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Classical synchronization indicates persistent
entanglement in isolated quantum systems
Dirk Witthaut1,2,3, Sandro Wimberger4,5, Raffaella Burioni4,5 & Marc Timme3,6,7

Synchronization and entanglement constitute fundamental collective phenomena in

multi-unit classical and quantum systems, respectively, both equally implying coordinated

system states. Here, we present a direct link for a class of isolated quantum many-body

systems, demonstrating that synchronization emerges as an intrinsic system feature.

Intriguingly, quantum coherence and entanglement arise persistently through the same

transition as synchronization. This direct link between classical and quantum cooperative

phenomena may further our understanding of strongly correlated quantum systems and can

be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
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U
nderstanding collective dynamical phenomena constitutes
a topical challenge across physics and beyond, with
distinct implications for the classical and quantum realms.

How collective phenomena in classical and quantum worlds are
linked is largely unknown. Synchronization constitutes one of the
most basic cooperative dynamics in classical systems. It indicates
the locking of states of coupled classical units and governs the
dynamics of physical, chemical, and biological systems1–8.
Entanglement constitutes the most fundamental phenomenon
in many-body quantum systems and indicates correlations
that are genuinely quantum mechanical. Two quantum particles
are entangled if they cannot be described by independent
single-particle states. Such entanglement thereby determines
the quantum systems’ inherent complexity9,10 and unique
computational power11,12.

In this article, we present a direct link between classical
synchronization and quantum entanglement. We investigate a
paradigmatic class of isolated nonlinearly coupled quantum
systems combining the classical theory of synchronization with
simulations of quantum dynamics and mean-field as well as
higher-order analysis. We reveal that and how synchronization
phenomena impact entanglement. Intriguingly, transient
squeezing and number fluctuations indicating genuine entangle-
ment emerge through and exactly at the transition to classical
synchronization. Moreover, the dynamics of classical phase
locking quantitatively predicts the growth of quantum number
fluctuations, and for large system sizes becomes an exact indicator
of the growth. As the quantum system is isolated, synchronization
is not externally induced but emerges through self-organized
dynamics. We demonstrate how this quantum-classical link on
the level of collective phenomena may be experimentally verified,
for example with ultracold atoms13–17. For a paradigmatic and
experimentally relevant class of systems, these results thus
indicate that the substantial parts of the emergence of
entanglement—a genuine quantum feature—can be traced back
to a classical synchronization process.

Results
Signatures of synchronization. Consider the dynamics of
a quantum many-body system described by Schrödinger’s
equation id CðtÞj i=dt¼Ĥ CðtÞj i with the Hamiltonian
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describing L spatially localized modes jA{1, y, L} (ref. 18) with
on-site two-body interactions of energy scale U. âj denotes the
annihilation and âwj the creation operator for the jth mode and

n̂j¼âwj âj is the number operator.
The quantum many-body system (1) exhibits a sharp transition

from a weakly to a strongly correlated regime. When the coupling
strengths ~Kj;‘ exceed a critical value, correlations emerge
dynamically and persist independent of the initial state. This
transition (Fig. 1) becomes apparent already for systems with just
two modes, which arise in the longitudinal Lipkin-Meshkow-
Glick model (see Supplementary Note 1). Figure 1a,b illustrate the
different dynamical regimes for a coherent initial state
|C(0)i¼ |z, Dfi, that is, a state which is maximally localized in
phase space (see Methods section).

For small coupling strengths ~K12¼~K21¼~K , correlations remain
negligible and the modes gradually dephase, so the
phase coherence a12(t) defined by CðtÞh jâwj â‘ CðtÞj i �

N aj‘ðtÞeiDfj;‘ðtÞ=L decays rapidly. The Husimi function Q(t),
representing the quantum phase space density (see Methods
section), spreads in the phase direction, such that the relative
phase of the two modes becomes undefined.

In contrast, for sufficiently large coupling strengths ~K , we
observe transient squeezing of the quantum state (Fig. 1c): The
phase space density Q(t) is compressed in the phase direction and
the uncertainty of the relative phase decreases below the standard
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Figure 1 | From short-term quantum squeezing to long-term phase

coherence and number entanglement. Quantum dynamics of two coupled

oscillators or modes; the initial state being a two-mode coherent state

|z, Dfi¼ |0, p/2i. (a) For sufficiently small coupling strengths

(here K¼0.1o) the two modes simply dephase. The Husimi density

Q(z, Df; t)�|hz, Df|C(t)i|2 (ref. 43) spreads out along the phase direction.

(b) Squeezing and number entanglement emerge for a sufficiently large

coupling strength (here K¼0.8o). At intermediate times, the Husimi density

is Q(z, Df; t) is compressed in the phase direction. For long times, the

quantum state is trapped in the right half of phase space implying

preservation of phase coherence. The grey lines in (a,b) show trajectories

of the classical mean-field system (2) bearing the Kuramoto model.

(c–e) Evolution of (c), the squeezing parameter x2 (refs 13,19), (d) the phase

coherence a12 and (e) the number entanglement W12 for K¼0.8o (blue line)

and K¼0.1o (red line). Short-term quantum squeezing, long-term phase

coherence, and number entanglement are observed for a strong coupling

K¼0.8o. Parameters for all panels are N¼40, U¼0.4/N, T¼ 2p/o and

K¼~KN=2. The initial state is a two-mode coherent state |z, Dfi¼ |0, p/2i.
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uncertainty limit, indicating many-body entanglement13,19.
Moreover, a strong phase coherence prevails in the long term
(Fig. 1d). The reduction of phase fluctuations is accompanied by
the emergence of number entanglement: The number fluctuations
exceed the maximum possible for any separable (non-entangled)
quantum state, indicated by the entanglement parameter W1240
in Fig. 1e (see Methods section). Strikingly, this type of
entanglement is persistent.

Squeezing and entanglement systematically emerge for cou-
pling strengths above some critical value, whereas they are absent
below, see Fig. 2. The observed transition indicates a quantum
analogue of the classical synchronization transition1–4. To see
this, consider the mean-field limit and derive the equations of
motion for the amplitudes cj¼hâji from Heisenberg’s equation,
neglecting quantum fluctuations and approximating
hâwj âkâ‘i � c�j ckc‘. We obtain

i
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(see Supplementary Note 3 for more details). Given a total
number N of excitations, the manifold of the phase space CL

defined by c‘j j2¼N=L for all ‘ 2 1; . . . ; Lf g is invariant under
the dynamics such that c‘j j¼ const in time (see Supplementary
Note 3 and ref. 20). With initial conditions on this manifold
denoted by c‘¼

ffiffiffiffiffiffiffiffiffi
N=L

p
e� if‘ the dynamics (2) reduces to
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The intrinsic frequencies and rescaled coupling strengths become
o‘þUN=L and K‘j � ~K‘jN=L, respectively.

This mean field limit constitutes a system of Kuramoto
oscillators2—a paradigmatic model of classical nonlinear
dynamics characterizing synchronization and other collective
phenomena3,4. For two modes, the dynamics is fully characterized
by the phase difference Df¼f2�f1 and the population
imbalance z¼ (|c2|2� |c1|2)/(|c2|2þ |c1|2) as the total number of
excitations is conserved. The phase dynamics on the invariant
manifold z¼ 0 becomes

d
dt

Df¼o� 2K sinðDfÞ: ð4Þ

with o¼o2�o1. This Kuramoto system bifurcates at
Kc¼ |o|/2, precisely indicating the quantum transition point, see
Fig. 2. Below Kc no steady states exist and the phases are unlocked.

For K4Kc phase locking emerges such that Df(t) tends to the
fixed point Df*¼ arcsin(o/2K), which shapes the corresponding
quantum dynamics (Fig. 1a versus b): The Husimi function is
contracted at the fixed point such that phase squeezing emerges.
Simultaneously, the dynamics is unstable in the z-direction,
indicating the growth of number fluctuations. The classical
Kuramoto dynamics can thus be seen as a skeleton of the full
quantum dynamics21 and the onset of classical synchronization as
a skeleton for the emergence of quantum correlations.

The correspondence of classical phase locking and the growth
of quantum fluctuations becomes analytically exact for large
populations of globally coupled oscillators, that is, K‘j¼K=L with
large L � 1 (Fig. 3a–d). We define the Kuramoto order
parameter1,3,4

reig¼L� 1
XL
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eif‘ : ð5Þ

In the generic case, the magnitude r relaxes to a fixed value
measuring the degree of phase order and g oscillates with the
mean frequency �oþUn, n¼N/L being the density of atoms or
excitations per mode. Transforming to a co-rotating frame of
reference, g becomes constant and the classical equations of
motion (3) simplify to

df‘
dt
¼ o‘� �oð ÞþKr sin g�f‘ð Þ: ð6Þ

A bifurcation occurs when the coupling K increases: For KrKc

all oscillators drift independently such that r¼ 0. For K4Kc the
oscillators with o‘� �oj j � Kr get phase-locked, df‘=dt � 0
such that r40.

To describe quantum fluctuations beyond mean-field, we
decompose the annihilation operators into the condensate mode
c‘ and the quantum fluctuations b̂‘, â‘¼c‘þ b̂‘ and insert this
ansatz into the Heisenberg equations of motion (see Supplementary
Note 4 and Supplementary Fig. 4 for more details). To linear order
in b̂‘ this yields the Bogoliubov-de Gennes equations22
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On the Kuramoto manifold the Bogoliubov-de Gennes operator is
given by

L‘j¼
z‘j Z‘j
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Figure 2 | Classical synchronization indicates quantum squeezing and number entanglement. We consider two coupled oscillators, respectively, two

quantum modes with variable coupling strength K. (a) The fixed points of the Kuramoto model (4). A stable (solid) and an unstable (dashed) fixed point

emerge in a saddle node bifurcation at Kc¼ |o|/2. (b) The temporal minimum of the squeezing parameter mintx2ðtÞ (refs 13,19) as a function of the

coupling strength K. For U¼0 (solid line) the transition to quantum squeezing is located at the critical coupling for classical synchronization, Kc¼o/2. The

on-site interaction term BU suppresses squeezing such that the transition occurs at a higher value of K for U¼0.4/N (dashed line). (c) Long-time average

of the entanglement parameter W12 as a function of the coupling strength K. Persistent entanglement W1240 (see ref. 50 and Methods) emerges with

classical synchronization at K4Kc¼o/2, independent of U. The initial quantum state is a two-mode coherent state |z, Dfi¼ |0, p/2i with N¼ 100 and

o¼ 1 in all cases.
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where the coefficients are given by

z‘j¼d‘j o‘� �oþUnþ 2Kr sin g�f‘ð Þð Þ
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� 	 ð9Þ

in the rotating frame. In the limit N, L-N with fixed n = N/L, all
terms with ‘ 6¼ j vanish as L� 1 such that the operator L‘‘
describes whether quantum fluctuations grow. For r¼ 0 all
eigenvalues l‘� of L‘‘ are real, implying that fluctuations do not
grow. Once synchronization sets in and r40, the eigenvalues of the
phase-locked oscillators are purely imaginary,

l‘�¼ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKrÞ2� o‘� �oð Þ2

q
ð10Þ

such that quantum fluctuations grow exponentially as eIm l‘þð Þt . The
maximum growth rate becomes

lim
N;L!1

max
‘

Im l‘þð Þ¼Kr: ð11Þ

This growth rate scales as the classical synchronization order
parameter (Fig. 3b). Drifting oscillators typically have real
eigenvalues, except for the ones in the immediate vicinity
of the phase-locked region (compare Fig. 3c versus d). Hence the
classical synchronization transition1–5 has a direct quantum
counterpart.

Potential experimental realizations. Our predictions are
observable in experiments, for example, with Bose-Einstein
condensates (BECs) in optical lattices13–17 or modulated photonic
lattices23,24. In a tilted or accelerated lattice, the eigenmodes are
localized (Fig. 4a) and the energies are arranged in a ladder,
o‘¼oB	‘ (ref. 25). The atomic interactions induce the nonlinear
coupling Ĥs of the neighbouring modes with ~K‘;‘� 1¼~K‘� 1;‘¼~K
and ~K‘;j¼0 otherwise. A detailed discussion of how these
parameters depend on the experimental setting is provided in
the Supplementary Note 2 and the Supplementary Figs 1–3.

Synchronization is detected from the momentum density
r(k, t) measured in a time-of-flight image (Fig. 4b). For weak
coupling ~K , the modes dephase15 such that the coherences hâwj â‘i
vanish. No relative phase is defined and r(k, t) delocalizes over
the Brillouin zone (Fig. 4b,c). Strong coupling induces
synchronization such that the coherences are partly preserved
and r(k, t) shows a localized peak which does not blur (Fig. 4e,f).
The peak remains steady in the center of the Brillouin zone as the
phases are locked at a constant value (Fig. 4d). Momentum space
localization thus provides a robust experimental quantum
signature of synchronization. Synchronization implies number
fluctuations signalling entanglement (Fig. 4g), as above for two
modes. This entanglement is persistent and emerges for all pure
BECs and Fock states with homogeneous density.

Another possibility to experimentally realize our predictions is
given by Floquet engineered optical lattices16,17.

Robustness to dissipation. In many models studied so far,
quantum signatures of synchronization are induced externally,
via dissipation or a common driving26–35. In contrast, the
coupling to the environment is not the cause of synchronization
in the quantum many-body system (1), which directly bears the
Kuramoto model in the mean-field limit. Indeed, this classical
synchronization model qualitatively predicts that the quantum
system relaxes to different states depending on the coupling
strength. The phase coherence aj‘ðtÞ, which is most easily
accessible in experiments, converges to a non-zero value up to
some small residual fluctuations (Figs 1 and 4). But how robust is
this intrinsic form of quantum synchronization to perturbations
from the environment?

We are reporting a particular destructive case of quantum
dissipation, where independent phase noise couples to all modes
of the system. Such a noise source arises in experiments with
ultracold atoms in optical lattices due to incoherent scattering of
photons from the lattice beams36 or collisions with the
background gas37. The noisy dynamics can be well captured
using a quantum master equation in Lindblad form

d
dt

r̂¼� i Ĥ; r̂

 �

� k
2

XL

‘¼1

n̂2
‘ r̂þ r̂n̂2

‘ � 2n̂‘r̂n̂2
‘ ; ð12Þ

where r̂ is the density operator and k the noise rate. Numerical
simulations of the master equation (12) for two modes indicate
the influence of phase noise on the evolution of phase coherence.
Without the synchronization coupling (for K¼ 0), already weak
noise completely destroys the phase coherence a12(t) within a few
periods T as shown in Fig. 5. In contrast, the decay of a12(t) is
slower by orders of magnitude in the presence of the coupling
(for K40). Hence, the effects described in the present paper
should be experimentally observable also in the presence of noise.

The robustness of the phase coherence depends crucially on the
coupling strength K. For supercritical coupling K4Kc the
quantum state tends to a highly entangled superposition of
atoms being localized in one of the wells, making it more
susceptible to noise. Phase coherence decays in time, but the
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Figure 3 | Classical phase locking indicates growth of quantum number

fluctuations. (a) The classical synchronization order parameter r measures

the degree of locking emerging for K4Kc. (b) Synchronization implies an

exponential growth of quantum fluctuations. The maximum growth rate

max‘Im l‘�ð Þ in the limit of large systems becomes proportional to the

classical synchronization order parameter r as predicted by equation (11).

(c) The average phase velocity df‘=dt in the Kuramoto model as a function

of natural frequency o‘. Oscillators in the grey region are phase locked, that

is, the average phase velocity is identical. (d) Quantum number fluctuations

grow rapidly for the oscillators in the the region of classical phase locking

(grey), indicated by non-zero values of the growth rate Im l‘�ð Þ 6¼ 0.

Results are shown for globally coupled oscillators, that is, K‘j¼K=L in the

limit L-N. Natural frequencies are drawn from a Lorentzian distribution

g(o), for which r(K)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Kc=K

p
near Kc¼ 2/(pg(0)) (refs 2,3).

Parameters are U¼0 and K¼ 2Kc in c,d.
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decay is still much slower than without coupling. The mode-
coupling through the Hamiltonian Ĥs induces phase coherence
also for 0oKrKc, but without strong number fluctuations. This
form of coherence is remarkably robust. After an initial drop, the
phase coherence a12(t) remains almost constant in time for the
subcritical coupling K¼ 0.1 (Fig. 5a) and the final value of a12(t)

is almost independent of the noise strength k (Fig. 5b). For
different sources of noise or dissipation (less uncorrelated for
instance) we expect an even better robustness in all mentioned
regimes.

Discussion
In summary, we have unearthed the manifestation of classical
synchronization in a class of quantum many-body systems,
providing a direct link between collective classical and quantum
dynamics. So far, synchronization and entanglement have been
mostly studied as two separate phenomena in the classical and
quantum worlds, respectively. Recent previous works considered
aspects of synchronization in open quantum model systems,
where the coupling to the environment is crucial. The interaction
with a common thermal bath can incude synchronization of
qubits26 or harmonic oscillators27, as well as a common classical
driving field28. Synchronization has also been studied for
quantum van der Pol oscillators29–32 and other driven
dissipative oscillators33,34. In all these cases, dissipation and
external driving play a crucial role, for instance the self-sustained
oscillations of the van der Pol oscillators are entirely driven by the
exchange of excitations with the bath. It has also been shown that
quantum effects can prevent the occurrence of synchronization of
coupled spins38. The Kuramoto model itself has been recovered in
the semiclassical limit of different quantum system, in particular
particles moving in tilted washboard potential35, coupled
optomechanical oscillators39 or Josephson junction arrays40. In
contrast, we here analysed a class of isolated quantum systems,
demonstrating that synchronization emerges as an intrinsic
system feature. We recover the celebrated Kuramoto model in
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Figure 5 | Synchronization-induced phase coherence is robust to noise.

(a) Without coupling (K¼0, thin black line), the coherence a12(t) of two

coupled modes decays rapidly in the presence of phase noise. The

synchronisation coupling Ĥs slows down this decay by orders of magnitude

(K¼0.8 dash-dotted blue line, K¼0.4 solid turquois line). For a weak but

non-zero coupling, the phase coherence becomes almost constant in time

at a value of a12(t)E10� 1 after a transient decrease (K¼0.1 dashed red

line). The noise strength is k¼0.02. (b) Phase coherence is remarkably

robust especially in the subcritical regime 0oKrKc. For K¼0.1 the

coherence a12(t) at time t¼ 20 T is almost independent of the noise

strength k. The remaining parameters are as in Fig. 1.
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the mean-field limit, which can be seen as a skeleton for the full-
quantum many-body dynamics.

Indeed, the transition to synchronization clearly indicates
squeezing, long-term coherence and persistent entanglement.
Moreover, the dynamics of phase locking in the synchronization
process indicates the growth of number fluctuations, becoming
exact in the limit of large system sizes. Our findings can be directly
verified by state-of-the-art experiments, for instance with ultracold
atoms in accelerated or driven optical lattices13–17 or modulated
photonic lattices23,24. These experiments are facilitated by the
observed robustness with respect to dissipation. They offer a unique
control over the system parameters such that various distributions
of natural frequencies can be realized which can give rise to different
types of synchronization phase transitions41,42. Advanced imaging
techniques allow to observe the global phase coherence as well as
number distributions with single site resolution. These results thus
offer a novel perspective on a correspondence between classical and
quantum dynamics, on the level of collective phenomena.

Methods
Coherent states. Spin coherent states are defined as

z;Dfj i¼ðN ! Þ� 1=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ=2

p
aw1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zÞ=2

p
e� iDfaw

2


 �N
0j i. They are maxi-

mally localized in phase space and thus provide a natural link to the classical mean-
field dynamics18. The projection of a quantum state on a coherent states defines the
Husimi function Q(z, Df; t)�|hz, Df|C(t)i|2. It carries all information about the
quantum state and shares properties of a classical phase space density43.

Squeezing. To quantify squeezing one defines the collective operators
Ŝ1¼ 1

2 âw
2 â2 � âw

1 â1
� 	

; Ŝ2¼ i
2 âw

2 â1 � âw
1 â2

� 	
; Ŝ3¼ 1

2 âw2 â1 þ âw
1 â2

� 	
; which form

an angular momentum algebra. The squeezing parameter is then defined as

x2 � N DŜ01
� 	2

= Ŝ02
� 2 þ Ŝ03

� 2
� �

; where Ŝ 0 is a rotation of the vector operator

Ŝ¼ Ŝ1; Ŝ2; Ŝ3
� 	

. Spectroscopic squeezing with x2o1 is only possible for entangled
states and enables high-precision quantum metrology13,19.

Number entanglement. The variance of the number difference between two
modes Ẑjk¼n̂j� n̂k is bounded for every pure separable state as DZ2

jk � n̂j þ n̂k
� 

(ref. 44). If the entanglement parameter Wjk¼DZ2
jk � n̂j þ n̂k

� 
exceeds zero for a

pure state, this unambiguously proves the entanglement of the modes. States with
large Wjk are used in precision quantum metrology45–47.

Tilted optical lattices. To study the quantum dynamics in tilted or accelerated
optical lattices, we expand the bosonic field operator in the single-particle eigen-
modes ĉðxÞ¼

P
‘ â‘C‘ðxÞ assuming that tunneling to excited Bloch bands is

negligible. The eigenmodes C‘ðxÞ are arranged in ladders with equidistant eigen-
energies o‘¼‘	oB, where oB is the Bloch frequency25. Depending on the tilting,
the eigenmodes are strongly localized in real space (Fig. 4a), such that they couple
only to the nearest neighbours. The momentum space density is given by

rðkÞ¼ ĉyðxÞĉðxÞ
D E

¼
X

j;‘

CjðkÞ�C‘ðkÞ â
y
j â‘

D E
: ð13Þ

In the non-interacting case U¼K¼ 0 the coherences are constant in magnitude and
the phases evolve according to hâw

j â‘ieðioBð‘� jÞtÞ . The atoms show a periodic
dynamics, referred to a Bloch oscillations, with the Bloch period TB¼ 2p/oB (refs
25,48). Pure on-site interactions lead to dephasing such that the coherences vanish,
hâwj â‘i-0 for j 6¼ ‘ and the momentum density reads rðkÞ¼

P
‘

C‘ðkÞj j2/ C0j j2,

which is extended over the entire first Brillouin zone15,49.

Data availability. The data that support the findings of this study (in particular
simulation source code and figure raw data) are available from the corresponding
author upon request.

References
1. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept

in Nonlinear Sciences (Cambridge Univ. Press, 2003).
2. Kuramoto, Y. in International Symposium on Mathematical Problems in

Theoretical Physics, Lecture Notes in Physics Vol. 39 (ed. Araki, H.) 420
(Springer, 1975).

3. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators. Phys. D Nonlin.
Phenomen. 143, 1–20 (2000).
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