂ ζk is monotonically decreasing in the interval n ∈ [0, N2 ), that is

ζ
∗(l−1)
k,n − ζ∗(l−1)

k,n+1 ≥ 0 . (B.38)

(Induction Step)

Let ζ∗(l−1)
k be monotonically decreasing in the interval n ∈ [0, N2 ). Then, the di�erence of two

subsequent elements of ζ∗lk with 0 ≤ n < N
2 is

ζ∗lk,n − ζ∗lk,n+1 =
N−1∑

m=0

ζk,m(ζ
∗(l−1)
k,n−m − ζ

∗(l−1)
k,n+1−m)

=

k∑

m=0

ζ
∗(l−1)
k,n−m − ζ

∗(l−1)
k,n+1−m +

N−1∑

m=N−k
ζ
∗(l−1)
k,n−m − ζ

∗(l−1)
k,n+1−m

=
k∑

m=−k
ζ
∗(l−1)
k,n−m − ζ

∗(l−1)
k,n+1−m = ζ

∗(l−1)
k,n−k − ζ

∗(l−1)
k,n+k+1 . (B.39)

We prove that the r.h.s. of Eq. B.39 is larger than zero by checking all four di�erent cases.

Case I: If n < k and n+ k + 1 < N
2

ζ
∗(l−1)
k,n−k − ζ

∗(l−1)
k,n+k+1 = ζ

∗(l−1)
k,k−n − ζ

∗(l−1)
k,n+k+1 ≥ 0 (B.40)

because k−n, n+k+1 < N
2 and k−n < k−n+2n+1 = n+k+1 and ζ∗(l−1)

k is monotonically

decreasing in this interval.
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Case (II: If n < k and n+ k + 1 > N
2

ζ
∗(l−1)
k,n−k − ζ

∗(l−1)
k,n+k+1 = ζ

∗(l−1)
k,k−n − ζ

∗(l−1)
k,N−n−k−1 ≥ 0 (B.41)

because k−n,N −n− k− 1 < N
2 and k−n < k−n+N − 2k− 1 = N −n− k− 1 and ζ∗(l−1)

k

is monotonically decreasing in this interval.

Case III: If n > k and n+ k + 1 < N
2

ζ
∗(l−1)
k,n−k − ζ

∗(l−1)
k,n+k+1 ≥ 0 (B.42)

because n−k, n+k+1 < N
2 and n−k < n−k+2k+1 = n+k+1 and ζ∗(l−1)

k is monotonically

decreasing in this interval.

Case IV: If n > k and n+ k + 1 > N
2

ζ
∗(l−1)
k,n−k − ζ

∗(l−1)
k,n+k+1ζ

∗(l−1)
k,n−k − ζ

∗(l−1)
k,N−n−k−1 ≥ 0 (B.43)

because n− k,N −n− k− 1 < N
2 and n− k ≤ n− k+N − 2n− 1 = N −n− k− 1 and ζ∗(l−1)

k

is monotonically decreasing in this interval.

Ergo, the r.h.s. of Eq. B.39 is always positive.

Thus, the sequences ζ∗lk are symmetric and monotonically decreasing in the interval n ∈
[0, N2 ).

B.2.5. The Di�erence σk − σk+1

Eq 3.52 yields the di�erence σk − σk+1:

k∑

l=1

(σk−l − σk+1−l)−(δ + 2k) (σk − σk+1) +
k∑

l=1

(σk+l − σk+1+l) = 0 (B.44)

⇒ σ0 − σk−(δ + 2k)(σk − σk+1) + σk+1 − σ2k+1 = 0 (B.45)

⇒ σk−σk+1 =
1

δ + 2k + 1
(σ0 − σ2k+1) (B.46)
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C. Appendix: Covariance Inversion

C.1. Rule of Thumb

For the homogeneous Ornstein-Uhlenbeck process, the deterministic part of the Langevin

equation reads

ẋ = 1 +
2

δ
L

︸ ︷︷ ︸
J ′

x (C.1)

where δ is the dynamical constant, L is the Laplace matrix and J is the probation matrix.

The stability condition for the Euler intergration scheme yields

|1 + λ∆t| ≤ 1 (C.2)

for all eigenvalues λ of J ′.

Additionally, Gershgorin's theorem states that each eigenvalue λ of J ′ lies in the union of discs

de�ned by

Di :=



λ
′ : |λ′ − Jii| ≤

∑

j 6=i
|J ′ij |



 , λ ∈

N⋃

i=1

Di . (C.3)

Hence,

λ ∈
N⋃

i=1

{
λ′ : |λ′ + 1 +

2ki
δ
| ≤ 2ki

δ

}
, (C.4)

where ki is the indegree of vertex i.

These discs include each other

Di ⊆ Dj ⇔ ki ≤ kj . (C.5)

Thus, there is a disc

D(k′) :=

{
λ′ : |λ′ + 1 +

2k′

δ
| ≤ 2k′

δ

}
(C.6)
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de�ned by k′ which contains all eigenvalues.

Now, we expand the stability condition and to pin down a reasonable regime for ∆t:

|1 + λ∆t| = |1 + λ∆t−
(

1 +
2k′

δ

)
∆t+

(
1 +

2k′

δ

)
∆t| (C.7)

≤ |1−
(

1 +
2k′

δ

)
∆t|+ |λ+ 1 +

2k′

δ
|∆t (C.8)

≤ |1−
(

1 +
2k′

δ

)
∆t|+ 2k′

δ
∆t

!
≤ 1 (C.9)

⇒ |1− 2k′

δ
∆t−∆t| ≤ 1− 2k′

δ
∆t (C.10)

Hence, if we chose ∆t such that

(
1 +

2k′

δ

)
∆t ≤ 1 (C.11)

the stability condition |1 + λ∆t| ≤ 1 is ful�lled.

Now we assume k′ is smaller or equal the average degree k. Thus, we get the rule of thumb

(
1 +

2k

δ

)
∆t ≤ 1 . (C.12)

C.2. Mutual Information and Covariance Inversion

We showed in Sec. 2.4.4 that the mutual information of state variables of the Ornstein-

Uhlenbeck process (OU process) only depends on the correlation, or covariance, between

both variables (Eq. 2.58). Moreover, covariance inversion returns the adjacency matrix of the

random process if the covariance matrices of the process are given (Eq. 3.60). Hence, it is

possible to reconstruct the system if the delayed mutual information is given:

Iτ (Xi, Xj) = −1

2
log

(
1−

Σ2
τ,ij

ΣiiΣjj

)
(C.13)

⇒ Στ,ij =
√

ΣiiΣjje
−Iτ (Xi,Xj) := Υτ,ij (C.14)
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Also,

J =
1

τ
log
(
ΣτΣ−1

0

)
(C.15)

⇒ J =
1

τ
log
(
ΥτΣ−1

0

)
. (C.16)

Thus, by measuring the stationary covariance matrix and the delayed mutual information, a

reconstruction of the Jacobin matrix is challenging but possible. It remains unclear, if this

method is useful to estimate the Jacobian of nonlinear systems.
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