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Why fluid dynamics?
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q Design and engineering
q Vehicles, aircraft etc.
q Alternative to costly 

experiments, e.g. in 
wind channels.

q Weather and climate 
simulation
q Daily forecasts.
q Natural disasters.

Graphic omitted for copyright reasons.



High-order methods and tensors (1/2)
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q Numerical methods
q Used to study problems described by (otherwise) 

intractable partial differential equations.
q Compute approximate solutions or simulations.

https://en.wikipedia.org/wiki/Regular_grid

𝑢 𝑥 = 𝑢$ % 𝑥$ + 𝑢$'( % 𝑥$'( + ⋯+ 𝑢( % 𝑥 + 𝑢*

q Fluid dynamics and high-order methods
q Fluid flows governed by the Navier-Stokes equations.
q Subdivide volume of interest into volume elements 𝛀𝒆.
q Approximate solutions with polynomials of degree 𝑝:

High-order method: higher accuracy at the 
same computational complexity.



High-order methods and tensors (2/2)
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q 3-dimensional problems in fluid dynamics
q Coefficients 	𝑢/01.
q Structure of operators (i.e. compute-bound 

kernels) reflects the three spatial dimensions, 
e.g.:

q Matrices 𝐴, 𝐵, 𝐶.
q 3-dimensional tensors (i.e. arrays) 𝑢, 𝑣.

	𝑣/01	= 7 7 7 𝐴118	𝐵008	𝐶//8	𝑢/80818
$

189*

$

089*

$

/89*

reductions/contractions

𝑣 = 𝐴⨂𝐵⨂𝐶 𝑢

C
FD

lang
D

SL

𝑣 = 𝐴	#	𝐵	#	𝐶	#	𝑢	. [ 1	8 	 3	7 	 5	6 ]

hash (#) operator:
concatenation of 

tensors

period (.) operator:
contraction of index 

pairs
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The CFDlang DSL (1/2)
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q CDFlang program structure
q Declarations (of tensors) and statements.
q Statements assign expressions to (tensor) variables.

q Input/output qualifiers
q Declare variables for communication between the 

kernel and the ambient numerical application.

q Element directive
q Informs the DSL about which tensors are to be 

instantiated once per volume element 𝛀𝒆.

⟨program⟩ ::=   ⟨decl⟩* ⟨elem⟩? ⟨stmt⟩*

⟨decl⟩ ::=   var ⟨io⟩? ⟨id⟩ : [⟨int-list⟩]

⟨io⟩ ::=   input | output

⟨elem⟩ ::=   elem [⟨id-list⟩] ⟨int⟩

⟨stmt⟩ ::=   ⟨id⟩ = ⟨expr⟩

⟨expr⟩ ::=   ⟨term⟩ | ⟨term⟩ (+|-) ⟨expr⟩

⟨term⟩ ::=   ⟨factor⟩ | ⟨factor⟩ (*|/) ⟨expr⟩

| ⟨factor⟩ . [⟨pair-list⟩]

⟨factor⟩ ::=   ⟨atom⟩ | ⟨atom⟩ # ⟨factor⟩

⟨atom⟩ ::=   ⟨id⟩ | ( ⟨expr⟩ )

Embarrassing parallelism between kernel 
executions for different volume elements.



The CFDlang DSL (2/2)
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var input  x : [3 4 5]
var input  y : [3 4 5] 
var output z : [3 4 5]

z = x ∗ y

void cfd_kernel(double x[restrict 3][4][5],
double y[restrict 3][4][5],
double z[restrict 3][4][5]) {

for (int i0 = 0; i0 < 3; i0++) {
for (int i1 = 0; i1 < 4; i1++) {

for (int i2 = 0; i2 < 5; i2++) {
z[i0][i1][i2] = x[i0][i1][i2] * y[i0][i1][i2];

}
}

}
}

ü Expressions and assignments.

ü Loop nests.

ü Kernel signatures/interface.

ü Aliasing.



Input/output tensors:
passed as arguments in kernel call.

Kernel handle:
pointer to generated object code
(for low-overhead kernel calls).

Integration of DSL programs
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q High-level code generator:
q CDFlang programs are 

lowered to C code.

q System C compiler:
q icc (Intel compiler suite).
q Kernel object code is loaded 

into the application’s memory 
at application run-time.

q Tensor dimensions are not 
known until run-time.



Code generation and optimization (1/4)
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var input  A : [7 7]
var input  u : [7 7 7] 
var output v : [7 7 7]

elem [u v] 216   /* 6^3 = 216 */

v = A # A # A # u . [[1 6][3 7][5 8]]

Multiple contractions (interpolation operator):
/* element loop: */
for (int e = 0; e < 216; e++) {

for (int i0 = 0; i0 < 7; i0++) {
for (int j0 = 0; j0 < 7; j0++) {
for (int k0 = 0; k0 < 7; k0++) {

v[e][i0][j0][k0] = 0.0;
for (int i1 = 0; i1 < 7; i1++) {
for (int j1 = 0; j1 < 7; j1++) {
for (int k1 = 0; k1 < 7; k1++) {

v[e][i0][j0][k0] += A[i0][i1]
* A[j0][j1]
* A[k0][k1]
* u[e][i1][j1][k1];

} } } } } }
} /* end of element loop */

What is the complexity of this?
(in terms of 𝑝 + 1 = 7)



q Evaluation order of contractions affects overall run-time complexity:

q Minimizing number of arithmetic operations is generally NP-complete.
q C-C Lam, P Sadayappan, and R Wenger. On Optimizing A Class Of Multi-Dimensional 

Loops With Reductions For Parallel Execution. 1997.
q CFD use cases have simpler combinatorics.

q Trade-off: doing reductions in sequence introduces temporary variables.
q Acceptable for CFD use cases due to small data size.

Code generation and optimization (2/4)
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	𝑣/01	= 7 7 7 𝐴118	𝐴008	𝐴//8	𝑢/80818
$

189*

$

089*

$

/89*

	𝑣/01	= 7 𝐴118 7 	𝐴0087 	𝐴//8	𝑢/80818
$

/89*

$

089*

$

189*

𝒪(𝑝F) 𝒪(𝑝H)



q Thread-level parallelism
q Kernels executed for different elements are 

fully independent.
q Those kernels can be run in parallel threads.

q SIMD parallelism and vectorization
q Many (nested) loops.
q Unclear which loops are best to be 

vectorized.
q Not the reduction loops!

Code generation and optimization (3/4)
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/* element loop: */
#pragma omp for
for (int e = 0; e < 216; e++) {

...
} /* end of element loop */

/* single reduction: */
for (int i0 = 0; i0 < 7; i0++) {

for (int j0 = 0; j0 < 7; j0++) {
for (int k0 = 0; k0 < 7; k0++) {

v[e][i0][j0][k0] = 0.0;
for (int k1 = 0; k1 < 7; k1++) {

v[e][i0][j0][k0] += A[k0][k1]
* u[e][i0][j0][k1];

}
} } }

/* single reduction: */
#pragma simd
for (int i0 = 0; i0 < 7; i0++) {

for (int j0 = 0; j0 < 7; j0++) {
#pragma simd
for (int k0 = 0; k0 < 7; k0++) {

v[e][i0][j0][k0] = 0.0;
for (int k1 = 0; k1 < 7; k1++) {

v[e][i0][j0][k0] += A[k0][k1]
* u[e][i0][j0][k1];

}
} } }



q Code generation summary

q Transform nested reduction loops into sequences of reduction loops.

q Guide the system compiler’s vectorizer by inserting SIMD pragmas in 
suitable places.

q Computations on different (volume) elements are embarrassingly parallel.
§ Run kernels in parallel threads.
§ Usually only one thread per core.
§ (Detailed study not part of this work.)

Code generation and optimization (4/4)
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Performance evaluation (1/2)
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var input  A : [7 7]
var input  u : [7 7 7] 
var output v : [7 7 7]

elem [u v] 216

v = A # A # A # u . [[1 6][3 7][5 8]]

Interpolation operator:
var input  S : [7 7]
var input  D : [7 7 7] 
var input  u : [7 7 7]

var output v : [7 7 7]

elem [D u v] 216

v = S # S # S # u . [[1 6][3 7][5 8]]
v = D * v
v = S # S # S # v . [[0 6][2 7][4 8]]

Inverse Helmholtz operator:

q Code variants:
q CFDlang-generated
q hand-optimized
q DGEMM (Intel MKL)
q specialized (baseline)



Performance evaluation (2/2)
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Interpolation operator: Inverse Helmholtz operator:
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Summary and outlook
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q CFDlang DSL
q Abstractions for tensor operations, esp. contractions.
q Mathematical notation: no explicit loops or indices.

q Code generation and performance
q Automatic re-ordering of nested contractions.
q Automatic parallelization (with OpenMP thread) and vectorization (with SIMD pragmas).
q On par or better than best manually optimized codes.

q Language design
q Implement further numerical kernels.
q Derive requirements for extensions of the current CFDlang DSL.
q Bring notation closer to mathematical and abstract tensor product notation.
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