
CFDlang: High-level code generation for
high-order methods in fluid dynamics

Chair for Compiler Construction
Technische Universität Dresden

Germany

Adilla Susungi
Claude Tadonki

Immo Huismann
Jörg Stiller

Jochen Fröhlich

Norman A. Rink
Jeronimo Castrillon

Chair of Fluid Mechanics
Technische Universität Dresden

Germany

MINES ParisTech
PSL Research University

France

Outline

1. Background and motivation

2. The CFDlang domain-specific language
1. Language definition

2. Code generation

3. Evaluation of CFDlang-generated code performance

4. Summary and outlook

2

Outline

1. Background and motivation

2. The CFDlang domain-specific language
1. Language definition

2. Code generation

3. Evaluation of CFDlang-generated code performance

4. Summary and outlook

3

Why fluid dynamics?

4

q Design and engineering
q Vehicles, aircraft etc.
q Alternative to costly

experiments, e.g. in
wind channels.

q Weather and climate
simulation
q Daily forecasts.
q Natural disasters.

Graphic omitted for copyright reasons.

High-order methods and tensors (1/2)

5

0.0 0.2 0.4 0.6 0.8 1.0

x

�1.0

�0.5

0.0

0.5

1.0

u

exact

p=1

p=4

q Numerical methods
q Used to study problems described by (otherwise)

intractable partial differential equations.
q Compute approximate solutions or simulations.

https://en.wikipedia.org/wiki/Regular_grid

𝑢 𝑥 = 𝑢$ % 𝑥$ + 𝑢$'(% 𝑥$'(+ ⋯+ 𝑢(% 𝑥 + 𝑢*

q Fluid dynamics and high-order methods
q Fluid flows governed by the Navier-Stokes equations.
q Subdivide volume of interest into volume elements 𝛀𝒆.
q Approximate solutions with polynomials of degree 𝑝:

High-order method: higher accuracy at the
same computational complexity.

High-order methods and tensors (2/2)

6

q 3-dimensional problems in fluid dynamics
q Coefficients 	𝑢/01.
q Structure of operators (i.e. compute-bound

kernels) reflects the three spatial dimensions,
e.g.:

q Matrices 𝐴, 𝐵, 𝐶.
q 3-dimensional tensors (i.e. arrays) 𝑢, 𝑣.

	𝑣/01	= 7 7 7 𝐴118	𝐵008	𝐶//8	𝑢/80818
$

189*

$

089*

$

/89*

reductions/contractions

𝑣 = 𝐴⨂𝐵⨂𝐶 𝑢

C
FD

lang
D

SL

𝑣 = 𝐴	#	𝐵	#	𝐶	#	𝑢	. [1	8 	 3	7 	 5	6]

hash (#) operator:
concatenation of

tensors

period (.) operator:
contraction of index

pairs

Outline

1. Background and motivation

2. The CFDlang domain-specific language
1. Language definition

2. Code generation

3. Evaluation of CFDlang-generated code performance

4. Summary and outlook

7

The CFDlang DSL (1/2)

8

q CDFlang program structure
q Declarations (of tensors) and statements.
q Statements assign expressions to (tensor) variables.

q Input/output qualifiers
q Declare variables for communication between the

kernel and the ambient numerical application.

q Element directive
q Informs the DSL about which tensors are to be

instantiated once per volume element 𝛀𝒆.

⟨program⟩ ::= ⟨decl⟩* ⟨elem⟩? ⟨stmt⟩*

⟨decl⟩ ::= var ⟨io⟩? ⟨id⟩ : [⟨int-list⟩]

⟨io⟩ ::= input | output

⟨elem⟩ ::= elem [⟨id-list⟩] ⟨int⟩

⟨stmt⟩ ::= ⟨id⟩ = ⟨expr⟩

⟨expr⟩ ::= ⟨term⟩ | ⟨term⟩ (+|-) ⟨expr⟩

⟨term⟩ ::= ⟨factor⟩ | ⟨factor⟩ (*|/) ⟨expr⟩

| ⟨factor⟩ . [⟨pair-list⟩]

⟨factor⟩ ::= ⟨atom⟩ | ⟨atom⟩ # ⟨factor⟩

⟨atom⟩ ::= ⟨id⟩ | (⟨expr⟩)

Embarrassing parallelism between kernel
executions for different volume elements.

The CFDlang DSL (2/2)

9

var input x : [3 4 5]
var input y : [3 4 5]
var output z : [3 4 5]

z = x ∗ y

void cfd_kernel(double x[restrict 3][4][5],
double y[restrict 3][4][5],
double z[restrict 3][4][5]) {

for (int i0 = 0; i0 < 3; i0++) {
for (int i1 = 0; i1 < 4; i1++) {

for (int i2 = 0; i2 < 5; i2++) {
z[i0][i1][i2] = x[i0][i1][i2] * y[i0][i1][i2];

}
}

}
}

ü Expressions and assignments.

ü Loop nests.

ü Kernel signatures/interface.

ü Aliasing.

Input/output tensors:
passed as arguments in kernel call.

Kernel handle:
pointer to generated object code
(for low-overhead kernel calls).

Integration of DSL programs

10

q High-level code generator:
q CDFlang programs are

lowered to C code.

q System C compiler:
q icc (Intel compiler suite).
q Kernel object code is loaded

into the application’s memory
at application run-time.

q Tensor dimensions are not
known until run-time.

Code generation and optimization (1/4)

11

var input A : [7 7]
var input u : [7 7 7]
var output v : [7 7 7]

elem [u v] 216 /* 6^3 = 216 */

v = A # A # A # u . [[1 6][3 7][5 8]]

Multiple contractions (interpolation operator):
/* element loop: */
for (int e = 0; e < 216; e++) {

for (int i0 = 0; i0 < 7; i0++) {
for (int j0 = 0; j0 < 7; j0++) {
for (int k0 = 0; k0 < 7; k0++) {

v[e][i0][j0][k0] = 0.0;
for (int i1 = 0; i1 < 7; i1++) {
for (int j1 = 0; j1 < 7; j1++) {
for (int k1 = 0; k1 < 7; k1++) {

v[e][i0][j0][k0] += A[i0][i1]
* A[j0][j1]
* A[k0][k1]
* u[e][i1][j1][k1];

} } } } } }
} /* end of element loop */

What is the complexity of this?
(in terms of 𝑝 + 1 = 7)

q Evaluation order of contractions affects overall run-time complexity:

q Minimizing number of arithmetic operations is generally NP-complete.
q C-C Lam, P Sadayappan, and R Wenger. On Optimizing A Class Of Multi-Dimensional

Loops With Reductions For Parallel Execution. 1997.
q CFD use cases have simpler combinatorics.

q Trade-off: doing reductions in sequence introduces temporary variables.
q Acceptable for CFD use cases due to small data size.

Code generation and optimization (2/4)

12

	𝑣/01	= 7 7 7 𝐴118	𝐴008	𝐴//8	𝑢/80818
$

189*

$

089*

$

/89*

	𝑣/01	= 7 𝐴118 7 	𝐴0087 	𝐴//8	𝑢/80818
$

/89*

$

089*

$

189*

𝒪(𝑝F) 𝒪(𝑝H)

q Thread-level parallelism
q Kernels executed for different elements are

fully independent.
q Those kernels can be run in parallel threads.

q SIMD parallelism and vectorization
q Many (nested) loops.
q Unclear which loops are best to be

vectorized.
q Not the reduction loops!

Code generation and optimization (3/4)

13

/* element loop: */
#pragma omp for
for (int e = 0; e < 216; e++) {

...
} /* end of element loop */

/* single reduction: */
for (int i0 = 0; i0 < 7; i0++) {

for (int j0 = 0; j0 < 7; j0++) {
for (int k0 = 0; k0 < 7; k0++) {

v[e][i0][j0][k0] = 0.0;
for (int k1 = 0; k1 < 7; k1++) {

v[e][i0][j0][k0] += A[k0][k1]
* u[e][i0][j0][k1];

}
} } }

/* single reduction: */
#pragma simd
for (int i0 = 0; i0 < 7; i0++) {

for (int j0 = 0; j0 < 7; j0++) {
#pragma simd
for (int k0 = 0; k0 < 7; k0++) {

v[e][i0][j0][k0] = 0.0;
for (int k1 = 0; k1 < 7; k1++) {

v[e][i0][j0][k0] += A[k0][k1]
* u[e][i0][j0][k1];

}
} } }

q Code generation summary

q Transform nested reduction loops into sequences of reduction loops.

q Guide the system compiler’s vectorizer by inserting SIMD pragmas in
suitable places.

q Computations on different (volume) elements are embarrassingly parallel.
§ Run kernels in parallel threads.
§ Usually only one thread per core.
§ (Detailed study not part of this work.)

Code generation and optimization (4/4)

14

Outline

1. Background and Motivation

2. The CFDlang domain-specific language
1. Language definition

2. Code generation

3. Evaluation of CFDlang-generated code performance

4. Summary and outlook

15

Performance evaluation (1/2)

16

var input A : [7 7]
var input u : [7 7 7]
var output v : [7 7 7]

elem [u v] 216

v = A # A # A # u . [[1 6][3 7][5 8]]

Interpolation operator:
var input S : [7 7]
var input D : [7 7 7]
var input u : [7 7 7]

var output v : [7 7 7]

elem [D u v] 216

v = S # S # S # u . [[1 6][3 7][5 8]]
v = D * v
v = S # S # S # v . [[0 6][2 7][4 8]]

Inverse Helmholtz operator:

q Code variants:
q CFDlang-generated
q hand-optimized
q DGEMM (Intel MKL)
q specialized (baseline)

Performance evaluation (2/2)

17

Interpolation operator: Inverse Helmholtz operator:

2 4 6 8 10 12

p + 1

0

200

400

600

800

1000

M
U

P
s

CFDlang(outer)

CFDlang(inner)

hand-optimized

DGEMM

specialized

2 4 6 8 10 12

p + 1

0

100

200

300

400

M
U

P
s

CFDlang(outer)

CFDlang(inner)

hand-optimized

DGEMM

specialized

2 4 6 8 10 12

p + 1

0

5

10

15

20

G
F
L
O

P
s

2 4 6 8 10 12

p + 1

0

5

10

15

20

G
F
L
O

P
s

Outline

1. Background and motivation

2. The CFDlang domain-specific language
1. Language definition

2. Code generation

3. Evaluation of CFDlang-generated code performance

4. Summary and outlook

18

Summary and outlook

19

q CFDlang DSL
q Abstractions for tensor operations, esp. contractions.
q Mathematical notation: no explicit loops or indices.

q Code generation and performance
q Automatic re-ordering of nested contractions.
q Automatic parallelization (with OpenMP thread) and vectorization (with SIMD pragmas).
q On par or better than best manually optimized codes.

q Language design
q Implement further numerical kernels.
q Derive requirements for extensions of the current CFDlang DSL.
q Bring notation closer to mathematical and abstract tensor product notation.

CFDlang: High-level code generation for
high-order methods in fluid dynamics

Adilla Susungi
Claude Tadonki

Immo Huismann
Jörg Stiller

Jochen Fröhlich

Norman A. Rink
Jeronimo Castrillon

Work supported by the German Research Foundation (DFG) within the
Cluster of Excellence ‘Center for Advancing Electronics Dresden’ (cfaed). Thank you.

