
Ohua: Implicit Dataflow Programming
for Concurrent Systems

Sebastian Ertel
Compiler Construction Group

Technische Universität
Dresden

Dresden, Germany
sebastian.ertel@tu-

dresden.de

Christof Fetzer
Systems Engineering Group

Technische Universität
Dresden

Dresden, Germany
christof.fetzer@tu-

dresden.de

Pascal Felber
Complex Systems Group
Université de Neuchâtel
Neuchâtel, Switzerland

pascal.felber@unine.ch

ABSTRACT
Concurrent programming has always been a challenging task
best left to expert developers. Yet, with the advent of multi-
core systems, programs have to explicitly deal with multi-
threading to fully exploit the parallel processing capabilities
of the underlying hardware. There has been much research
over the last decade on abstractions to develop concurrent
code that is both safe and efficient, e.g., using message pass-
ing, transactional memory, or event-based programming. In
this paper, we focus on the dataflow approach as a way to
design scalable concurrent applications. We propose a new
dataflow engine and programming framework, named Ohua,
that supports implicit parallelism. Ohua marries object-
oriented and functional languages: functionality developed
in Java can be composed with algorithms in Clojure. This al-
lows us to use different programming styles for the tasks each
language is best adapted for. The actual dataflow graphs
are automatically derived from the Clojure code. We show
that Ohua is not only powerful and easy to use for the pro-
grammer, but also produces applications that scale remark-
ably well: comparative evaluation indicates that a simple
web server developed with Ohua outperforms the highly-
optimized Jetty server in terms of throughput while being
competitive in terms of latency. We also evaluate the impact
on energy consumption to validate previous studies indicat-
ing that dataflow and message passing can be more energy-
efficient than concurrency control based on shared-memory
synchronization.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Concurrent, distributed, and parallel languages, Data-
flow languages

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’15, September 08 - 11, 2015, Melbourne, FL, USA
© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3712-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2807426.2807431

explicit
(control structures,

abstractions)

implicit
(functions,
variables)

concurrent programming model

m
an

ua
l

au
to

m
at

ic

(c
om

pi
le

r k
no

w
le

dg
e)

ru
nt

im
e

op
tim

iz
at

io
ns

threads
locks

tasks
fork/join

actors
message-
passing

dataflow
operators
dataflow-

graph

stateful
functions
functional
program

Figure 1: A taxonomy of concurrent programming ap-
proaches.

Context and motivations.
The radical switch from ever-faster processors to multi-

core architectures one decade ago has had a major impact
on developers, as they suddenly had to learn developing
concurrent applications that are able to harness these new
parallel processing capabilities. Doing so in a way that
is both safe and efficient is, however, a challenging task.
While pessimistic concurrency control strategies like coarse-
grained locks are simple to use and easy to prove correct,
they severely limit scalability as large portions of the code
are serialized. In contrast, fine-grained locking or lock-free
algorithms provide better potential for parallelism but are
complex to master as one has to deal with concurrency haz-
ards like race conditions, deadlocks, livelocks, or priority in-
version. It is therefore desirable to shield as much as possible
the developer from the intrinsic challenges of concurrency by
providing adequate abstractions in programming languages.

We can distinguish two types of programming language
support to create parallelism: control structures and ab-
stractions. Imperative programming languages such as C,
C++, Java, and even newer functional languages like Man-
ticore [18], expose control structures, e.g., threads and pro-
cesses, to allow the programmer to explicitly schedule and
execute code in parallel. In addition, the concepts of locks
and barriers provide mechanisms to orchestrate the threaded
execution: the programmer explicitly forks threads and con-
trols their interactions with shared data. On the other hand,
programming languages such as Erlang [4], Scala [21], Mul-
tiLisp [22] or Cilk [8] do not expose full control of paral-
lel execution to the developer but rather provide abstrac-
tions such as actors, message passing, futures, tasks, par-
allel loops or even dataflow graphs to mark code regions
that can potentially execute in parallel. Note that sev-
eral popular programming languages like C, C++, Java can

51

also support such abstractions thanks to extensions such as
OpenMP [11] or Akka [24]. Especially on different hardware
architectures such as special processors designed for massive
parallelism [44], GPUs and FPGAs, the dataflow program-
ming and execution model has become state-of-the-art. In
languages such as StreamIt [45] and Intel’s Concurrent Col-
lections (CnC) [9], the program is constructed out of a graph
of operators. It is left to the compiler and runtime system
to exploit these hints in a parallel execution context.

Both types provide appropriate support for developing
scalable concurrent programs leveraging the ever increas-
ing multi-/many-core nature of processor architectures, and
there are obviously arguments for using either: better con-
trol of parallelism vs. safety and simplicity of use. While
abstractions avoid the root cause of most concurrency prob-
lems, namely shared memory accesses, most of them still
expose the explicit constructs of threads, processes, and
locks. Additionally, abstractions require developers to struc-
ture their programs in a specific, often unnatural, way to
enable parallel execution, e.g., Cilk tasks or Scala/Akka ac-
tors. Developers are now left with the decision of which
approach to use, which often brings more confusion than
benefits [36, 43]. Dataflow graphs and operators similarly
diverge drastically from the normal programming paradigm.
The explicit declarative nature of the dataflow graph con-
struction does not scale to large and complex programs and
has therefore prevented this paradigm to be used in gen-
eral purpose programming. Figure 1 provides an overview
of the current approaches to concurrent programming along
the ultimate goal: scalability (of the programming model to
construct complex systems). A solution to concurrent and
parallel programming must fulfil two criteria. It is free of
additions and uses solely functions and variables as in a se-
quential program to release the programmer from the bur-
den to worry about concurrency and even parallelism and
therewith enable faster construction of larger systems. On
the other hand, it exposes the concurrent nature inside the
program to the compiler to enable automatic parallel exe-
cution, (scheduling) optimizations and adaptations to newly
evolving hardware without changing the program.

Our approach.
In this paper, we argue for an approach based on pure im-

plicitness requiring neither control structures nor abstrac-
tions. We propose a new programming model based on
stateful functions and the implicit construction of a dataflow
graph that does not only abstract parallelism, but also pro-
motes reuse by structural decomposition and readability by
the differentiation of algorithm and functionality. Unlike
with message passing and threads, this decomposition better
matches the natural flow of the program. As requesting the
programmer to explicitly construct a dataflow graph would
go against our implicitness objectives and limit scalability of
the programming model, we instead derive the graph implic-
itly from a regular functional program. The key idea is that,
in functional programming, global state is omitted and the
structure of a program closely resembles a dataflow graph,
with a set of functions that may maintain local state.

In Ohua, our implementation of this programming model,
the actual functionality of the program can be implemented
in an imperative form in Java to tie state to functions within
objects, while Clojure’s functional programming paradigm is
used to express the algorithm, and hence the dataflow graph,

accept read parse load compose reply

Figure 2: A simple web server.

in a natural way. This combination of object-oriented and
functional programming enables us to get the best of both
worlds: Java for developing sophisticated functionality using
a comprehensive set of libraries and legacy code, and Clo-
jure for the specification of algorithms from which dataflow
graphs are derived.

As an example, consider the pipeline for a simple web
server depicted in Figure 2. With our Ohua dataflow pro-
gramming model and execution engine, the algorithm is
composed in a functional programming style in Listing 1.

Listing 1: Ohua-style HTTP server algorithm in Clojure

1 (ohua :import [com.web.server])
2

3 ; classic Lisp style
4 (ohua
5 (reply (compose (load (parse (read (accept 80))))))
6

7 ; or using Clojure's threading macro to improve
readability (which is transformed at compile−time
into the above)

8 (ohua
9 (−> 80 accept read parse load compose reply))

The actual functionality for accepting incoming connec-
tions, reading the data from the socket, parsing the request
(see Listing 2), loading the requested file from disk, and com-
posing and sending the response is implemented as methods
in Java classes.

Listing 2: Ohua-style parse function implementation in Java

1 public class HTTPRequestParser {
2 // a pre−compiled regex as the associated state
3 private Pattern _p = Pattern.compile(
4 ”(GET|PUT)\\s([\\.\\/\w]+)\\s(HTTP/1.[0|1])”);
5

6 @Function public String[] parse(String header) {
7 Matcher matcher = _p.matcher(header).find();
8 return new String[] {
9 matcher.group(1), // request type

10 matcher.group(2), // resource reference
11 matcher.group(3) }; // HTTP version
12 }

As a final step, Ohua links both specifications and implic-
itly executes the program in a pipeline parallel fashion.

As also argued in [37], there are benefits in mixing func-
tional and imperative programming for concurrent programs.
Languages like Scala supporting both paradigms do pro-
vide neither safety nor guidance on when to use imperative
or functional programming. We therefore strongly believe
that a clear separation between the two languages also helps
the developer to differentiate between the algorithm and its
functionality. The conciseness of the functional language is
instrumental in presenting a clear perspective of the program
flow and making it easier to understand, reason about, and
extend. On the other hand, the object-oriented paradigm
allows the developer to share and refine functionality easily
across different implementations. More importantly it pro-
vides the proper programming model to encapsulate state.

52

Contributions and roadmap.
After an introduction into dataflow programming in Sec-

tion 2, we present the core concepts of our stateful func-
tional programming (SFP) model in Section 3 and its imple-
mentation in Ohua. It encompasses a compiler that trans-
parently derives the dataflow graph from a declarative pro-
gram written in a functional language (Clojure), while the
actual operations performed by the application are imple-
mented in an object-oriented model (Java); and a runtime
engine and programming framework that builds upon this
implicit approach to provide seamless support for concur-
rent and parallel execution (Section 4). We use the semi-
complex real-world example of a concurrent web server to
exemplify our concepts clearly. The web server building
blocks can be found at the heart of most distributed sys-
tems. Apart from concurrency, I/O is at the core of every
server design. However, the cost is yet another program-
ming model that is asynchronous and breaks control flow of
the server into many cluttered event dispatches [17]. Com-
bining this I/O programming model with any of the con-
current programming abstractions described above is even
more challenging. Therefore, we provide a comparative eval-
uation with the Jetty web server that ships with two im-
plementations, for synchronous (blocking - BIO) and asyn-
chronous (non-blocking - NIO) I/O models respectively, and
uses explicit concurrency control managed by the program-
mer using threads. We study the scalability of our simple
Ohua-based web server and Jetty in terms of performance
and energy-efficiency in Section 5. We show that the flex-
ibility of our runtime framework, which allows to control
concurrency as well as the I/O model without changing the
code, achieves better hardware adaptation than barely in-
creasing a thread count. We found that the Ohua-based
web server outperforms Jetty in throughput by as much as
50 % for BIO and 25 % for NIO. This gives reason to be-
lieve that NIO-based web servers on the JVM do not scale
better (at least for web server design) than implementations
where asynchronous I/O is realized with threads that block
on I/O calls. We discuss related work in Section 6 and give
an outlook on future work (Section 7) before we conclude in
Section 8.

2. DATAFLOW PROGRAMMING
In flow-based programming (FBP) [34, 14], an algorithm

is described in a directed dataflow graph where the edges are
referred to as arcs and vertices as operators. Data travels in
small packets in FIFO order through the arcs. An operator
defines one or more input and output ports. Each input port
is the target of an arc while each output port is the source of
an arc. An operator continuously retrieves data one packet
at a time from its input ports and emits (intermediate) re-
sults to its output ports. Dataflow programming therefore
differs significantly from imperative programming, which re-
lies on control flow. While an imperative program can be
translated into a dataflow, as explained in [6], dataflow ex-
ecution is naturally tied to functional programming.

In classical dataflow [5, 15], operators are fine-grained
stateless instructions. In contrast, FBP operators are small
blocks of functional sequential code that are allowed to keep
state. This programming model is similar to message pass-
ing with actors, which recently gained momentum with lan-
guages such as Scala [21]. Unlike these, however, FBP cleanly
differentiates between functionality, such as parsing a re-

Runtime

Compile-time

Runtime Code
Linker

Execution
Engine

Hierarchical
Scheduler

Dataflow Graph
Extraction

Algorithm
(Clojure)

Algorithm Code
Transformation

Dataflow
Graph

Dataflow
Compilation

(Java/Clojure) Function
Library

Section-Mapping
Algorithm

Compile-
time Data

Function
(Java/Clojure)

Figure 3: Overview of Ohua.

quest, and the algorithm, such as serving web pages. An
operator makes no assumptions nor possesses any knowledge
about its upstream (preceding) or downstream (succeeding)
neighbors. Therewith, operators are context-free and highly
reusable. Finally, an FBP program defines the communica-
tion between operators, which translates into data depen-
dencies, via arcs at compile-time rather than at runtime.
This approach avoids concurrent state access problems and
allows for an implicit parallel race-free program execution.

A strong benefit of this program representation is the sim-
ple graph structure, which enables reasoning about paral-
lelism, concurrency, and synchronization without the need
to analyze the entire source code. Ohua exploits this prop-
erty in order to move decisions about parallel execution from
compile-time to deployment and even runtime. Although
the programming model allows for coarse-grained implicit
parallelism with a minimum granularity of an operator, it
does not impose any constraints on the mapping of operators
to execution units.

(Data)flow-based programming can be found at the core
of most advanced data processing systems. In such sys-
tems, concurrent processing is key for scalability, and the
dataflow approach provides seamless support for exploiting
multi-core and parallel architectures. For example, IBM’s
DataStage [28] products are state-of-the-art systems for data
integration that are purely based on the FBP concepts. Many
algorithms for database systems [16] and data stream pro-
cessing [10] are also expressed as directed graph structures.
The declarative design of network protocols, as for instance
in Overlog [32], are dataflow graphs by definition and even
the construction of some highly scalable web servers [48]
finds its roots in FBP principles. The data dependency
graphs underlying the dataflow programming model can be
found as compile-time program representation in most par-
allel languages, such as Manticore [2] and Cilk [8]. These
graphs contain the necessary information to derive runtime
task execution constraints and avoid data races; they are
therefore instrumental in designing scalable concurrent pro-
grams for multi-/many-core architectures.

3. STATEFUL FUNCTIONAL PROGRAM-
MING IN Ohua

The approach of Ohua is to enable parallel execution while
retaining the structure and style of a sequential program.
In order to achieve this goal, Ohua marries functional and
object-oriented programming under the clear structure of
FBP. While functionality is provided in an object-oriented

53

Listing 3: StreamFlex filter

1 class FileLoad extends Filter {
2 Channel<String> in, out;
3 void work() {
4 // explicit channel control
5 String resource = in.take();
6 String contents = null;
7 // load file data from disk (

omitted)
8 out.put(contents);}}

Listing 4: SF implemented in Java

1 class FileLoad {
2 @Function
3 String load(String resource) {
4 String content = null;
5 // load file data from disk (

omitted)
6 return content;}}

Listing 5: SF implemented in Clojure.

1 (ns com.server.FileLoad
2 (:gen−class :methods
3 [[ˆ{Function} load [String]

String]]))
4

5 (defn −load [this resource]
6 (slurp resource))

Figure 4: StreamFlex dataflow operators/filters vs. Ohua functions implemented in Java and Clojure for file loading.

form in Java, the algorithm is defined in the Clojure func-
tional language. Clojure is a natural fit in Ohua because
it is JVM-based and it exposes a powerful macro system to
extend the language [25]. Figure 3 depicts the internals of
Ohua. Functions and algorithms are provided by the devel-
oper. In the first step, functions are linked to the algorithm.
Thereafter, Ohua performs dataflow detection on the func-
tional algorithm. The extracted dataflow graph is compiled
and finally transformed into its runtime representation.

All of these steps are executed in the ohua macro during
Clojure compilation of the algorithm. The macro generates
code that preserves compile-time insights such as restrictions
on parallelism (see Section 4.2) and executes the dataflow
graph in the execution engine. The section-mapping al-
gorithm is the extension point of our runtime framework
related to parallelism. It is responsible for breaking the
dataflow graph into execution units. This shifts parallelism
concerns from compile-time to runtime and thereby provides
the opportunity to adapt programs to different deployment
contexts. We present more details on the execution model
in Section 4, after first focusing on the programming model
and compilation aspects.

3.1 From operators to stateful functions
In SFP each operator encapsulates a single function tagged

with the @Function annotation.1 The defining class can be
thought of as a tuple consisting of the function and the as-
sociated operator state as such we refer to them as state-
ful functions2. In the following, we highlight the differ-
ence in the programming model for typical FBP operators
of streaming systems like StreamIt [45]. We use Stream-
Flex [41] for comparison as it is also written in Java. As
depicted in Listing 3 of Figure 4, a typical operator design
encompasses explicit control on the abstraction of channels
(or arcs) for receiving input and emitting results. The de-
veloper has to deal with problems such as unavailability of
input data, buffering of partial input and fully loaded outgo-
ing channels. For more advanced operators this requires the
implementation of a state machine. Instead SFP resembles
the natural implementation of a function. This code may
either be implemented in Java or in Clojure (Listings 4 and
5 of Figure 4). The latter uses the :gen-class library to
generate a Java class from the functional code. It not only
allows to define stateless functions in a functional manner

1Note that there may be many other functions in the class,
but for reasons of clarity in this paper only one must be
tagged with this annotation.
2For the remainder of the paper, we use the term operator
for nodes in the dataflow graph for historical reasons and
mean stateful functions in terms of the programming model.

but also enables to leverage Clojure libraries naturally.
In a strict sense, functions in SFP resemble the idea of

lazy functional state threads [29] based on the concept of
monads. Such threads represent state transformers that are
never executed concurrently (on the same state). As such
they can be described as a pure function on the state itself.
State transformers allow programmers to describe a stateful
computation in the context of a functional program, which
is normally stateless. The rationale behind the concept of a
state transformer is to encapsulate the state in such a way
that the computation appears stateless to all other compo-
nents/functions in the system. This closely maps to FBP’s
notion of context-insensitivity for operators that we men-
tioned above. Although the Java type system does not sup-
port strong encapsulation of state, i.e., state can potentially
leak to the “outside world”, Ohua ensures that functions
never return any reference to their state. This is achieved
by static byte code analysis of the function implementation
at compile-time to detect escaping references. A detailed
introduction of the related concepts and algorithms is out-
side the scope of this paper. Therewith, stateful functions
provide strong encapsulation and allow reasoning about an
algorithm in a purely functional manner, with all its benefits
such as referential transparency and the potential to execute
functions in parallel.

3.2 Algorithms
The role of algorithms in SFP is to provide an untangled

view on the system, free of implementation details. List-
ings 6 and 7 in Figure 5 compare the explicit construction of
the web server flow graph in StreamFlex with the algorithm
declaration in Ohua. This explicit construction clearly lim-
its the scalability of the programming model while the con-
struction of an algorithm is a natural fit for any developer.
The resulting dataflow graphs as presented in Figure 5 show
that StreamFlex solely knows arcs, i.e. compound depen-
dencies among operators, while the SFP algorithm defines
fine-grained data dependencies. These enable the compiler
to clearly understand the dataflow on the algorithm level to
increase safety and optimize the parallel execution. Instead
the compiler in Ohua derives this knowledge automatically.
Note that algorithms in turn can be composed out of other
algorithms and therefore Ohua also supports defining algo-
rithms as functions. This allows for a clear structure as
known from any other programming language.

Algorithms are also type-agnostic. While types are instru-
mental for program verification at compile-time, they also
add to code verbosity and complexity. SFP algorithms are
intentionally written in a non-typed manner, yet without
sacrificing the benefits of a statically typed compilation. All

54

Listing 6: StreamFlex graphs

1 public class WebServer extends StreamFlexGraph {
2 Filter a, r, p, l, c, rep;
3 public WebServer() {
4 // explicit dataflow graph construction
5 a = makeFilter(Accept.class);
6 r = makeFilter(Read.class);
7 p = makeFilter(Parse.class);
8 l = makeFilter(Load.class);
9 c = makeFilter(Compose.class);

10 rep = makeFilter(Reply.class);
11 connect(a, r);
12 connect(r, p);
13 connect(p, l);
14 connect(l, c);
15 connect(c, rep);
16 validate();}
17

18 public void start() {
19 new Synthetizer(accept).start();
20 super.start();}}

Listing 7: Ohua algorithms

1 (defn start [port]
2 (ohua
3 ; most ”explicit”/fine−grained data dependency

matching
4 (let [[cnn req] (read (accept port))]
5 (let [[_ resource _] (parse req)]
6 (let [[content length] (load resource)]
7 (reply cnn (compose length) content))))))

Derived dataflow graph from the Ohua algorithm in
Listing 7.

a r p l c r
cnn req

cnn
resource length header

content

port

a r p l c r

The StreamFlex dataflow graph from Listing 6.

Figure 5: StreamFlex dataflow graph construction vs. Ohua algorithm design.

type information is kept with the functionality, i.e., the Java
code implementing the stateful functions. Hence, although
type information is not present in the Clojure algorithms,
it can be exploited on the Java side to support type-based
compilation of the dataflow graph in future work. Algo-
rithms are constructed from the core Lisp concepts, exclud-
ing mechanisms for concurrency control and parallelism such
as agents, software transactional memory, or parallel maps.
We see SFP as an addition to these approaches and provide
more details for their integration in Section 4. The graph
construction happens solely on the basis of the Clojure algo-
rithm while its operational semantics strictly adhere to those
of normal Clojure functions (for any single data packet).

3.3 Dataflow graph extraction
The Ohua compiler follows the return values and refer-

ences to locals, and respectively translates them into data
dependencies and arcs of the dataflow graph. Algorithm 1
gives a high-level overview of our dataflow graph extraction
algorithm. Input to the algorithm is code written in Clo-
jure, which consists of stateful function invocations, control
constructs such as conditionals or loops, environment vari-
ables such as the server port 80 in Listing 1, and finally a
set of explicit data dependencies represented by locals. The
result(s) of a function can either be direct (implicit) input
to another function or assigned to a so-called local in Clo-
jure. Locals differ from variables in that they are immutable.
This is also true for locals in a Ohua algorithm for any single
data packet. Locals allow us to decompose the result of a
function and input portions of it to different functions. This
process, called destructuring, provides explicit fine-grained
control over the data dependencies. For example, Listing 7
provides the most explicit implementation of the server algo-
rithm, which translates into the dataflow graph of Figure 5.

Clojure is a homoiconic language and therewith represents
code just as its internal data structures, e.g., lists, vectors,
symbols. As such a Clojure program resembles a tree struc-
ture. In Figure 6 we depict a variant of our simple web
server algorithm that destructures the results of parse to

Algorithm 1: Dataflow Graph Extraction Algorithm

Data: A := (F, C := {if, loop, recur}, V,D) a Clojure
algorithm represented as a tree composed of
functions that are either linked stateful functions F or
represent control structures C, a set of environment
variables V and a set of explicit dependencies D.

1 z := zipper(A) ; // functional zipper [26]
2 while z := z.next() do // depth first traversal
3 f := z.node();
4 if z.up() 6= ∅ then
5 // For simplicity we assume the simple case where

no control structure is the root.
6 create-operator(f);
7 else
8 t := z.up().leftmost().node();
9 if f ∈ F then

10 create-operator(f);
11 create-dependency(f .id, t.id);

12 else if f = if then
13 s := create-operator(’cond’);
14 f .id := s.id;
15 m := create-operator(’merge’);
16 Turn condition into executable and attach to s;
17 create-dependency(m.id, t.id);

18 else if f = loop then
19 create-operator(’merge’);
20 create-dependency(f .id, t.id);
21 else if f = recur then
22 l := Find the next loop statement in z.path;
23 create-dependency(f .id, l.id);

24 else if f ∈ V then
25 register-env-var(f .node()); // see Section 4.2
26 else if f ∈ D then
27 create-dependency(f .origin.id, t.id);
28 end

29 end

30 end

assign them to locals socket and res-ref. The former is
passed to send while the reference to the requested resource
is input to load. Before the graph extraction algorithm is
executed, our compiler does a first pass over the code and

55

ID : 4
socket

ID : 4ID : 5

ID : 4

ID : 6
accept 80()

(read)

(parse)

(let

[

]

]

[
ID : 4

socket
ID : 4
res-ref

)

)

ID : 3

ID : 2

ID : 1

(load

(compose)

(send)

res-ref

Figure 6: Tree representation of the server algorithm in Clo-
jure.

accept nb-read-
concat

parse load compose reply

merge condnb-
read

Figure 7: recur statements translate into feedback-edges.

assigns each function a unique identifier. Locals are assigned
the same identifier as the function whose results they bind.

For simplicity Algorithm 1 omits advanced concepts of
formal and actual schema matching, but focuses on the cen-
tral idea of the tree traversal and creation of dependencies
from lower-level nodes to their direct parent (Lines 9–11).
If the algorithm encounters a local, it creates a data depen-
dency from the local’s origin to the function it is input to
(Lines 26–27). Environment variables are registered as static
input of a function invocation and are important when the
argument list for the call is created (Lines 24–25).

Conditionals are special cases of functions that result in
the creation of two functions (Lines 12–17). The cond func-
tion evaluates the condition and dispatches the current packet
to either one of its two outputs representing the if and else

branches. Note the translation of control flow into dataflow
at this point. Both branches are represented in the code as
input to the if, as seen in Listing 8, but we insert here an
additional merge operator as target of the results from both
branches. The algorithm then attaches the identifier of the
merge to the if node in the code tree (Line 17).

Finally, loops in Clojure are composed by combining two
special forms: loop and recur. The loop function takes a
binding vector with input to the loop and the code of the
loop body to be executed. Inside this loop body, a new it-
eration of the loop is initiated once a recur invocation was
reached. As a result, loops always incorporate an additional
if invocation to implement the loop condition with the re-
cursion and exit point. Our algorithm already supports con-
ditions and therefore all that is required is another merge to
handle newly entering packets (Lines 18–20) and iterations
whenever a recur node is encountered (Lines 21–23). List-
ing 8 declares a version of the web server that implements a
non-blocking read on the accepted connections via a loop.

Listing 8: Loop statement to implement non-blocking reads.

1 (ohua
2 (reply (compose (load (parse
3 (loop [[read-data cnn] (nb-read (accept 80))]
4 ; stop on blank line
5 (if (.endsWith read-data ”\n\n”)
6 [read-data cnn]
7 (recur (nb-read-concat cnn read-data))))))))

accept read

parse-
header

load compose-
get-resp

cond store compose-
post-resp

reply

parse-
post

merge

Figure 8: Data parallelism opportunity via conditionals.

Note the implementation of the non-blocking read functions
in Listing 9. It uses inheritance to share the code for reading
data and extending it by concatenating the already read
data to the current data read.

Listing 9: Non-blocking read with two functions.

1 class NonBlockingRead {
2 private ByteBuffer b = ByteBuffer.allocate(90);
3
4 @Function
5 Object[] nbRead(SocketChannel cnn) {
6 cnn.configureBlocking(false);
7 int count = cnn.read(b);
8 b.flip();
9 String data =

10 Charset.defaultCharset().decode(b);
11 return new Object[]{data, cnn};}}
12

13 class NBReadConcat extends NonBlockingRead {
14 @Function
15 Object[] nbReadConcat(SocketChannel cnn,
16 String read){
17 return
18 new Object[]{read + super.nbRead(cnn)[0],
19 cnn};}}

3.4 Linking
After the graph has been created, the function calls are

linked to their respective targets across operators. Linking
is implemented by importing the namespace where the func-
tions to be used are defined (see the first line in Listing 1).
Internally, the linker loads all Java classes and inspects them
to look for functions with the @Function annotation. If a
class defines such a function, a reference is stored under the
signature of the tagged function in the function library. The
compiler subsequently looks up functions in the function li-
brary when performing the dataflow compilation.

Listing 10: Conditional statement on the resource location

1 (ohua
2 (let [[type req] (−> 80 accept read parse-header)]
3 (if (= type ”GET”)
4 (−> data load compose-get-re)
5 (−> data parse-post store compose-post-re))
6 reply))

3.5 Opportunities for data parallelism
While the dataflow programming model naturally maps

to pipeline parallelism, the Clojure language also introduces
data parallelism into the dataflow. There are two special
forms in the Clojure language that implicitly introduce par-
allel branches into the graph: if and let. Listing 10 uses
a condition on the request type to implement file storage
as in restful services, i.e., using the HTTP POST and GET
operations. The resulting dataflow graph is shown in Fig-
ure 8. The condition splits the dataflow into two branches,

56

compose

compose

parseread

readaccept balance-
data

read

load

compose

reply

parse

parse

load

load

reply

reply

Figure 9: Opportunity for 3-way parallel request processing.

which can be executed in parallel for different requests. The
cond operator evaluates the condition and turns the control
flow decision into a dataflow decision. In the case of a let,
forms inside the lexical context may not depend on data
from each other and therefore resolve to parallel branches
by the definition of Algorithm 1.

Data parallelism can also be created explicitly by dedi-
cated operators that produce data parallelism without break-
ing the semantics of the algorithm. Listing 11 uses a macro
(||) to create the opportunity to handle requests in a 3-way
parallel fashion on the foundation of the let special form.

Listing 11: Load balancing via a simple macro

1 (ohua
2 (let [cnn (accept 80)]
3 (|| 3 cnn (−> read parse load compose reply)))
4

5 ; macro expanded
6 (ohua
7 (let [cnn (accept 80)]
8 (let [[one two three] (balance-data cnn)]
9 (−> one read parse load compose reply)

10 (−> two read parse load compose reply)
11 (−> three read parse load compose reply)))

Supporting such parallelism implicitly is not trivial and is
left as future work, as it requires a detailed understanding of
the semantics of the pipeline. The resulting dataflow graph
is presented in Figure 9. It uses a balance-data operator
that dispatches the incoming independent requests among
its outputs according to some predefined decision algorithm,
e.g., round robin.

Note that parallelism is an orthogonal concern that is
enabled by the algorithm but unleashed via the sections-
mapping at runtime. For example, an if condition always
creates an opportunity for data parallelism. It is, however,
up to the section mapping to place the two branches onto
different sections (see Section 4).

4. FLEXIBLE PARALLEL EXECUTION
The dataflow graphs considered in Ohua are static as

they represent the implementation of an algorithm (coarse-
grained parallelism) rather than the dynamic evolution of a
data structure (fine-grained parallelism). This point is im-
portant especially when reasoning about the graph in terms
of task granularity and scheduling. Our dataflow graphs are,
however, not synchronous as I/O operations prevent us from
predicting the runtime schedule [31].

A dataflow graph is a representation that is easy to rea-
son about even without detailed operator knowledge. The
execution engine in Ohua bases its decisions solely on oper-
ator meta data such as I/O interactions or the number of
outgoing and incoming arcs. The execution of the operator
function is strict, i.e., the function is executed only if all slots
in its formal schema are filled. Note that the merge operator
is again an exception because it is executed as soon as some
input is available among any of its incoming arcs.

request handling
section

accept
section

read parse load compose replyaccept

(a) Decoupled accept handling and request processing via sections

network I/O write
section

disk I/O
section

network I/O read
section

accept
section

read parse load compose replyaccept

(b) One I/O-operator per section mapping to decouple I/O

parse
section

compose
section

load
section

reply
section

read
section

accept
section

read parse load compose replyaccept

(c) Most fine granular one operator per section mapping

Figure 10: Three section mappings for the basic web server.

It would appear natural to define the granularity of paral-
lelism on the basis of an operator. However, the goal of Ohua
is to run computations over dataflow graphs that are poten-
tially very large with hundreds of operators. Under these
conditions the granularity of parallelism has been identified
as a vital parameter as it must amortize the associated man-
agement costs [23]. The same work points out another often
neglected aspect when addressing parallel execution: I/O
and synchronized memory updates. Therefore, we require a
flexible execution model that allows us to adjust the gran-
ularity based on deployment-specific properties such as the
number of cores, the available RAM, or the attached storage.
More specifically, current research on flexible runtime map-
pings for parallel execution focuses on extracting as much
parallelism as possible out of pipelines in a loop body [42,
38]. In these approaches, the lowest degree of parallelism
is given by the number of operators. Ohua targets larger
graphs, potentially much larger then the number of cores
available, and therefore requires the flexibility to reduce the
degree of parallelism even below the number of operators in
the graph. As such the model should separate this concern
to adapt to different deployments without program change.

4.1 Parallelism granularity control
In order to provide this degree of flexibility, Ohua defines

the concept of a section that spans one or multiple operators
in the dataflow graph. At runtime a section maps to a task
that gets executed on a thread by a scheduler. A section exe-
cutes its operators cooperatively on that thread. Therefore,
sections execute in parallel and operators concurrently.

Listing 12: ’Acpt-req’ and ’1 I/O op/sec’ section mappings

1 '([”acc.∗”] [”read.∗” ”par.∗” ”load.∗” ”com.∗” ”rep.∗”])
2 '([”acc.∗”] [”read.∗” ”par.∗”] [”load.∗”] [”com.∗” ”rep.∗”])

As shown in Listing 12, developers can specify different
section mappings via regular expressions at deployment,
thereby changing the degree of parallelism in the execution
of the dataflow graph. For example, the section mapping
in Figure 10a decouples the tasks of accepting new connec-
tions from the processing of requests, while the mapping in
Figure 10b provides a finer code granularity per section by
decoupling all I/O operations of the dataflow graph. The
most fine-granular mapping, depicted in Figure 10c, assigns
each operator to its own section. Future work extends this

57

sync
section

accept read

parse-
header load compose-

get-respcond

store compose-
post-resp

reply

parse-
post reply

Figure 11: Resource access synchronization via sections.

concept to adapt the section mapping dynamically at run-
time, for example to varying load situations or other runtime
statistics. Ohua requires every operator of the graph to be
mapped to exactly one section. That is, we exclude the
parallel execution of an operator instance and the resulting
concurrency on its state because it would violate the FBP
model.

4.2 Integration into Clojure programs
Ohua is particularly adapted for pipeline parallel execu-

tion in the context of large complex systems. Yes, not every
aspect of such a system needs to be executed in a parallel
fashion. Ohua also integrates easily with normal Clojure
programs, taking locals or variables as input and producing
output like any function call.

Listing 13 is a variation of our extended web server that
handles HTTP POST and GET requests.

Listing 13: A variable map as a cache in Ohua

1 (def registry (new java.util.HashMap))
2

3 (ohua
4 (let [[type req] (−> 80 accept read parse-header)]
5 (if (= type ”GET”)
6 (reply (compose-get-re (load req registry)))
7 (reply (compose-post-re (store (parse-post req)
8 registry)))))

Instead of storing and fetching the data to and from disk,
it uses an in-memory registry. It takes a variable refer-
encing a map as an input to two Ohua functions. The
algorithm designer is in charge of assigning actuals in the
surrounding closure to formals in the functions of the Ohua
computation. We do not place any restrictions on this as-
signment other than defined by Clojure itself. The Ohua
compiler detects that the registry variable is shared among
the load (Line 7) and the store (Line 9) operators. While
the mapping of operators to different sections provides a
way to process requests in parallel, the converse is also true.
Hence, the compiler can define the restriction for the section-
mapping algorithm to place these operators onto the same
section as in Figure 11. Thereby, it implicitly synchro-
nizes access to the registry. Furthermore, we used a Java
typed variable for the following reason. The compiler can
inspect the shared data structure and place this restriction
only if the type does not implement an interface from the
java.util.concurrent package. This means that the com-
piler can adapt the synchronization mechanism automati-
cally depending on the type. None of the implementation
code would have to be changed. In a sense, Ohua solves
the problem of providing synchronization implicitly rather
than putting the burden onto the developer by introducing
locks into the language. On the other hand, not all shared
resources are visible to the compiler. Consider the same ex-
ample but instead of sharing a memory reference both func-

tions access the same external resource, e.g., a file. This may
not be known to the programmer as it is a configuration pa-
rameter and hence highly deployment specific. Therefore,
section mappings are only defined at deployment to adapt
not only to hardware but to additional requirements; in this
case to enforce synchronization even for resource accesses
that are external to Ohua.

5. EVALUATION
Ohua targets coarse-grained parallelism but the granu-

larity of tasks in typical benchmarks even for pipeline par-
allelism is fine-grained [7]. Therefore, to evaluate the effi-
ciency and overhead of Ohua, we use our example of a simple
web server, which represents an ubiquitous component in the
days of web services and cloud computing, and we compare
our implementation against the state-of-practice Jetty web
server. We focus on scalability and observe both latency and
throughput, which are the most important characteristics of
a web server. Our evaluation encompasses different section
mappings, different degrees on (data) parallel transforma-
tions, application-specific optimizations and a comparison
of BIO and NIO-based web server design.

Our experiments simulate a high load situation where
clients concurrently request a small file from the web server.
Initially, 10,000 files of 512 bytes each are created. We chose
a rather small file size to simulate a scenario that imposes a
high load on the web server, similar to a news feed or aggre-
gator. In our experiments, clients continuously request one
of these files uniformly at random. This greatly eliminates
the disk caching effect of the operating system. The delay
between requests of a single client is 20 ms and, if not stated
otherwise, we report the mean over an execution period of
100 s. Our test environment is a cluster of 20 nodes with 2
quad-core Intel Xeon E5405 CPUs (i.e., 8 cores) and 8 GB
of RAM. The machines are interconnected via Gigabit Eth-
ernet and their hard disks are attached via SATA-2. The
operating system is Debian Linux (kernel 3.2.0) with Java
1.7 installed. One node in the cluster is used for the web
server while the clients are spread evenly across the remain-
ing 19 machines. We conduct our experiments until 1,200
concurrent clients, at which point the Java garbage collec-
tor (GC) starts becoming a bottleneck. Although we study
the impact of the GC type on Jetty as well as Ohua to find
the optimal configuration, a thorough investigation of GC
bottlenecks for web server programs in Java is outside the
scope of this evaluation. For our energy studies we had to
use a different server machine in a different data center to
get access to the energy counters of the processor. The ma-
chine composed of an Intel Core SandyBridge processor with
a single socket, 2 cores per socket and 2 hardware threads
per core, and 4 GB of RAM. The source code of Ohua3 as
well as the web server4 along with instructions for running
the benchmarks are freely available.

5.1 Pipeline parallelism
In order to find the optimal configuration for our Ohua-

based web server (see Figure 2) with respect to the exploited
parallelism and scheduling overhead, we proceed from a con-
current to a parallel execution. We start by investigating
the impact of operator scheduling on the web server perfor-

3https://bitbucket.org/sertel/ohua
4https://bitbucket.org/sertel/ohua-server

58

0

5

10

15

20

25

30

L
at

en
cy

(m
s)

0 50 100 150 200 250 300 350 400

Clients

2

3

4

5

6

7

8

9

T
hr

ou
gh

pu
t

(k
R

eq
/s

)

call

batch-5

batch-10

(a) Operator Scheduling Overhead

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Clients

2

4

6

8

10

12

14

16

acpt-req

1-I/O-op/sec

op/sec

sgl-rd-rp

(b) Section Mapping Comparison

0 200 400 600 800 1000 1200

Clients

non-blocking blocking

(c) Section Scheduling Overhead

0 200 400 600 800 1000 1200

Clients

normal

rep-1

rep-2

rep-4

rep-8

(d) Data Parallelism Impact

Figure 12: Latency and throughput measurements to find the optimal scheduling, section and parallelism configuration for
our HTTP server.

mance. All functions of the algorithm are mapped to the
same section to prevent any parallelism. We evaluate the
performance by changing the size of the arcs in between
the operators. Figure 12a shows the resulting latency and
throughput graphs for sizes 1, 5, and 10. Ohua translates
an arc size of 1 into a direct function call and therewith
avoids operator scheduling. As appears clearly in the graphs,
this results in improved latency and even better throughput.
When increasing the load, however, the batch-oriented pro-
cessing model catches up and exhibits similar performance
characteristics. We report measurements only up the 400
concurrent clients because a higher load already forced the
server to drop requests. Based on these results, we select the
direct function call as the optimal configuration for operator
execution among the sections in the rest of our evaluation.

Next, we investigate the impact of different section map-
pings. In addition to the three mappings defined in Fig-
ure 10c, we add the “sgl-rd-rp” (single-read-and-reply) map-
ping, which assigns each network I/O function its own sec-
tion and puts the functions parse, load and compose to-
gether in a different section. Results in Figure 12b show
that this mapping is by far the best choice in terms of both
metrics, even though it defines the same degree of parallelism
as the “1-I/O-op/sec” mapping and even less than “op/sec”.

Figure 14 presents detailed breakdowns to understand the
reason for this odd behavior. The graph depicts the average,
minimum, and maximum processing times of each of the five
web server functions for a run of our first experiment. The
log-scaled y-axis shows that outliers are the predominant
bottleneck, especially in the case of the read. While the av-
erage processing times clearly converge to the minima, the
average processing time of the read is still almost twice that
of load and compose. The parsing of the request exhibits
the lowest average processing time. In our implementation,
we use the sendfile option to enables a zero copy opera-
tion for the requested feed from disk straight to the network
interface. Similarly, the processing time of the load is com-
paratively low because it consists of a single disk seek oper-
ation. In contrast, interfacing the network for sending the
response exhibits the highest average processing time. We
point out again that our Ohua-based server is implemented
using blocking I/O only. It represents the most straight-
forward approach for the programmer and does not impose
a complex or unfamiliar programming model on the whole

read
parse

load
compose

reply

Function

101

102

103

104

105

106

107

108

P
ro

ce
ss

in
g

ti
m

e/
re

qu
es

t
(µ

s)
-l

og
sc

al
e

read
parse

load
compose

reply

Function

0

20

40

60

80

100

120

140

160

P
ro

ce
ss

in
g

ti
m

e/
re

qu
es

t
(µ

s)

Figure 14: Average, minimum, and maximum processing
times per request for each of the web server functions.

program as non-blocking I/O frameworks do, with one cen-
tral event dispatcher that clutters the code and makes it
hard to reason about.

Finally, we study the impact of section scheduling in Fig-
ure 12c. Note that we define a safety limit in the size of the
inter-section arcs for the unlikely case that one of the I/O
functions blocks for a unusually long time, but this limit is
not of interest with respect to our section scheduling. There-
fore, we compare two different implementations. The first
one uses a concurrent non-blocking queue while the second
one uses a blocking version. The difference with respect
to scheduling is that an unsuccessful dequeue operation in
the first case results in a section scheduling cycle, while in
the latter case the operation just blocks until data becomes
available, thereby avoiding scheduling overhead. The results
verify the expected superior performance of the blocking ver-
sion in terms of latency. These benefits however vanish when
the server is highly loaded (beyond 600 concurrent clients)
and the amount of unsuccessful dequeue operations becomes
negligible. Furthermore, at that point the lock-based nature
of the queues does not scale with the number of items and
starts to yield substantial overhead in terms latency and a
decrease in throughput. This illustrates the importance of
a flexible runtime system that adapts automatically to the
system load in order to improve performance. Ohua provides
the functionality necessary to achieve this goal.

59

0

5

10

15

20

25

30

L
at

en
cy

(m
s)

0 200 400 600 800 1000 1200

Clients

2

4

6

8

10

12

14

16

T
hr

ou
gh

pu
t

(k
R

eq
/s

)

cms (30)

cms (200)

sc

g1

(a) Jetty GC

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Clients

2

4

6

8

10

12

14

16

Ohua-acpt-req

Jetty-bio (cms)

Jetty-bio (sc)

(b) BIO

0 200 400 600 800 1000 1200

Clients

Ohua-sgl-rd-rp

Jetty (cms)

Jetty (sc)

(c) Async NIO

10 − 1 100 101 102

latency (ms) - log scale

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ohua

Jetty (cms)

Jetty (sc)

(d) Req. latency

Figure 13: Comparison of Jetty against the simple web server implemented in Ohua.

5.2 Data parallelism
We next investigate the potential for processing requests

in a data parallel fashion using the balancemacro from List-
ing 11. On the basis of our previous results, we use the “sgl-
rd-rp” section mapping for each of the parallel branches, in
combination with the concurrent arc implementations. Fig-
ure 12d shows the results for different replication factors (as
the first argument to balance). The graphs indicate that ad-
ditional parallelism does not improve performance, because
it translates into more parallel I/O operations that in turn
add overheads, likely due to increased contention on internal
lock structures. Our Ohua-based web server implementation
reaches the I/O boundary here. At this point the only possi-
ble way to further improve performance would be to change
from the simple blocking I/O model to a more advanced ver-
sion that would scatter read and write operations to better
interface with the network. Although Jetty makes use of all
these features, they are left to future work in Ohua.

5.3 Comparison with Jetty
To put our results in context with prevalent I/O program-

ming models in current state-of-practice Java-based web ser-
vers, we compare the best configuration of our Ohua web
server against Jetty (version 8.1.9) in Figure 13. In all our
experiments, we ran Ohua with the concurrent-mark-and-
sweep (CMS) garbage collection (GC) algorithm to mini-
mize the overhead on request latency. Figure 13a shows
that Jetty’s performance actually varies across the different
garbage collectors. For CMS, we ran the experiment twice:
once configured with 30 worker threads and once with 200
(default). The results show that CMS performance does not
depend on the number of threads to be inspected.5 The
lowest latency is achieved by CMS while the parallel scav-
enge (sc), a stop-the-world GC implementation, provides
the highest throughput. The new G1 (garbage first) col-
lector is not yet located in between the scavenge and the
cms performance-wise, as one would actually expect. It is
on par in terms of latency with scavenge but does not achieve
the same throughput especially for lower load situations. It
appears that Jetty users have to decide which property is
most important to their web sites, latency or throughput.
We therefore take both GC flavors into account in our com-

5Ohua adapts the thread count to the number of sections
automatically.

parison.
We ran Jetty with a thread pool size of 200 in both avail-

able modes: blocking (BIO) and non-blocking/asynchronous
(NIO). In Ohua, we selected the corresponding section map-
ping for our pipeline: “acpt-req” (accept-request) and “sgl-
rd-rp”. Results from BIO in Figure 13b show that Jetty
with CMS performs better than Ohua latency-wise. As for
throughput, Ohua is the better choice even compared to
Jetty with parallel scavenge.

Results for NIO, shown in Figure 13c, indicate that Ohua
remains superior to Jetty in terms of throughput. The av-
erage latency overhead for Ohua is about 3 ms as compared
to Jetty with parallel scavenge, which has in turn higher
latency than Jetty with CMS. The latter does, however, ex-
hibit the worst performance in terms of throughput.

We take a closer look at these values for the run with 800
concurrent clients in Figure 13d, which presents the cumula-
tive distribution of request latencies. The constant overhead
for Ohua most likely results from the blocking nature of the
I/O operations. The GC impact, as experienced by roughly
10% of the requests, is similar to the Jetty executions.

5.4 Energy comparison
Next, we want to validate claims by some researchers [40,

46, 27] that dataflow, message passing, or lock-free algo-
rithms are more energy-efficient than traditional multi-thread-
ing with shared-memory synchronization and locks. We
are also interested in understanding the performance/energy
trade-offs of Ohua’s runtime parameters. To that end, we
ran experiments on the Intel machine. Each experiment ex-
ecuted for 80 s. After 20 s into the computation we gathered
the energy consumption of the server machine for 30 s using
perf state on the power/energy-cores event. In Figure 15
we investigate the energy consumption for different config-
urations of Jetty and Ohua in NIO mode using the CMS
GC configured with 3 GB of memory. In the first row, we
report the average, minimum, and maximum energy con-
sumption during the probing period in the different client
configurations while the second row depicts the energy con-
sumption per request depending on the load situation on the
server. In our first experiment, we deployed Jetty with and
without caching enabled. The results of our energy analysis
in Figure 15a show that executing Jetty without a cache is
far more energy efficient and scales better to more intensive
load situations. This is due to the fact that Jetty uses the

60

0 200 400 600 800 1000

Clients

0

5

10

15

20

25
M

ea
n

E
ne

rg
y

(J
)

0 2000 4000 6000 8000 10000

Load (Requests/s)

0

2

4

6

8

10

E
ne

rg
y/

re
qu

es
t

(m
J)

Jetty-cache Jetty-no cache

(a) Jetty Cache Comparison

0 200 400 600 800 1000

Clients

0 2000 4000 6000 8000 10000

Load (Requests/s)
acpt-req

1-I/O-op/sec

op/sec

sgl-rd-rp

(b) Section Mapping

0 200 400 600 800 1000

Clients

0 2000 4000 6000 8000 10000

Load (Requests/s)

non-blocking blocking

(c) Arc Comparison

0 200 400 600 800 1000

Clients

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
#

C
yc

le
s

× 1010

0 2000 4000 6000 8000 10000

Load (Requests/s)

0
1
2
3
4
5
6
7

#
C

yc
le

s/
re

qu
es

t

× 109

Jetty-cache Jetty-no cache

(d) Jetty CPU Cycle Comparison

Figure 15: Energy consumption for Jetty and our HTTP server implemented in Ohua.

sendfile primitive to serve static file content without copy
operations. The cached version needs to first copy the file to
memory and then back to the socket for sending. As shown
in Figure 15d, this translates into more cycles and a higher
energy demand respectively.

In our second experiment we compare the same 4 section
strategies as in Figure 12b. The mean energy consumption
in Figure 15b shows that the more sections we have, the
more energy is consumed: the “op/sec” strategy with 6 sec-
tions consumes the most while the “acpt-req” strategy with
only 2 sections consumes the least. As the load increases,
however, the mappings with more sections become more ef-
ficient. This suggests that section strategies should not only
adapt to the execution infrastructure, but also to the load of
the system. Note that the load situation is not the same as
in the cluster experiment: a similar load of around 13000–
14000 requests/s is likely to show again that the “sgl-rd-rp”
strategy outperforms the others. Finally, a comparison of
the graphs in Figure 15a with those in Figure 15b indicates
that Ohua is more energy efficient and scalable than Jetty.

Our last experiment replaces once more the concurrent
non-blocking arcs of the inter-section arcs in the “sgl-rd-rp”
strategy with blocking implementations. For the load situ-
ations depicted in Figure 15c, the blocking variant outper-
forms the non-blocking one in terms of energy consumption
but also exhibits lower throughput. Indeed, with low load,
the blocking variant provides the opportunity for the system
to put blocked cores into halted state where energy consump-
tion is low. One can observe, however, energy-efficiency per
request of the non-blocking variant improves with the load
because of the lower scheduling costs.

5.5 Data sensitive request handling
Finally, we consider the impact of optimizations that use

application-specific knowledge. Assume that our small web
documents are news snippets that catch the interest of clients
and bring them to load the full article. The size of a snippet
is only around 512 bytes while the article (in a compressed
form) is around 20 kB. The goal is for the snippet requests
to scale independent of the requests for the full articles. We
therefore store the snippets separately in an in-memory file

200 400 600 800 1000 1200
Clients

0
100
200
300
400
500
600
700
800

L
at

en
cy

(m
s) Disk RAM

200 400 600 800 1000
Clients

2

4

6

8

10

T
hr

ou
gh

pu
t

(k
R

eq
/s

)

Disk

RAM

Figure 16: Latency and throughput for concurrent requests
on feeds (512 Bytes) residing in RAM and articles (20 kB)
located on disk.

system, essentially removing disk I/O bottleneck. Finally,
to ensure that no snippet request is blocked by the disk
I/O of an article being loaded, Listing 14 defines a condi-
tion that dispatches requests according to the location of the
requested resource.

Listing 14: Conditional Statement on the Resource Location

1 (ohua
2 (let [[_ resource-ref] (−> 80 accept read parse)]
3 (if (.startsWith resource-ref ”news/”)
4 (−> resource-ref load-ram write reply)
5 (−> resource-ref load-hd write reply))))

Each branch is mapped onto a different section. We run
this experiment with an equal number of clients requesting
snippets and articles. The graphs in Figure 16 strongly sup-
port one of Ohua’s main arguments: parallelism and concur-
rency are highly sensitive to the deployment context. Sep-
arating the aspect of parallelism from the program fosters
clean algorithm design and allows for a highly flexible run-
time system with powerful optimizations.

6. RELATED WORK
Purely functional languages are best described by their

absence of global state and side-effects (state mutations):
data flows through the functions of an algorithm. In this
respect, Ohua—and more generally FBP and dataflow—are
by nature tied to a functional programming style [37]. It
does, however, use the object-oriented paradigm to encap-
sulate state inside operators with a set of functions that

61

are never executed concurrently. As a result, state access
is guaranteed to be sequential and limited to the scope of
the functional set of the operator class. Scala unifies func-
tional and imperative programming but does so to rather
shorten the code to be written rather than to address the
multi-core challenge. Actors are Scala’s main concept to
address coarse-grained parallelism but it lacks a concept to
map it onto the different programming styles and leads to
heavily cluttered code [21]. Dataflow languages such as Lus-
tre [20] and Lucid [47] derive the dataflow graph from the
program but do not unify functional and imperative pro-
gramming. To the best of our knowledge, no approach ex-
ists that implicitly derives a dataflow graph from a func-
tional program where each of the functions is programmed
imperatively with attached state.

Functional languages like Haskell can support implicit par-
allelism, but the degree at which it operates is typically
too fine-grained for our needs [23]. Haskell falls back to
explicit language constructs to enable coarse-grained paral-
lelism [33]. Manticore relies on message-passing to achieve
similar functionality [18]. Dataflow languages, just as the
dataflow monad of Haskell, target fine-grained data par-
allelism. This is also the case for StreamIt [45], an ex-
plicit data streaming framework that targets special hard-
ware such as GPUs to perform computations in a massively
parallel fashion, and pH [1], a completely implicit parallel
language that uses the execution model of Id [35] and the
syntax of Haskell to address special non-von-Neumann ar-
chitectures. In contrast, Cilk [8] defines again abstractions
to separate the data dependencies of imperative C/C++
programs into tasks. Ohua notably differs from other pro-
gramming models by separating the concern of parallelism
from the program. The programming model allows to derive
parallelism implicitly from the program.

Recent work on regulating the degree of parallelism fo-
cuses especially on loops. DoPE also build explicit dataflow
graphs and allows to define the degree of parallelism inde-
pendent from the program to adapt to different architec-
tures [38]. However, DoPE does not define a concept to es-
sentially decrease the degree of parallelism below the number
of tasks. Similarly, feedback-directed pipeline parallelism
(FDP) builds explicit dataflow graphs (pipelines) but intro-
duces no concept to reduce the degree of parallelism below
the number of operators [42]. FDP concludes that the op-
erator with the highest processing time should be assigned
the most resources. Ohua makes the opposite observation
especially for I/O blocked operators. Manticore [19] uses the
concept of continuations to allow multiple fibers to be exe-
cuted on the same thread. Yet, the assignment of fibers to
threads is specified explicitly in the source code at compile-
time. Scala provides support for continuation via a react

operation. The task of the reacting actor is executed on the
sending thread and the developer must decide at compile-
time whether a thread-based receive or an event-based re-

act is appropriate. Ohua’s sections concept provides maxi-
mum flexibility to adjust the degree of parallelism to differ-
ent architectures separated from the program.

7. FUTURE WORK
In this paper we introduced the main concepts and ideas

of the stateful functional programming model and its im-
plementation in Ohua. In the following, we highlight three
extensions that we intend to target as future work to em-

phasize the potential of SFP to exploit multi- and many-core
architectures.

SFP for scalable systems design.
In order to investigate the scalability of our program-

ming model beyond a web server, we will turn towards more
complex systems. Interestingly, the popular map/reduce
(MR) [13] programming model, which enables implicit data-
parallel programming on a cluster of commodity machines,
also shares many commonalities with FBP. Processing hap-
pens in map and reduce phases, which are executed as tasks
on small chunks of the data. The main structure of MR
task processing, expressed as a dataflow in Ohua, is shown
in Listing 15.

Listing 15: Dataflow in the Map-Reduce programming model

1 ; map task
2 (ohua (−> read-dfs parse-chunk map sort

serialize compress store-disk))
3

4 ; reduce task
5 (ohua (−> fetch-map-results deserialize merge

reduce serialize compress store-dfs))

In comparison, the implementation of the map and re-
duce task drivers in Hadoop [3] respectively take ∼1,800 and
∼3,000 lines of Java code with algorithm and functionality
mixed within the same classes.

Loops vs. higher-order functions.
Most complex systems contain a substantial amount of

loops. We are well aware of the great deal of research that
has been conducted for loop parallelism. However, most
of these approaches require loop operations to be state-
less. Even more so, they often parallelize loops that are
only present in the code because the concept of higher-order
functions was missing. Higher-order functions are to declar-
ative languages what loops are to imperative languages [39].
Hence, the investigation of loop parallelism in SFP must be
accompanied with the introduction of higher-order functions
into the declarative functional part. This will increase op-
portunities for data parallelism via programming level con-
cepts rather than concurrency abstractions.

Automatic scheduling and section configuration.
Finally, a large portion of our future work will focus on

runtime optimizations. In current systems, the adaptation
to the hardware is rather limited often only to the configu-
ration of a thread count. Our section-mappings allow for a
much more powerful and flexible adaptation of the program
to the underlying infrastructure. Since manually defining
sections for very large programs does not scale, automatic
section configuration will be the first goal that we address.
In a later step, we will turn towards configuring the sections
dynamically at runtime to adapt to changes in the load of the
system. Furthermore, due to the explicit nature of threads
the presence of a scheduler is often missing. Scheduling of-
ten relies either on the JVM or on the operating system
that both have very little knowledge on the executing pro-
gram. The newly introduced fork-join framework and its
work-stealing scheduler are first steps into the right direc-
tion [30]. However, the success of this model on the JVM
may be limited because it breaks computations, and there-
with also data, apart into many small pieces. This either has

62

a strong impact on object creation and garbage collection re-
spectively or requires developers to highly optimize the way
in which input data is split and results are joined [12]. The
presence of a scheduler in Ohua programs allows for far more
research on scheduling algorithms in many different appli-
cation domains.

8. CONCLUSION
The stateful functional programming model is a promis-

ing approach to develop concurrent and parallel applications
for the new generation of multi-/many-cores architectures.
Ohua is a programming framework and runtime system that
goes beyond existing dataflow engines by supporting implicit
parallelism. An application is composed of two parts: the
actual functionality developed as a set of functions in an
object-oriented language with a rich ecosystem (Java) and
the algorithms written in a functional language that natu-
rally fits the dataflow model (Clojure). Ohua derives the
dataflow graph from the algorithm at compile time, and
schedules the execution of groups of operators (sections) on
parallel threads at runtime. The partitioning of operators
into sections is key to scalability as it allows to control the
granularity of concurrency and parallelism.

Ohua does not only provide a safe approach to devel-
oping correct concurrent applications, but it also supports
highly-efficient implementations. We showed that a web
server developed on the basis of simple sequential code per-
forms better than the hand-optimized Jetty implementation
in terms of throughput and competitively in terms of la-
tency on a multi-core architecture, while being also energy-
efficient. The more general insight gained from our evalua-
tion: Ohua uses blocking calls in combination with threads
to achieve asynchronous I/O while Jetty’s highest perform-
ing implementation uses NIO. Our results give rise to the
assumption that event-based programming via Java’s NIO
framework does not directly translate into more scalable sys-
tems than thread-based asynchronous I/O. A focused study
on I/O models in Java has to show the universality of this
assumption.

Acknowledgements
This work has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under the
ParaDIME Project (GA no. 318693).

9. REFERENCES
[1] Implicit Parallel Programming in pH. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA,
2001.

[2] U. A. Acar, A. Charguéraud, and M. Rainey. Oracle
scheduling: Controlling granularity in implicitly
parallel languages. OOPSLA ’11. ACM.

[3] Apache. Hadoop. http://hadoop.apache.org/.

[4] J. Armstrong. The development of erlang. ICFP, 1997.

[5] Arvind and D. E. Culler. Annual review of computer
science vol. 1, 1986. chapter Dataflow architectures.
Annual Reviews Inc., Palo Alto, CA, USA, 1986.

[6] M. Beck and K. Pingali. From control flow to
dataflow. ICPP ’90, 1990.

[7] C. Bienia and K. Li. Characteristics of workloads
using the pipeline programming model. ISCA’10,
Berlin, Heidelberg, 2012. Springer-Verlag.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. PPOPP ’95.

[9] Z. Budimlić, M. Burke, V. Cavé, K. Knobe,
G. Lowney, R. Newton, J. Palsberg, D. Peixotto,
V. Sarkar, F. Schlimbach, and S. Tasirlar. Concurrent
collections. Sci. Program., 18(3-4):203–217, Aug. 2010.

[10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A.
Shah. Telegraphcq: continuous dataflow processing.
SIGMOD, 2003.

[11] L. Dagum and R. Menon. Openmp: An
industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng., 5(1):46–55,
Jan. 1998.

[12] M. De Wael, S. Marr, and T. Van Cutsem. Fork/join
parallelism in the wild: Documenting patterns and
anti-patterns in java programs using the fork/join
framework. PPPJ ’14, New York, NY, USA, 2014.
ACM.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. OSDI’04, Berkeley,
CA, USA, 2004. USENIX Association.

[14] J. Dennis. A parallel program execution model
supporting modular software construction. MPPM ’97.
IEEE Computer Society.

[15] J. B. Dennis. Data flow supercomputers. Computer,
1980.

[16] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens,
K. B. Kumar, and M. Muralikrishna. Gamma - a high
performance dataflow database machine. VLDB, 1986.

[17] K. Elmeleegy, A. Chanda, A. L. Cox, and
W. Zwaenepoel. Lazy asynchronous i/o for
event-driven servers. ATEC ’04, Berkeley, CA, USA,
2004. USENIX Association.

[18] M. Fluet, M. Rainey, J. Reppy, and A. Shaw.
Implicitly-threaded parallelism in manticore. ICFP
’08, New York, NY, USA, 2008. ACM.

[19] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao.
Manticore: A heterogeneous parallel language. DAMP
’07. ACM, 2007.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language
lustre. Proceedings of the IEEE, 1991.

[21] P. Haller and M. Odersky. Scala actors: Unifying
thread-based and event-based programming. Theor.
Comput. Sci., 2009.

[22] R. H. Halstead, Jr. Multilisp: a language for
concurrent symbolic computation. ACM Trans.
Program. Lang. Syst., 1985.

[23] T. Harris and S. Singh. Feedback directed implicit
parallelism. ICFP ’07. ACM.

[24] J. He, P. Wadler, and P. Trinder. Typecasting actors:
From akka to takka. SCALA ’14, New York, NY,
USA, 2014. ACM.

[25] R. Hickey. The clojure programming language. DLS
’08. ACM.

[26] G. Huet. The zipper. J. Funct. Program.,
7(5):549–554, Sept. 1997.

[27] N. Hunt, P. S. Sandhu, and L. Ceze. Characterizing

63

the performance and energy efficiency of lock-free data
structures. INTERACT ’11. IEEE.

[28] IBM. Infosphere datastage data flow and job design.
http://www.redbooks.ibm.com/, July 2008.

[29] J. Launchbury and S. L. Peyton Jones. Lazy
functional state threads. PLDI ’94.

[30] D. Lea. A java fork/join framework. JAVA ’00, New
York, NY, USA, 2000. ACM.

[31] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Trans. Comput., 36(1), Jan. 1987.

[32] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. SOSP, 2005.

[33] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and
P. Trinder. Seq no more: Better strategies for parallel
haskell. Haskell ’10. ACM, 2010.

[34] J. P. Morrison. Flow-Based Programming. Nostrand
Reinhold, 1994.

[35] R. S. Nikhil. Id language reference manual.
Laboratory for Computer Science, MIT, July 1991.

[36] S. Okur and D. Dig. How do developers use parallel
libraries? FSE ’12. ACM.

[37] V. Pankratius, F. Schmidt, and G. Garretón.
Combining functional and imperative programming
for multicore software: An empirical study evaluating
scala and java. ICSE ’12, Piscataway, NJ, USA, 2012.
IEEE Press.

[38] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I.
August. Parallelism orchestration using dope: The
degree of parallelism executive. PLDI ’11. ACM.

[39] P. V. Roy and S. Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press,
Cambridge, MA, USA, 2004.

[40] A. Sb̂ırlea, Y. Zou, Z. Budimĺıc, J. Cong, and
V. Sarkar. Mapping a data-flow programming model
onto heterogeneous platforms. LCTES ’12. ACM.

[41] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek.
Streamflex: High-throughput stream programming in
java. OOPSLA ’07, New York, NY, USA, 2007. ACM.

[42] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N.
Patt. Feedback-directed pipeline parallelism. PACT
’10. ACM, 2010.

[43] S. Tasharofi, P. Dinges, and R. Johnson. Why do scala
developers mix the actor model with other
concurrency models? ECOOP ’13.

[44] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff,
F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson,
J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, and A. Agarwal. The raw
microprocessor: A computational fabric for software
circuits and general-purpose programs. IEEE Micro,
22(2):25–35, Mar. 2002.

[45] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
Streamit: A language for streaming applications. CC,
2002.

[46] A. Vishnu, S. Song, A. Marquez, K. Barker,
D. Kerbyson, K. Cameron, and P. Balaji. Designing
energy efficient communication runtime systems for
data centric programming models. GreenCom’10,
2010.

[47] W. W. Wadge and E. A. Ashcroft. Lucid, the
Dataflow Programming Language. Academic Press
Professional, Inc., San Diego, CA, USA, 1985.

[48] M. Welsh, D. Culler, and E. Brewer. Seda: an
architecture for well-conditioned, scalable internet
services. SOSP, 2001.

64

