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ABSTRACT

Processor architectures have reached a physical boundary that prevents scaling performance with
the number of transistors. Effectively, this means that the sequential programs of the past will
not gain performance boosts from new processor designs any more as they used to. Since single-
core performance does not scale anymore, new processor architectures now host several cores.
In order to speedup execution with these multiple cores, a program needs to run in parallel.
Ideally, a compiler could parallelize a program automatically and optimize it for a given multi-core
architecture. But most prevalent programming languages encourage the developer to use state
in order to avoid recomputations and make programs fast. Keeping track of state references is
impossible in general and prevents compilers from parallelizing code automatically. The programer
must manually transform its algorithm into a parallel version by leveraging concurrency constructs,
such as threads and locks. Writing correct, i.e., data race free and deadlock free, concurrent code
is hard. As such, parallel programming models often discard the state aspect.

In this thesis, we propose the stateful functional programming (SFP) model. A program in our
model consists of two abstractions an alogrithm and functions. We say that an algorithm defines
the composition of functions. A function may operate on its own private state where each call-site
of the function has a state assigned to it at runtime. This state is required to be private such that
the associated compiler can automatically parallelize algorithms without introducing data races.

The programming model is inspired by the well-known dataflow execution model which serves as
the state-of-the-art for parallelizing data management systems and signal processing applications
on embedded system. As such, our SFP compiler translates algorithms into dataflow graphs
to provide dataflow parallelism implicitly to programs in the domain of server-based back-end
infrastructures and data processing systems. In support of that, this thesis establishes the idea
of stateful functional programming in the context of a server. The dataflow representation of the
program allows us to study different well-known server designs and select the appropriate option
with respect to a target metric, i.e., throughput, latency or energy-efficiency. To further evolve
our SFP model, we study it as a part of a big data execution engine. The results show that
the associated compiler and runtime system can introduce parallelism into parts that are current
execution bottlenecks.

In the second part of the thesis, we argue that our compiler and dataflow-based runtime can also
solve problems that are directly connected to a parallel execution. In the context of large back-end
infrastructures with lots of I/O, we show that our compiler can optimize I/O without requiring
any code changes. This is possible because SFP algorithms adhere to a functional programming
paradigm and as such directly translate into expressions of the lambda calculus. Our compiler
uses the lambda calculus as its high-level intermediate representation (IR) and lowers expressions
into the dataflow representation. This allows us to define (most of) the I/O optimizations as
transformations on lambda expression and prove that they preserve the semantics of the program.
In the context of highly-available server programs that need to evolve without down times, we define
an algorithm for non-blocking live updates. Our dataflow-based runtime representation makes the
communication in the program explicit and identifies side-effects to state. This information is the
foundation to streamline change requests into the data stream that not only update a single node
but whole parts of the graph. The algorithm thereby makes sure that the system transitions from
one consistent state into another without requiring additional synchronization.

To present interesting directions for future research, we analyze the applicability of our SFP
model to the domain of data management systems, including database engines, data streaming
engines and database applications.
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1 INTRODUCTION

In 2004, Herb Sutter declared that the “Free lunch is over”: sequential programs will not gain
better performance from new processor generations [206]. Before 2004, developers could expect a
program performance increase by a factor of two from one processor generation to the next. This
expectation was derived straight from Moore’s law that predicts the transistor count on a die to
double every generation [162]. Phrased differently, the die size for the same amount of transistors
shrinks by 50%. Interestingly, already in 1965 when Moore developed his law, he saw the physical
boundary that would end the free lunch: “Will it be possible to remove the heat generated by
tens of thousands of components in a single silicon chip?” The heat problem eventually translates
into a physical boundary which prevents a processor to scale its performance with the number of
transistors [31]. To circumvent this boundary, processor architects designed multi-core processors
where a single chip hosts more than one core that can operate in parallel. This is known as the
dawn of the multi/many-core era. In order to benefit from the multiple cores, the program must
provide opportunities to execute parts of it independently at the same time, i.e., in parallel. This
property of a program, called concurrency, is what Sutter proclaims to be the most fundamental
revolution in software since object-oriented programming.

Figure 1.1 plots the scaling trends of CPUs up to the year 2014 using data from the CPU
database [56]. Moore’s law still holds: the transistor count on a die still doubles every genera-
tion. And certainly, processor architects found tricks in order to also improve the performance
of sequential programs. But these improvements are not comparable with the ones encountered
in previous generations. Indicators for that are the stagnation in clock frequency and power con-
sumption around 2004. The rise of multi-cores and the hyper-threading technology (also referred
to as hardware threads) starting around 2006 demand concurrent programs.

1.1 CONCURRENCY DOES NOT COME FOR FREE!

Writing concurrent programs is hard and best left to experts but multi-core architectures force
developers to become experts in concurrent programming. Concurrency is not an invention that
was triggered by multi-cores. The concept is much older and was primarily used to unblock
computation from I/O, such as a disk read or a call over the network. It was best left to operating
system, database or high-performance server experts. Multi-cores made concurrency a necessary
requirement for every program that wishes to improve performance. But a long time ago, the
industry decided to write programs relying on the program counter imperative (von-Neumann
style architectures) instead of (the mathematical notion of) functions [20]. In the advent of multi-
cores, this decision became a boomerang. The main benefit of a functional program is referential
transparency which guarantees the same result no matter how often the program runs. The
same accounts for its parts and allows a compiler to decompose the program into parts that
can execute in parallel, i.e., turning a sequential into a concurrent program. In general, this is
not possible for imperative programs because their very essence is based on the modification of
variables that reference memory cells. An imperative program may declare access to the same
variable in different parts of the code. A runtime system that executes these parts concurrently

9
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Figure 1.1: Scaling trends of CPUs

introduces non-deterministic results that violate the correctness of the program [138]. Concurrent
code parts that access the same variable are said to race for the data it references [167]. A program
with such code parts is said to contain data races. In general, detecting data races is known to
be an NP-hard problem which prevents a compiler to transform an imperative sequential program
into a parallel one. The programmer needs to perform this transformation manually in the code.

The plots in Figure 1.2 give an idea of how challenging this transformation is for the program-
mer. Both plots relate the concurrency in a program to the speedup it gets from multi-cores and
show the speedup curves for programs with a different portion of concurrent code. The left plot
shows the theoretical speedups with respect to Amdahl’s law [8]. The curves in the right plot
follow Gustafson’s law [97]. The main take-away in both of these plots is that the code needs to
be highly concurrent in order to fully benefit from the available cores. Phrased differently, the
goal for the developer must be to minimize the sequential portion of the code. For example, in
the plot following Amdahl’s law the code with a concurrent portion of 95% is twice as fast as one
with only 90%. Finding these 5% is often extremely challenging, especially in a program that is
already concurrent. The plot following Gustaffson’s law similarly emphasizes this fact. The more
cores are available the greater is the speedup difference between the curves. For example, if the
parallel-executing portion of the code remains only 50% then the program will not be scale larger
workloads. It will be bottlenecked by the sequential half of the code. As a result, the programmer
has to squeeze as much concurrency(/parallelism) out of its algorithms as possible without break-
ing their semantics. This may even require to replace an algorithm with another one that may be
less efficient when executed sequentially but exposes more concurrency.

Crafting concurrent algorithms is tough and even more so implementing them without concurrency-
related bugs [180]. Contrary to this believe, a recent study of code quality in open source projects
on github relates only 1.99% of all bugs to concurrency [190]. But previous studies directly targeted
concurrency-related issues to give more insight into the characteristics of concurrency bugs [152].
They report that concurrency issues are extremely complicated and often require a substantial
amount of time to get fixed. Often the associated patches are either not correct or introduce new
concurrency bugs. A study of concurrency bugs in the MySQL database server application found
that some issues required more than a year to fix [82]. The mean time to a fix was on average more
than 3.5 months. This is presumably much more time than what is spent on fixing other types of
bugs. In fact, all these studies acknowledge that concurrency bugs are underrepresented in the bug
databases. This is due to the following facts: Concurrency bugs are often classified as Heisenbugs
due to their non-deterministic behavior [95, 165]. This makes them hard to reproduce and as
such developers often do not report them if they do not manifest during a rerun of the regression
tests. Furthermore, concurrency bugs are often architecture dependent. As such, a test case for a
concurrency issue may fail on one machine but not on the other. Finally, if a developer gets lucky
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Figure 1.2: The need for concurrency.

enough to have a test case that reproduces the bug then debugging tools and instrumentation often
make the bug disappear again.

As a result, in order to make programs scale with the new multi-core hardware, the programming
model and the associated compiler needs to assist the programmer in preventing or detecting these
bugs [100]. Such a concurrent programming model must enforce a deterministic computation unless
the programmer explicitly requests non-determinism [29, 143]. The problem with most prevalent
concurrent programming models is that they work the other way around.

1.2 THE LANDSCAPE OF CONCURRENT AND PARAL-
LEL PROGRAMMING

A concurrent programming model that prevents concurrency bugs (such as data races and dead-
locks) ideally accompanies a compiler that optimizes the program’s parallel execution. Sadly, many
concurrent programming models offer only limited safety guarantees and very restricted automatic
optimizations. I use this dissertation to review at least the most important current state-of-the-art
in concurrent (and often also referred to as parallel) programming visualized in Figure 1.3. I start
with what can be considered the fundamental abstractions that a developer can use to introduce
concurrency into its program. Afterwards, I study higher-level programming models that are based
on these abstractions and offer some safety guarantees as well as optimizations. I conclude my
review with an evaluation of parallel programming aspects and a set of programming models that
successfully applied them to hide all concurrency aspects from the programmer. This review should
help the reader to get the big picture of parallel programming challenges and opportunities, classify
new innovations in this field and understand the contributions made in this thesis.

1.2.1 Concurrency Building Blocks

We start off with the most basic abstractions that are exposed by the operating system to user-level
programs. As an application example, we use the server program of a simple key-value store that
provides a cache to increase the scalability of large backend infrastructures[170]. Requests either
read content from, load content into or update already present content in the key-value store.
Internet companies such as Google, Facebook and Amazon, apply key-value stores to hot spots in
their systems with a very high load of requests [19]. To scale these bottlenecks, they have to take
advantage of multi-cores and process requests in parallel.

1.2 The Landscape of Concurrent and Parallel Programming 11
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Figure 1.3: Concurrency abstractions, synchronization mechanisms, parallel programming model-
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Processes and Message-Passing The most basic abstraction to execute a piece of code is
a process. Two processes can communicate with each other via sockets, i.e., the programming
model assumes a distributed shared nothing memory model. The corresponding message-passing
interface (MPI) seeks to standardize the ways in which processes may communicate with each
other. MPI was primarily used for high-performance computing across the nodes in a cluster.1
But at the beginning of this century, big data companies joint the field of cluster computing
and developed more efficient programming models. The most prominent one is the Map-Reduce
programming model [59]. Map-Reduce is simple enough to allow even non-expert programmers
to deploy and execute their algorithms across the nodes in a cluster. As a result, more and
more algorithms moved out of the HPC community and became mainstream. Current frameworks
such Spark [231] and Flink [35] execute complex analytical tasks on data. Frameworks such as
TensorFlow provide efficient neural network implementations for machine learning applications [2].
The HPC community is currently shifting to these frameworks or builds similar frameworks on their
own [9, 150]. And although MPI is becoming obsolete, the idea of communicating via messages is
fundamental to high-level approaches such as actors that we review below. The main disadvantage
of message-passing is the cost for inter-process communication. Data must be serialized before it
can be sent via a socket and the receiver has to deserialize before processing it. Serialization and
its inverse operation are costly.

Threads and Locks The costly data transfer between processes might be the reason why the
most prominent abstraction for concurrent programming on multi-cores is a thread. On the op-
erating system level, a thread shares its address space with the other threads of a program. The
threads can use this shared address space to communicate directly without serialization overhead.
Multi-cores further optimize the communication between two threads on the same processor. In-
stead of paying the cost for a memory access, the receiving thread is likely to find the sent data in
one of the on-chip caches. But this optimization comes at a high cost. Two threads accessing the
same memory address may create a data race. The developer has to be aware of such situations and
prevent concurrent (i.e., racy) data access via locks. However, locks introduce two new challenges
for the programmer. In its simplest form, a lock can be considered a mutually exclusive resource,
i.e., it can only be used by a single thread at a time. As such, a lock-based algorithm must solve
the problem of the dining philosophers posed by Dijkstra to his students in the mid 70s and later
formulated by Hoare [66, 118]. When two threads try to acquire the same lock then one of them
has to wait. If the other thread never returns the lock because of a bug in the code or because the
thread has encountered an error, then the other threads waits forever, i.e., the program deadlocks.
For example, consider this simple code of a thread that updates the value stored in the internal
hash map of our key-value store that is shared with other threads in the program:2

1 value = sharedHashMap.get(key);
2 value.lock();
3 updatedValue = update(value);
4 sharedHashMap.put(key, updatedValue);
5 value.unlock();

1https://www.mpi-forum.org/
2The code snippets are Java-based and refer to functions of the java.util.concurrent library. But the dis-

cussed aspects can be found in most of the major programming languages such as C/C++ etc.
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If the update function fails then the lock is never released. The programmer has to be aware of
these aspects and write the code accordingly:

1 value = sharedHashMap.get(key);
2 value.lock();
3 try {
4 updatedValue = update(value);
5 sharedHashMap.put(key, updatedValue);
6 } finally {
7 value.unlock();
8 }

If the algorithm for acquiring the lock is biased for some reason and always favors one of the
threads which continuously asks for the lock, then the other threads starve. This is also called a
life-lock. Luckily, life-locks are (for most of the cases) taken care of by the experts implementing
the locks [113]. The developer has to “only” find the data races in the algorithm, remove them
using locks and make sure that the resulting algorithm can not deadlock. This is already hard for
very simple code with a single lock [144]. It becomes even harder when the program contains more
than one lock because locks do not compose. That means, locks prevent a major aspect of software
design: code modularity. For example, assume the implementation of the shared hash map would
implement the locking:

1 value = sharedHashMap.get(key); // acquires a lock on the value
2 if (check(value)) {
3 updatedValue = update(value);
4 sharedHashMap.put(key, updatedValue); // releases the lock on the value
5 } else {
6 // deadlock
7 }

If two threads execute this code and request the same key then the system deadlocks when the
check fails because the acquired lock is not returned.

Transactional Memory One way to solve this composability program is to rely on atomic
operations. Atomic operations are supposed to reduce the number of locks in a program. Among
these, compare-and-swap instructions allow to implement lock-free and wait-free data structures
and algorithms [111]. They were exposed as library calls to the programmer:

1 currentValue = sharedHashMap.putIfAbsent(key, newValue);

But they are not powerful enough to allow our simple hash map example to update an existing
value. For more coarse-grained atomic operations, researchers brought the concept of a transaction
from databases to concurrent programs [94]:

1 atomic { // transactional code block
2 value = sharedHashMap.remove(key);
3 if (check(value)) {
4 updatedValue = update(value);
5 // transferring a shared value into another shared data structure
6 anotherSharedHashMap.put(key, updatedValue)
7 } else {
8 // no deadlock
9 }

10 }

1.2 The Landscape of Concurrent and Parallel Programming 13



The atomic block declares a memory transaction across all the variables that the code reads from
or writes to. The semantics follow only three of the four transactional (ACID) properties defined
for database systems: atomicity, consistency and isolation [98]. Durability is not required for data
residing in memory. Since the announcement of Intel in 2004 that the next generation of processors
are going to be multi-cores, transactional memory (TM) was probably one of the most thought after
research fields in concurrent programming. TM comes in two flavor: as transactions in hardware
(HTM) [112] and in software (STM) [196]. Hardware transactions can only be very small because
the implementation uses the on-chip memory (L1–L3 caches) instead of main memory [65, 104].
HTM support was not available in commodity processors up until Intel released its TSX extension
to the x86 instruction set in 2012/13 3.

Therefore, research focused primarily on STM. Software transactional memory was originally
proposed to the community of functional programming. Functional languages do not mutate data
in place because this would violate referential transparency. Instead data is immutable and every
alteration creates a new copy. Immutable data makes it easy to implement isolation, i.e., each
transaction operates on its own snapshot of the data [133]. Therefore, it comes as no surprise that
the first STM was implemented in Haskell [67]. Since functional languages were abandoned by the
industry in the middle of the 20th century, a lot of research went into the idea of bringing this
concept into imperative languages. But STM incurs a quite substantial runtime overhead [36, 181].
And although there is evidence that STM can be efficient and scalable with respect to the number
of available cores, it is no silver bullet for concurrent programming [69]. A study of concurrency
bugs revealed that only about one third of the bugs would benefit from transactional memory [152].
Furthermore, Transactions are by their very nature speculative, i.e., the programming model hopes
that conflicts are rare. The larger a transaction the more likely it is to have conflicts. As a result,
one of the conflicting transactions needs to be aborted and retried in which case parallelism turns
into wasted cycles, i.e., inefficiency [64]. An efficient STM implementation (for some workloads)
is complex. This might be the reason why almost 14 years after the first STM appeared, it is
hard to find a stable and efficient implementation.4 Two other conceptual limitations might have
hindered the adoption of (S)TM too. A transaction needs to be able to roll back its changes and
as such it can not perform any irreversible I/O actions (side-effects). More fundamentally, TM
does not remove the non-determinism created by the data races from the algorithm (and neither
do locks) [144]. The developer has to be aware of that.

Tasks and Work-Stealing With threads and locks (or TM) at hand, we can now create con-
current algorithms. As an example, we now integrate the above code into our key-value store. To
execute requests in parallel, the code for (update) requests must be assigned to different threads.
The developer may therefore write the following code:

1 kvUpdater = () -> { // a (lambda) function that processes a request
2 var key = keyQueue.poll();
3 // use "key" to update "sharedHashMap"
4 }
5

6 for(int i=0;i<numWorkers;i++) // starting the request handlers
7 new Thread(kvUpdater).start();
8

9 while(true){
10 var key = acceptAndParse();
11 keyQueue.add(key);
12 }

This version starts a configurable number of workers (numWorkers) that perform the updates. The
threads are preallocated and do not change throughout the computation. The implementation
needs another concurrent data structure (keyQueue) in order to communicate the keys to be up-
dated to worker threads. If, at any point in execution, the number of incoming requests exceeds
the number of workers then latencies increase and throughput drops. In order to scale the number
of workers with the number of incoming requests, the developer has to spawn a new thread per
request:

3https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
4Haskell and Clojure provide stable STM implementations due to the above mentioned benefits of functional

languages. But there also exist STM implementations for imperative languages such C/C++ and Rust.
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1 while(true) {
2 var key = acceptAndParse();
3 var kvUpdater = () -> {
4 // use "key" to update "sharedHashMap"
5 }
6 new Thread(kvUpdater).start();
7 }

In this version, each request has to pay the additional cost of spawning a thread. In the other
version, each request had to pay the additional cost for accessing the concurrent keyQueue data
structure. To make an appropriate decision, the developer has to know the load of the server
before-hand and understand the efficiency of the concurrent queue implementation.

In order to release the developer from these decisions, Cilk was the first approach that lifted
the scheduling abstractions from the operating system right into the programming model [28].
Cilk achieved that in two ways: First, the task abstraction allows the programmer to express its
algorithm implicitly as a directed acyclic graph. The original Cilk pre-processor turned these tasks
into closures such that the runtime system could understand the data dependencies that had to
be satisfied before a task could execute. Second, it provided a work-stealing scheduler which is up
until today considered state-of-the-art for workloads with limited compile-time knowledge. The
key-value store implementation would then spawn tasks instead of threads:

1 var acceptAndParseFn = () -> {
2 // accept next connection and parse request
3 };
4

5 while(true){
6 // caveat: this task is only here to show how "spawn" works
7 cont String key; // continuation
8 spawn(acceptAndParse, key);
9

10 var updateFn = () -> {
11 // use "key" to update "sharedHashMap"
12 };
13 new Task(updateFn).fork();
14 }

The original Cilk programming model was build on top of the concept of continuations and used
continuation-passing style. Since continuations are not available in many languages, such as for
example Java, this aspect of the programming model did not become mainstream. To nevertheless
provide tasks and work-stealing, the Java implementation makes synchronization explicit again:

1 var key = spawn(acceptAndParse);
2

3 var spawn = (func) -> {
4 var task = new Task(func);
5 task.fork();
6 var result = task.join();
7 return result;
8 };

A task is submitted to the scheduler via fork and synchronization on the result is done by calling
join. This call blocks until the task is done and the result is available. For this reason, it is known
as the fork/join programming model [142]. The work-stealing scheduler now efficiently adapts
the program to the existing workload [84]. When a task is submitted to the scheduler, it gets
enqueue into a thread-local work queue. As such, if there is no heavy load then the task may be
executed by the same thread that enqueued the task without additional costs for thread creation
and inter-thread communication. When tasks queue up in the local work queue then other idle
worker threads start to steal tasks from the back of the queue. This programming and execution
model underpins many higher-level concepts.

1.2 The Landscape of Concurrent and Parallel Programming 15
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Figure 1.4: Concurrent variables and their semantics. The semantics for LVars are inarguably
more sophisticated than the diagram suggests. It is only meant to give the reader an idea of the
intuition behind them.

1.2.2 Concurrency Abstractions

The abstractions that we study next are meant to further remove scheduling and concurrency
aspects from the language to enable an easy composition of concurrent programs.

Concurrent Variables It is challenging to compose concurrent data structures that are race-free
and do not jeopardize the determinism of the program that uses them. An approach to simplify this
task is to construct the data structure from variables that guarantee these properties. Figure 1.4
depicts the semantics for the concurrent variables that we review next.

Consider again the task-based programming model. Cilk used a pre-processor to integrate it
into the programming language C. The functions in Cilk are essentially C functions and can do
whatever C allows them to do. As such, the updateFn can access the sharedHashMap which is
shared among all the tasks executing this function. That is, the updateFn code still needs to be
protected with locks or transactional memory. The main take-away is that Cilk’s programming
model in combination with C does not provide any deterministic guarantees. Neither does Java’s
fork/join framework. A deterministic execution can only be guaranteed if the programming model
prevents mutable data.

IStructures are variables that can only be written to once. Concurrent attempts to write a
value to the variable trigger an error at runtime. Once set, the value never changes again. This
prevents non-determinism from this basic operation because the value is defined by exactly one
writer and every reader witnesses the same value. IStructures were introduced in the parallel
language Id [18]. Haskell implements IVars and the task-based programming model including the
work-stealing scheduler in its Par monad [157]. The most important part in this implementation is
the spawn function because it communicates the result of a task to another one. The original Cilk
programming model used a continuation-passing style. Monad Par uses an IVar to reference the
result of a concurrent computation. Semantically, retrieving the value from an IVar blocks until
the value was set. The continuation of the computation is then defined by the first function that
requests this value in order to make progress.

IStructures also got introduced into mainstream imperative languages such Java. In Java, they
are called futures [227]. In monad Par, the IVars are tightly integrated into the work-stealing
scheduler. A call to get either returns the result or traps into the scheduler to schedule the task
that computes the result. This is possible because Haskell and especially the implementation of
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monad Par can use the concept of continuations. A continuation can be considered the rest of the
code that executes once the get call returns. The initial design of futures introduced continuations
into the Jikes Research VM from IBM. At the time of this writing, continuations are not yet part
of any production-level JVM. So the current implementation of futures in the JVM had to fall
back on lock-based synchronization.

MStructures, in Haskell implemented as MVars, have slightly different semantics that guarantee
race-freedom but sacrifice determinism [23, 182]. Instead of the get method, the MVar provides
a take/fetch function. If the variable is “empty”, i.e., nothing was stored yet, the computation
blocks (semantically). Assigning a value to an MVar that hosts already a value will fail the program.
When a value is available, it is returned and the variable is set back to an “empty” state such that
a new value can be stored. Hence, only a single task can acquire the result. Which of the tasks
is not defined, i.e., non-deterministic. This increases the efficiency of algorithms because it reuses
already allocated memory but trades determinism.

LVars preserve determinism for concurrent data structures that are monotonically increasing
with respect to a lattice [135]. The get call for LVars requires the developer to specify a threshold
set which defines when the call is allowed return the value. Until this threshold set is satisfied,
i.e., present in the current data structure, the call blocks. Finding these threshold sets for data
structures is hard and may not even be possible. So, only a limited number of data structures
fulfills can be based on LVars and implementing them correctly is non-trivial.

The work on MVars and LVars was primarily conducted in the functional programming lan-
guage community to provide low-level building blocks for concurrent data structures. Researchers
in the imperative programming language community instead crafted highly optimized versions of
the most common data structures using lock-free and wait-free synchronization [113]. For the
composition of multiple data structures, transactional memory is their favored solution.

Concurrent I/O Promises are futures that perform (network) I/O and as such have to deal with
the associated class of errors, ultimately reporting them back to the caller [149]. I/O is particularly
important in server-based systems because their very essence is to receive client requests over the
network, store data to or retrieve it from disk and send a response. Since I/O blocks computation,
a programming model for such applications must enable efficient I/O. A future is spawned only
when all its input variables are available but it can not wait for the completion of an I/O call. The
same accounts for tasks even in the original design of Cilk. In order to do so, the programming
model needs support from the operating system (OS). The OS needs to signal an (I/O) event to
the application when an I/O operation completes and the result is available. The programming
model that exhibits this OS callback is then called event-driven.5 Event-driven programs associate
events with so called event-handlers, i.e., tasks that depend on I/O input. Normally, event handlers
execute sequentially but library approaches exist that allow them to run concurrently [232]. This
spawned a long debate on whether thread-based or event-driven programming is better [174, 219],
although both are dual to each other semantically [140].

On a more fundamental level, event-driven programming has severe implications on the struc-
ture of the program. Without the OS support for events, an I/O operation blocks the execution.
The thread gets put into a wait queue of the according I/O device driver. On the other hand,
event-driven programming is non-blocking. All I/O calls return immediately and the programmer
has to register an event handler that performs the rest of the computation when the I/O opera-
tion completed. Essentially, an event-driven program is a (big) event dispatch of I/O events to
handlers. The fundamental problem that arises is coined stack ripping [5]. Consider for example
a straight-forward blocking version of our server application:

1 handleRequest = (cnn) -> {
2 var req = read(cnn);
3 var key = parse(req);
4 var newVal = update(key, sharedHashMap);
5 respond(newVal, cnn);
6 }

All variables in the code remain on the stack. But in the event-driven version of the code, this is
not possible anymore:6

5One often finds the similar term event-based programming.
6I only sketch Java NIO here to keep the listings concise.
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1 // manual stack management
2 Map<Socket, Object> newVals = new HashMap<>();
3

4 handleEvent = (event) -> {
5 switch(event) {
6 case ACCEPT:
7 var serverSocket = event.channel();
8 var cnn = accept(socketSocket);
9 register(READ, cnn);

10 break;
11 case READ:
12 var cnn = event.channel();
13 var req = read(cnn);
14 var key = parse(req);
15 newVal = update(key);
16 newVals.put(cnn, newVal);
17 register(WRITE, cnn);
18 break;
19 case WRITE:
20 var cnn = event.channel();
21 var newVal = newVals.remove(cnn);
22 respond(newVal, cnn);
23 break;
24 }
25 }

The developer has to push the variables from the stack to the heap in order to make them available
to the event handler executing the rest of the computation. As such, the developer manually
manages the stack. In our example, this accounts only for the variable newVal but gets worse when
we need to perform even more I/O to store our key-value map on disk. To solve this problem, a fiber
is a lightweight thread that gets scheduled cooperatively with other fibers on a single OS thread.
When the executed code performs an I/O call then the fiber creates a continuation for the rest
of the computation that captures all the variables, i.e., it creates a closure. It then automatically
performs the non-blocking I/O call and returns control to the scheduler. When the I/O event
occurs it executes the associated closure. To the developer, this looks like a blocking call and
preserves the sequential structure of the code that is easy to understand. However, as mentioned
before, continuations are not yet supported in mainstream languages such as Java [200].7 C++
only recently introduced coroutines that are best known from the functional language Scheme and
also build on continuations [108].8 The programmer may use coroutines to implement fibers (and
generators).

On the server-side, I/O programming models are classified either as blocking or non-blocking.
In turn, client-side programs for graphical user interfaces refer to these programming models as
synchronous and asynchronous. Most prominently, C# and F# have support for asynchronous
programming built into their language [208, 172]. These are Microsoft’s very own languages to
create desktop applications. The essential goal is the same as on the server-side: unblock compu-
tation from I/O. JavaScript’s most prominent event-driven framework, node.js has realized this
and can be used for both, client- and server-side programming.9

Composition These concurrency abstractions must be easily composable to write concise con-
current programs, but this is especially problematic in imperative languages. A task (to compute
the value of a future) gets triggered when all its input arguments are available. As such, one
could see the activation of a task as a single event triggered by the arrival of its arguments. The
event-driven programming model essentially applies functions (tasks) to more than one event. This
(potentially infinite) sequence of events is referred to as a stream. So, in both programming models,
composition must be defined on these abstractions, futures and streams. This is challenging for
most imperative languages. For example, Twitter decided to base its backend infrastructure on
the concept of Scala’s futures [71]. And while this was very successful in terms of concurrency,
the code still became hard to follow. Consider the following code taken from the online tutorial of
Scala’s futures:10

7Java has Project Loom that targets to bring fibers and continuations to the JVM:
https://openjdk.java.net/projects/loom/.

8At the time of this writing, documentation on the coroutines that C++ provides is very rare.
9https://nodejs.org

10https://docs.scala-lang.org/overviews/core/futures.html
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Figure 1.5: Types of parallelism in a dataflow graph.

1 Future {
2 session.getRecentPosts
3 } andThen {
4 case Success(posts) => alreadyRetrievedPosts ++ posts
5 } andThen {
6 case Success(allPosts) => for (post <- allposts) render(post)
7 }

The code first retrieves the recent posts (from a social network) and then adds them to the already
retrieved ones. Afterwards, it renders all the posts and returns them. The andThen function
composes two futures to execute in order. On a more formal note, a Future<T> is essentially a
type that wraps another type T. Without going into further detail, this gives rise to a category
theoretical treat where the type Future<T> would define a functor and a monad respectively [224].
The andThen operation is the monadic bind (>>=) that expresses composition. As such, Haskell’s
Par monad does not suffer from this overly cluttered code structure:

1 do
2 posts <- spawn $ getRecentPosts session
3 allposts <- spawn $ alreadyRetrievedPosts ++ posts
4 renderedPosts <- forM allposts render
5 return renderedPosts

This do notation is common to Haskell developers working with monads and nothing specific to
the monad Par implementation. The Haskell compiler “desugars” the expression in do notation
into Haskell’s version of the above code.11 Programming with event streams and signals, that is
known as Reactive (functional) programming, faces the very same challenge. It allows a program
to interface with many I/O sources and often lifts normal functions on values into the realm of
streams [21]. However, monads allow composing functions for single events, i.e., normal one-
shot calls, but not for continuous invocations over streams. To provide composition, reactive
programming relies on a more general concept known as arrows [121] and leverages a similar do-
notation.

1.2.3 Aspects of Parallel Programming Models

In all of these approaches, tasks, futures, events, streams, etc. the program structure that arises is
a directed acyclic graph (DAG), called a dataflow graph.12 The vertices of the graph are functions
and the edges in the graph define the exchange of data in between them. That is, the inverse of
an edge in the graph defines a data dependency. A dataflow graph has two important properties
for parallel programming. At first, non-deterministic behavior is explicit in the graph as a so
called non-deterministic merge node [17]. All other nodes in the graph behave deterministically.
Second, concurrency is explicit in the graph. Taking the data dependencies into account, we
distinguish the three types of parallelism(/concurrency) depicted in Figure 1.5. When two nodes
that execute the same function f on different data items then we classify them as data parallel
(Figure 1.5a). For the case where the dataflow graph processes more than one data item (i.e.,
streams of events), two data-dependent nodes f and g can execute in pipeline-parallel (Figure 1.5b).
Function g is applied to the result of f at the same time when f computes the result using the next
item. Two nodes that apply different functions f and g independently expose task-level parallelism
(Figure 1.5c). A dataflow graph is often derived from a higher-level specification or programming
model.

11In order to define a monad, one must first define a functor. In order to define a functor one needs higher-
kinded types. Most imperative and even functional languages miss this feature.

12A dataflow graph may very well accommodate cycles but I will concentrate on acyclic graphs for the purpose
of this overview.
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Data Parallelism The most prominent model for data parallel programming is Map/Reduce.
The functions map and reduce are two well-known higher-order functions from the domain of func-
tional languages [120]. Researchers at Google understood their benefits and exposed them in a
programming model for big data that made writing data parallel programs for a cluster easy [59].
In the meantime, both functions are included in the standard libraries of most mainstream pro-
gramming languages such as Java:

Haskell Java (Declarative) Java (Imperative)
list.stream() var results = new ArrayList();

map f list .map(f) for(var elem : list)
.collect(Collectors.asList()); results.add(f(elem));

The map function applies f :: a -> b to each element of a list and stores the results in the
same order in a new list. Since f must be free of side-effects, the computations are guaranteed to
be independent of each other and may be executed in (data-)parallel. Instead of a result list, the
reduce function folds the list to a single value:

Haskell Java (Declarative) Java (Imperative)
foldl g initialValue list.stream() var result = initialValue;

list .reduce(initialValue, g); for(var elem : list)
result = g(result, elem);

In general, a folding operation is strictly sequential because the result of the previous computation
is input to the next [201]. But when g has type g :: a -> a -> a and is additionally associative
and commutative then it is possible to partition the list into non-overlapping pairs and apply g
to each of them in parallel. The resulting list of values can again be folded the same way until
only a single value remains. Mainstream programming languages such as Java and C++ do not
offer any help at compile-time to detect whether g really is commutative. As a result, several
Map/Reduce algorithms deployed in production suffer from non-deterministic behavior [230]. Par-
allel implementations of map and reduce exist in Java (based on futures) and C/C++ to speed up
programs on multi-cores [203, 188] and even GPUs [109]. OpenMP’s parallel loops mainly concern
the imperative implementations of the two functions [54, 147]. Polyhedral compilation can even
optimize loop nests towards an efficient parallel execution [30].

Pipeline Parallelism Data parallelism is relatively easy to extract because it appears naturally
in a program in the form of a special type of loop. In order to extract pipeline parallelism, the
structure of the loop body, i.e., the function f, must expose a (dataflow graph) pipeline. Ideally, the
compiler analyzes f and extracts the pipeline but adding this to the compilers of the mainstream
languages is challenging. Domain-specific programming models and compilers for signal processing,
such as StreamIt, Gramps and Halide, support this analysis [211, 204, 185]. It is not surprising that
pipeline parallelism is not yet integrated into mainstream languages due to the fact that a pipeline
may not always provide a speedup as is the case for data parallelism. The maximum speedup of a
pipeline does not depend exclusively on the number of the pipeline stages. For that the pipeline
must be balanced, i.e., all stages require (nearly) the same amount of time to process a signal.
Furthermore, the more signals flow through the pipeline, the closer is the actual speedup to the
maximum, i.e., the number of stages. Approaches in the domain of high-performance servers exist
that were able to exploit the inherent pipeline in HTTP request processing to increase throughput
performance [228]. Big data systems such as the key-value store Cassandra use this pipelined server
architecture to manage high load situations [136].

Task-level Parallelism Programs using the task-based programming model and futures build
dynamic dataflow graphs that expose task-level parallelism naturally. They often underpin higher-
level parallel abstractions such as the map function in monad Par. But it is not only the work-
stealing scheduler that appeals to task-based dataflow programming. Similar approaches show that
a dataflow-based runtime abstraction for a stateful program can remove the bottleneck of stop-the-
world garbage collection on multi-cores [87]. Actor-based programming is similar but assumes a
distributed system as its execution model where actors exchange data via messages [114, 7]. Similar
to a task, an actor needs input data to perform its computation. A task has a dedicated successor
task that eventually provides this input data. Instead, an actor has a mailbox where it may receive
messages (, i.e., input data,) from arbitrary actors in the system. This is why an actor does not
only perform a single computation but it essentially loops over the messages in its mailbox forever.
If there is no message available it blocks until the next one arrives. Actors are primarily geared
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towards distributed system where actors frequently join and leave the system due to machine or
transmission failures. To support this flexibility, each mailbox has an address and actors can
lookup other actors via this address. The dataflow graph of the actors in the system dynamically
changes at runtime and is therefore hard to optimize. For this reason, Erlang, the most prominent
implementation of fault-tolerant actors, targeted highly distributed applications for Ericsson, a
telecommunications provider [15]. Akka is a famous actor library for the Scala language that runs
on the JVM13 and aspires to be a true alternative for highly concurrent systems. For that it needs to
remove the message-passing overhead that is inherent in the underlying fully distributed execution
model in favor of a shared memory communication. This has a severe implication: Actors can be
stateful, i.e., have side-effects to a specific memory region, over the course of processing messages.
In order to preserve the strong encapsulation of state of the actor model, an implementation needs
to make sure that an actor can not leak state via its messages. This is again challenging because
compile-time-enforced state encapsulation requires a more evolved type system than mainstream
languages provide [199, 141]. Once the actor implementation is based on such a rigid type system,
each actor may have its own heap which in turn makes garbage collection concurrent and an actor
program fast [49, 50]. Note that this insight drawn from the work on actors, applies on a more
abstract level to all programming models that translate a program into a dataflow graph (with
stateful nodes).

Safe Concurrency To guarantee a data race free execution of a dataflow graph, there are
essentially two options. Either the runtime system copies all the data that flows along the arcs
in the graph or the type system detects shared data at compile-time. More generally, parallel
programming is safe if either runtime data is immutable or the type system solves the alias problem
which is known to be undecidable via static analysis (for languages supporting conditionals, loops,
etc.) [139, 186]. Pure functional languages such as Haskell fall into the first category and pay the
price of copying data. For a long time, there were no serious candidates in the second category
up until the programming language Rust appeared. Rust incorporates an ownership type system
which prevents the developer from sharing mutable data [128]. This type system is strong enough
to provide the compiler with the information it needs to compute the memory layout at compile-
time removing the need for garbage collection at runtime. A related field is linear types which
was discovered a long time ago but only recently was successfully implemented into a version of
the Haskell compiler GHC [222, 25]. Linear types also prevent the sharing of data and as such
allow computations on mutable data (outside of Haskell’s I/O monad). Connecting linear types to
a concrete parallel programming model is a very interesting ongoing research topic.

Implicit Parallel Programming Languages Languages that are safe for parallel program-
ming and provide the according abstractions to the programmer that a compiler can harvest all
the above types of parallelism are rare. Algorithmic skeletons are a library of patterns and abstrac-
tions (among them map and reduce) for side-effect-free parallel programs but do not provide any
safety guarantees [51]. Rust provides ownership types but requires the developer to spawn threads
that communicate via typed channels. Haskell is a safe language and used to execute programs
in parallel by default. But research has shown that blindly parallelizing all concurrency in the
program does more harm than good [103]. As a consequence of this observation, the GHC(/RTS)
executes programs now sequentially and provides various higher-level concepts to introduce par-
allelism [156, 157]. pH was a parallel dialect of Haskell that was directly targetting dataflow
machines. Sadly, it vanished when the interest in these machines disappeared but many of its con-
cepts, such as for example IStructures and MStructures, finally found their way into mainstream
parallel programming.

When it comes to successfully exploiting the inherent concurrency of a program, the most suc-
cessful languages are the ones that extract a dataflow for execution. There are mainly two types
of languages that achieve this: visual languages and declarative languages [126]. Visual languages
allow the developer to draw the dataflow graph in a visual user interface. The nodes are either
predefined or can be implemented in other mainstream languages such as Java or C/C++ (as
such safety suffers again). This approach was very successful in the domain of signal processing
and in tools for integrating data into a data warehouse [32, 57]. When the data is in the data
warehouse then the database engine translates SQL queries eventually into dataflow graphs. This
is the pre-dominant standard for a database system implementation that exploits all above types
of data parallelism [93]. The completely declarative nature of the standard query language (SQL)
removes all of these aspects such that the programmer only needs to be a business analysts. The
programming and execution model was extended in order to accommodate queries over continu-
ously arriving data, i.e., data streams [40]. At the time of this writing, the state-of-the-art systems

13Java Virtual Machine

1.2 The Landscape of Concurrent and Parallel Programming 21



for data processing of continuously-arriving (online) and resident (offline) data compile their query
down into a dataflow graph and deploy them across clusters of machines. But the programming
models are still very restricted to common SQL constructs that have been studied excessively
for parallelism. User-defined functions (/nodes) are generally a bottleneck because the database
engines do not have the additional knowledge they need to optimize their execution. But these
functions become more and more important because database engines need to crunch more and
more semi- or even un-structured data coming from the web or the internet of things (IoT). This
seems to be the language challenge for future database systems.

1.3 CONTRIBUTIONS AND THESIS STRUCTURE

The list of concurrent and parallel programming abstractions is large and it is hard for a program-
mer to pick the right ones for a given algorithm. The work in this thesis has the goal to remove
some parts of this decision from the developer. We started from the observation that dataflow
is the abstraction of choice for a highly parallel execution and addressed problems that are hard
to solve with existing parallel programming models. In particular, we contribute to the following
fields of (implicit) parallel programming:

Programming highly-concurrent servers [76] (Chapter 2) We remove the need of the pro-
grammer to manually construct the dataflow graph and suggest to combine functional and
imperative programming. This programming model, which we termed stateful functional
programming (SFP), allows the compiler to extract the dataflow graph from the server algo-
rithm(/code). The benefits are a concise algorithm definition without concurrency abstrac-
tions and a compiler and runtime system that can be exploited to find the most efficient
mapping of operators to threads with respect to I/O.

Fine-grained pipeline parallelism for big data engines [72] (Chapter 3) We then extend
our SFP model with a higher-order function to implicitly exploit pipeline parallelism and
show the benefits in the design of big data processing engines: The complex code inside
these engines gets more structured and therewith better maintainable. Our evaluation in the
Hadoop Map/Reduce system supports our claim that the extracted pipeline parallelism can
speed up parts that previously only executed sequentially.

I/O optimizations for micro-services [77] (Chapter 4) We present a compiler framework
for SFP that implements semantic preserving transformations to minimize the I/O oper-
ations of a program without any addition to the SFP model. The programmer writes simple
code with blocking I/O calls and leaves the batching, deduplication and parallelism entirely
to the compiler. We demonstrate the effectiveness of this approach in the domain of micro-
services where network I/O is the dominating source for latency bottlenecks.

Non-blocking live updates for highly concurrent servers [75] (Chapter 5) One major ben-
efit of decomposing a large server application into small micro-services is the possibility to
efficiently update software while it is running. Live updating a program is generally hard,
especially when it executes in parallel. We contribute an algorithm that is based on the
abstraction of a dataflow graph to enable live updates even for highly concurrent and heavily
loaded server applications. We make the point that a parallel programming language that
compiles down to a dataflow execution model can provide efficient live updates with very
little effort.

We conclude in Chapter 6 with an outlook on future research directions for our stateful functional
programming model.

This is a publication-oriented dissertation and as such each chapter was previously published
in a peer-reviewed workshop or conference. At the beginning of each chapter I provide the ref-
erence to the corresponding publication. Small paragraphs at the beginning and the end of each
chapter position the addressed challenges and the contributions in the context of implicit parallel
programming for server-based systems.
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2 OHUA: IMPLICIT
DATAFLOW PROGRAMMING
FOR CONCURRENT
SYSTEMS

Prelude This section covers the paper with the same title co-authored by Christof
Fetzer and Pascal Felber that I presented at the International Conference for Principles
and Practices of Programming on the Java Platform in 2015 [76]. Our work presents
the core ideas of the stateful functional programming model, i.e., the construction of a
dataflow graph from an algorithm that composes (stateful) functions.

2.1 INTRODUCTION

Context and motivations The radical switch from ever-faster processors to multi-core archi-
tectures one decade ago has had a major impact on developers, as they suddenly had to learn
developing concurrent applications that are able to harness these new parallel processing capa-
bilities. Doing so in a way that is both safe and efficient is, however, a challenging task. While
pessimistic concurrency control strategies like coarse-grained locks are simple to use and easy to
prove correct, they severely limit scalability as large portions of the code are serialized. In contrast,
fine-grained locking or lock-free algorithms provide better potential for parallelism but are complex
to master as one has to deal with concurrency hazards like race conditions, deadlocks, livelocks,
or priority inversion. It is therefore desirable to shield as much as possible the developer from the
intrinsic challenges of concurrency by providing adequate abstractions in programming languages.

We can distinguish two types of programming language support to create parallelism: control
structures and abstractions. Imperative programming languages such as C, C++, Java, and even
newer functional languages like Manticore [80], expose control structures, e.g., threads and pro-
cesses, to allow the programmer to explicitly schedule and execute code in parallel. In addition,
the concepts of locks and barriers provide mechanisms to orchestrate the threaded execution: the
programmer explicitly forks threads and controls their interactions with shared data. On the other
hand, programming languages such as Erlang [14], Scala [101], MultiLisp [102] or Cilk [28] do not
expose full control of parallel execution to the developer but rather provide abstractions such as
actors, message passing, futures, tasks, parallel loops or even dataflow graphs to mark code regions
that can potentially execute in parallel. Note that several popular programming languages like
C, C++, Java can also support such abstractions thanks to extensions such as OpenMP [55] or
Akka [110]. Especially on different hardware architectures such as special processors designed for
massive parallelism [210], GPUs and FPGAs, the dataflow programming and execution model has
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Figure 2.1: A taxonomy of concurrent programming approaches.

become state-of-the-art. In languages such as StreamIt [211] and Intel’s Concurrent Collections
(CnC) [33], the program is constructed out of a graph of operators. It is left to the compiler and
runtime system to exploit these hints in a parallel execution context.

Both types provide appropriate support for developing scalable concurrent programs leverag-
ing the ever increasing multi-/many-core nature of processor architectures, and there are obviously
arguments for using either: better control of parallelism vs. safety and simplicity of use. While
abstractions avoid the root cause of most concurrency problems, namely shared memory accesses,
most of them still expose the explicit constructs of threads, processes, and locks. Additionally, ab-
stractions require developers to structure their programs in a specific, often unnatural, way to en-
able parallel execution, e.g., Cilk tasks or Scala/Akka actors. Developers are now left with the deci-
sion of which approach to use, which often brings more confusion than benefits [171, 209]. Dataflow
graphs and operators similarly diverge drastically from the normal programming paradigm. The
explicit declarative nature of the dataflow graph construction does not scale to large and complex
programs and has therefore prevented this paradigm to be used in general purpose programming.
Figure 2.1 provides an overview of the current approaches to concurrent programming along the
ultimate goal: scalability (of the programming model to construct complex systems). A solution to
concurrent and parallel programming must fulfil two criteria. It is free of additions and uses solely
functions and variables as in a sequential program to release the programmer from the burden to
worry about concurrency and even parallelism and therewith enable faster construction of larger
systems. On the other hand, it exposes the concurrent nature inside the program to the compiler to
enable automatic parallel execution, (scheduling) optimizations and adaptations to newly evolving
hardware without changing the program.

Our approach In this paper, we argue for an approach based on pure implicitness requiring nei-
ther control structures nor abstractions. We propose a new programming model based on stateful
functions and the implicit construction of a dataflow graph that does not only abstract parallelism,
but also promotes reuse by structural decomposition and readability by the differentiation of al-
gorithm and functionality. Unlike with message passing and threads, this decomposition better
matches the natural flow of the program. As requesting the programmer to explicitly construct a
dataflow graph would go against our implicitness objectives and limit scalability of the program-
ming model, we instead derive the graph implicitly from a regular functional program. The key
idea is that, in functional programming, global state is omitted and the structure of a program
closely resembles a dataflow graph, with a set of functions that may maintain local state.

In Ohua, our implementation of this programming model, the actual functionality of the pro-
gram can be implemented in an imperative form in Java to tie state to functions within objects,
while Clojure’s functional programming paradigm is used to express the algorithm, and hence the
dataflow graph, in a natural way. This combination of object-oriented and functional programming
enables us to get the best of both worlds: Java for developing sophisticated functionality using a
comprehensive set of libraries and legacy code, and Clojure for the specification of algorithms from
which dataflow graphs are derived.

As an example, consider the pipeline for a simple web server depicted in Figure 2.2. With
our Ohua dataflow programming model and execution engine, the algorithm is composed in a
functional programming style in Listing 5.3.

The actual functionality for accepting incoming connections, reading the data from the socket,
parsing the request (see Listing 2.4), loading the requested file from disk, and composing and
sending the response is implemented as methods in Java classes.
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accept read parse load compose reply

Figure 2.2: A simple web server.

1 (ohua :import [com.web.server])
2

3 ; classic Lisp style
4 (ohua (reply (compose (load (parse (read (accept 80))))))
5

6 ; or using Clojure’s threading macro to improve readability
7 ; (which is transformed at compile-time into the above)
8 (ohua (-> 80 accept read parse load compose reply))

Figure 2.3: Ohua-style HTTP server algorithm in Clojure.

As a final step, Ohua links both specifications and implicitly executes the program in a pipeline
parallel fashion.

As also argued in [178], there are benefits in mixing functional and imperative programming for
concurrent programs. Languages like Scala supporting both paradigms do provide neither safety
nor guidance on when to use imperative or functional programming. We therefore strongly believe
that a clear separation between the two languages also helps the developer to differentiate between
the algorithm and its functionality. The conciseness of the functional language is instrumental
in presenting a clear perspective of the program flow and making it easier to understand, reason
about, and extend. On the other hand, the object-oriented paradigm allows the developer to share
and refine functionality easily across different implementations. More importantly it provides the
proper programming model to encapsulate state.

Contributions and roadmap After an introduction into dataflow programming in Section 2.2,
we present the core concepts of our stateful functional programming (SFP) model in Section 2.3 and
its implementation in Ohua. It encompasses a compiler that transparently derives the dataflow
graph from a declarative program written in a functional language (Clojure), while the actual
operations performed by the application are implemented in an object-oriented model (Java); and
a runtime engine and programming framework that builds upon this implicit approach to provide
seamless support for concurrent and parallel execution (Section 2.4). We use the semi-complex
real-world example of a concurrent web server to exemplify our concepts clearly. The web server
building blocks can be found at the heart of most distributed systems. Apart from concurrency,
I/O is at the core of every server design. However, the cost is yet another programming model that
is asynchronous and breaks control flow of the server into many cluttered event dispatches [70].

1 public class HTTPRequestParser {
2 // a pre-compiled regex as the associated state
3 private Pattern _p = Pattern.compile(
4 "(GET|PUT)\\s([\\.\\/\w]+)\\s(HTTP/1.[0|1])");
5

6 @Function public String[] parse(String header) {
7 Matcher matcher = _p.matcher(header).find();
8 return new String[] {
9 matcher.group(1), // request type

10 matcher.group(2), // resource reference
11 matcher.group(3) }; // HTTP version
12 }

Figure 2.4: Ohua-style parse function implementation in Java.
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Combining this I/O programming model with any of the concurrent programming abstractions
described above is even more challenging. Therefore, we provide a comparative evaluation with
the Jetty web server that ships with two implementations, for synchronous (blocking - BIO) and
asynchronous (non-blocking - NIO) I/O models respectively, and uses explicit concurrency control
managed by the programmer using threads. We study the scalability of our simple Ohua-based web
server and Jetty in terms of performance and energy-efficiency in Section 2.5. We show that the
flexibility of our runtime framework, which allows to control concurrency as well as the I/O model
without changing the code, achieves better hardware adaptation than barely increasing a thread
count. We found that the Ohua-based web server outperforms Jetty in throughput by as much as
50 % for BIO and 25 % for NIO. This gives reason to believe that NIO-based web servers on the
JVM do not scale better (at least for web server design) than implementations where asynchronous
I/O is realized with threads that block on I/O calls. We discuss related work in Section 5.8 and
give an outlook on future work (Section 2.7) before we conclude in Section 5.9.

2.2 DATAFLOW PROGRAMMING

In flow-based programming (FBP) [163, 61], an algorithm is described in a directed dataflow graph
where the edges are referred to as arcs and vertices as operators. Data travels in small packets
in FIFO order through the arcs. An operator defines one or more input and output ports. Each
input port is the target of an arc while each output port is the source of an arc. An operator
continuously retrieves data one packet at a time from its input ports and emits (intermediate)
results to its output ports. Dataflow programming therefore differs significantly from imperative
programming, which relies on control flow. While an imperative program can be translated into a
dataflow, as explained in [24], dataflow execution is naturally tied to functional programming.

In classical dataflow [16, 62], operators are fine-grained stateless instructions. In contrast,
FBP operators are small blocks of functional sequential code that are allowed to keep state. This
programming model is similar to message passing with actors, which recently gained momentum
with languages such as Scala [101]. Unlike these, however, FBP cleanly differentiates between
functionality, such as parsing a request, and the algorithm, such as serving web pages. An operator
makes no assumptions nor possesses any knowledge about its upstream (preceding) or downstream
(succeeding) neighbors. Therewith, operators are context-free and highly reusable. Finally, an FBP
program defines the communication between operators, which translates into data dependencies,
via arcs at compile-time rather than at runtime. This approach avoids concurrent state access
problems and allows for an implicit parallel race-free program execution.

A strong benefit of this program representation is the simple graph structure, which enables
reasoning about parallelism, concurrency, and synchronization without the need to analyze the
entire source code. Ohua exploits this property in order to move decisions about parallel execution
from compile-time to deployment and even runtime. Although the programming model allows for
coarse-grained implicit parallelism with a minimum granularity of an operator, it does not impose
any constraints on the mapping of operators to execution units.

(Data)flow-based programming can be found at the core of most advanced data processing
systems. In such systems, concurrent processing is key for scalability, and the dataflow approach
provides seamless support for exploiting multi-core and parallel architectures. For example, IBM’s
DataStage [123] products are state-of-the-art systems for data integration that are purely based
on the FBP concepts. Many algorithms for database systems [63] and data stream processing [40]
are also expressed as directed graph structures. The declarative design of network protocols, as
for instance in Overlog [151], are dataflow graphs by definition and even the construction of some
highly scalable web servers [229] finds its roots in FBP principles. The data dependency graphs
underlying the dataflow programming model can be found as compile-time program representation
in most parallel languages, such as Manticore [4] and Cilk [28]. These graphs contain the necessary
information to derive runtime task execution constraints and avoid data races; they are therefore
instrumental in designing scalable concurrent programs for multi-/many-core architectures.
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Figure 2.5: Overview of Ohua.

2.3 STATEFUL FUNCTIONAL PROGRAMMING IN OHUA

The approach of Ohua is to enable parallel execution while retaining the structure and style of
a sequential program. In order to achieve this goal, Ohua marries functional and object-oriented
programming under the clear structure of FBP. While functionality is provided in an object-
oriented form in Java, the algorithm is defined in the Clojure functional language. Clojure is a
natural fit in Ohua because it is JVM-based and it exposes a powerful macro system to extend the
language [115]. Figure 2.5 depicts the internals of Ohua. Functions and algorithms are provided by
the developer. In the first step, functions are linked to the algorithm. Thereafter, Ohua performs
dataflow detection on the functional algorithm. The extracted dataflow graph is compiled and
finally transformed into its runtime representation.

All of these steps are executed in the ohua macro during Clojure compilation of the algorithm.
The macro generates code that preserves compile-time insights such as restrictions on parallelism
(see Section 2.4.2) and executes the dataflow graph in the execution engine. The section-mapping
algorithm is the extension point of our runtime framework related to parallelism. It is responsible
for breaking the dataflow graph into execution units. This shifts parallelism concerns from compile-
time to runtime and thereby provides the opportunity to adapt programs to different deployment
contexts. We present more details on the execution model in Section 2.4, after first focusing on
the programming model and compilation aspects.

2.3.1 From Operators to Stateful Functions

In SFP each operator encapsulates a single function tagged with the @Function annotation.1 The
defining class can be thought of as a tuple consisting of the function and the associated operator
state as such we refer to them as stateful functions2. In the following, we highlight the difference
in the programming model for typical FBP operators of streaming systems like StreamIt [211]. We
use StreamFlex [198] for comparison as it is also written in Java. As depicted in Listing 2.6a of
Figure 2.6, a typical operator design encompasses explicit control on the abstraction of channels
(or arcs) for receiving input and emitting results. The developer has to deal with problems such as
unavailability of input data, buffering of partial input and fully loaded outgoing channels. For more
advanced operators this requires the implementation of a state machine. Instead SFP resembles
the natural implementation of a function. This code may either be implemented in Java or in
Clojure (Listings 2.6b and 2.6c of Figure 2.6). The latter uses the :gen-class library to generate
a Java class from the functional code. It not only allows to define stateless functions in a functional
manner but also enables to leverage Clojure libraries naturally.

1Note that there may be many other functions in the class, but for reasons of clarity in this paper only one
must be tagged with this annotation.

2For the remainder of the paper, we use the term operator for nodes in the dataflow graph for historical rea-
sons and mean stateful functions in terms of the programming model.
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1 class FileLoad extends Filter {
2

3 Channel<String> in, out;
4

5 void work() {
6 // explicit channel control
7 String resource = in.take();
8 String contents = null;
9 // load file data from disk (omitted)

10 out.put(contents); }}

(a) StreamFlex filter

1 class FileLoad {
2 @Function
3 String load(String resource) {
4 String content = null;
5 // load data from disk (omitted)
6 return content; }}

(b) SF implemented in Java

1 (ns com.server.FileLoad
2 (:gen-class :methods
3 [[^{Function} load [String] String]]))
4

5 (defn -load [this resource]
6 (slurp resource))

(c) SF implemented in Clojure.

Figure 2.6: StreamFlex dataflow operators/filters vs. Ohua functions implemented in Java and
Clojure for file loading.

In a strict sense, functions in SFP resemble the idea of lazy functional state threads [141] based
on the concept of monads. Such threads represent state transformers that are never executed
concurrently (on the same state). As such they can be described as a pure function on the state
itself. State transformers allow programmers to describe a stateful computation in the context of
a functional program, which is normally stateless. The rationale behind the concept of a state
transformer is to encapsulate the state in such a way that the computation appears stateless to
all other components/functions in the system. This closely maps to FBP’s notion of context-
insensitivity for operators that we mentioned above. Although the Java type system does not
support strong encapsulation of state, i.e., state can potentially leak to the “outside world”, Ohua
ensures that functions never return any reference to their state. This is achieved by static byte code
analysis of the function implementation at compile-time to detect escaping references. A detailed
introduction of the related concepts and algorithms is outside the scope of this paper. Therewith,
stateful functions provide strong encapsulation and allow reasoning about an algorithm in a purely
functional manner, with all its benefits such as referential transparency and the potential to execute
functions in parallel.

2.3.2 Algorithms

The role of algorithms in SFP is to provide an untangled view on the system, free of implementation
details. Listings 2.7a and 2.7b in Figure 2.7 compare the explicit construction of the web server
flow graph in StreamFlex with the algorithm declaration in Ohua. This explicit construction
clearly limits the scalability of the programming model while the construction of an algorithm is
a natural fit for any developer. The resulting dataflow graphs as presented in Figure 2.7 show
that StreamFlex solely knows arcs, i.e. compound dependencies among operators, while the SFP
algorithm defines fine-grained data dependencies. These enable the compiler to clearly understand
the dataflow on the algorithm level to increase safety and optimize the parallel execution. Instead
the compiler in Ohua derives this knowledge automatically. Note that algorithms in turn can
be composed out of other algorithms and therefore Ohua also supports defining algorithms as
functions. This allows for a clear structure as known from any other programming language.

Algorithms are also type-agnostic. While types are instrumental for program verification at
compile-time, they also add to code verbosity and complexity. SFP algorithms are intentionally
written in a non-typed manner, yet without sacrificing the benefits of a statically typed compilation.
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1 public class WebServer extends StreamFlexGraph {
2

3 Filter a, r, p, l, c, rep;
4

5 public WebServer() {
6 // explicit dataflow graph
7 // construction
8 a = makeFilter(Accept.class);
9 r = makeFilter(Read.class);

10 p = makeFilter(Parse.class);
11 l = makeFilter(Load.class);
12 c = makeFilter(Compose.class);
13 rep = makeFilter(Reply.class);
14 connect(a, r);
15 connect(r, p);
16 connect(p, l);
17 connect(l, c);
18 connect(c, rep);
19 validate(); }
20

21 public void start() {
22 new Synthetizer(accept).start();
23 super.start(); }}

(a) StreamFlex graphs

1 (defn start [port]
2 (ohua
3 ; most "explicit"/fine-grained data
4 ; dependency matching
5 (let [[cnn req] (read (accept port))]
6 (let [[_ resource _] (parse req)]
7 (let [[content length]
8 (load resource)]
9 (reply cnn

10 (compose length)
11 content))))))

(b) Ohua algorithm

a r p l c r
cnn req

cnn
resource length header

content

port

(c) Derived dataflow graph from the Ohua algorithm in Listing 2.7b.

a r p l c r

(d) The StreamFlex dataflow graph from Listing 2.7a
.

Figure 2.7: StreamFlex dataflow graph construction vs. Ohua algorithm design.

All type information is kept with the functionality, i.e., the Java code implementing the stateful
functions. Hence, although type information is not present in the Clojure algorithms, it can be
exploited on the Java side to support type-based compilation of the dataflow graph in future work.
Algorithms are constructed from the core Lisp concepts, excluding mechanisms for concurrency
control and parallelism such as agents, software transactional memory, or parallel maps. We see
SFP as an addition to these approaches and provide more details for their integration in Section 2.4.
The graph construction happens solely on the basis of the Clojure algorithm while its operational
semantics strictly adhere to those of normal Clojure functions (for any single data packet).

2.3.3 Dataflow Graph Extraction

The Ohua compiler follows the return values and references to locals, and respectively translates
them into data dependencies and arcs of the dataflow graph. Algorithm 1 gives a high-level
overview of our dataflow graph extraction algorithm. Input to the algorithm is code written in
Clojure, which consists of stateful function invocations, control constructs such as conditionals or
loops, environment variables such as the server port 80 in Listing 5.3, and finally a set of explicit
data dependencies represented by locals. The result(s) of a function can either be direct (implicit)
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Algorithm 1: Dataflow Graph Extraction Algorithm
Data: A := (F, C := {if, loop, recur}, V,D) a Clojure algorithm represented as a tree composed of

functions that are either linked stateful functions F or represent control structures C, a set
of environment variables V and a set of explicit dependencies D.

1 z := zipper(A) ; // functional zipper [119]
2 while z := z.next() do // depth first traversal
3 f := z.node();
4 if z.up() 6= ∅ then
5 // For simplicity we assume the simple case where no control structure is the root.
6 create-operator(f);
7 else
8 t := z.up().leftmost().node();
9 if f ∈ F then

10 create-operator(f);
11 create-dependency(f .id, t.id);
12 else if f = if then
13 s := create-operator(’cond’);
14 f .id := s.id;
15 m := create-operator(’merge’);
16 Turn condition into executable and attach to s;
17 create-dependency(m.id, t.id);
18 else if f = loop then
19 create-operator(’merge’);
20 create-dependency(f .id, t.id);
21 else if f = recur then
22 l := Find the next loop statement in z.path;
23 create-dependency(f .id, l.id);
24 else if f ∈ V then
25 register-env-var(f .node()); // see Section 2.4.2
26 else if f ∈ D then
27 create-dependency(f .origin.id, t.id);
28 end
29 end
30 end

input to another function or assigned to a so-called local in Clojure. Locals differ from variables
in that they are immutable. This is also true for locals in a Ohua algorithm for any single data
packet. Locals allow us to decompose the result of a function and input portions of it to different
functions. This process, called destructuring, provides explicit fine-grained control over the data
dependencies. For example, Listing 2.7b provides the most explicit implementation of the server
algorithm, which translates into the dataflow graph of Figure 2.7.

Clojure is a homoiconic language and therewith represents code just as its internal data struc-
tures, e.g., lists, vectors, symbols. As such a Clojure program resembles a tree structure. In
Figure 2.8 we depict a variant of our simple web server algorithm that destructures the results
of parse to assign them to locals socket and res-ref. The former is passed to send while the
reference to the requested resource is input to load. Before the graph extraction algorithm is
executed, our compiler does a first pass over the code and assigns each function a unique identifier.
Locals are assigned the same identifier as the function whose results they bind.

For simplicity Algorithm 1 omits advanced concepts of formal and actual schema matching, but
focuses on the central idea of the tree traversal and creation of dependencies from lower-level nodes
to their direct parent (Lines 9–11). If the algorithm encounters a local, it creates a data dependency
from the local’s origin to the function it is input to (Lines 26–27). Environment variables are
registered as static input of a function invocation and are important when the argument list for
the call is created (Lines 24–25).

Conditionals are special cases of functions that result in the creation of two functions (Lines 12–
17). The cond function evaluates the condition and dispatches the current packet to either one of
its two outputs representing the if and else branches. Note the translation of control flow into
dataflow at this point. Both branches are represented in the code as input to the if, as seen in
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Figure 2.8: Tree representation of the server algorithm in Clojure.

accept nb-read-
concat

parse load compose reply

merge condnb-
read

Figure 2.9: recur statements translate into feedback-edges.

Listing 2.12, but we insert here an additional merge operator as target of the results from both
branches. The algorithm then attaches the identifier of the merge to the if node in the code tree
(Line 17).

Finally, loops in Clojure are composed by combining two special forms: loop and recur. The
loop function takes a binding vector with input to the loop and the code of the loop body to be
executed. Inside this loop body, a new iteration of the loop is initiated once a recur invocation
was reached. As a result, loops always incorporate an additional if invocation to implement the
loop condition with the recursion and exit point. Our algorithm already supports conditions and
therefore all that is required is another merge to handle newly entering packets (Lines 18–20) and
iterations whenever a recur node is encountered (Lines 21–23). Listing 2.10 declares a version of
the web server that implements a non-blocking read on the accepted connections via a loop.

Note the implementation of the non-blocking read functions in Listing 2.11. It uses inheritance
to share the code for reading data and extending it by concatenating the already read data to the
current data read.

2.3.4 Linking

After the graph has been created, the function calls are linked to their respective targets across
operators. Linking is implemented by importing the namespace where the functions to be used are
defined (see the first line in Listing 5.3). Internally, the linker loads all Java classes and inspects
them to look for functions with the @Function annotation. If a class defines such a function, a

1 (ohua
2 (reply (compose (load (parse
3 (loop [[read-data cnn] (nb-read (accept 80))]
4 ; stop on blank line
5 (if (.endsWith read-data "\n\n")
6 [read-data cnn]
7 (recur (nb-read-concat cnn read-data))))))))

Figure 2.10: Loop statement to implement non-blocking reads.
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1 class NonBlockingRead {
2 private ByteBuffer b = ByteBuffer.allocate(90);
3

4 @Function
5 Object[] nbRead(SocketChannel cnn) {
6 cnn.configureBlocking(false);
7 int count = cnn.read(b);
8 b.flip();
9 String data = Charset.defaultCharset().decode(b);

10 return new Object[]{ data, cnn };
11 }
12 }
13

14 class NBReadConcat extends NonBlockingRead {
15

16 @Function
17 Object[] nbReadConcat(SocketChannel cnn, String read) {
18 return new Object[]{ read + super.nbRead(cnn)[0], cnn };
19 }
20 }

Figure 2.11: Non-blocking read with two functions.
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reply
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Figure 2.12: Data parallelism opportunity via conditionals.

reference is stored under the signature of the tagged function in the function library. The compiler
subsequently looks up functions in the function library when performing the dataflow compilation.

2.3.5 Opportunities for Data Parallelism

While the dataflow programming model naturally maps to pipeline parallelism, the Clojure lan-
guage also introduces data parallelism into the dataflow. There are two special forms in the Clojure
language that implicitly introduce parallel branches into the graph: if and let. Listing 2.13 uses
a condition on the request type to implement file storage as in restful services, i.e., using the HTTP
POST and GET operations. The resulting dataflow graph is shown in Figure 2.12. The condition
splits the dataflow into two branches, which can be executed in parallel for different requests. The
cond operator evaluates the condition and turns the control flow decision into a dataflow decision.

1 (ohua
2 (let [[type req] (-> 80 accept read parse-header)]
3 (if (= type "GET")
4 (-> data load compose-get-re)
5 (-> data parse-post store compose-post-re))
6 reply))

Figure 2.13: Conditional statement on the resource location.
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1 (ohua
2 (let [cnn (accept 80)]
3 (|| 3 cnn (-> read parse load compose reply)))
4

5 ; macro expanded
6 (ohua
7 (let [cnn (accept 80)]
8 (let [[one two three] (balance-data cnn)]
9 (-> one read parse load compose reply)

10 (-> two read parse load compose reply)
11 (-> three read parse load compose reply)))

Figure 2.14: Load balancing via a simple macro.
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Figure 2.15: Opportunity for 3-way parallel request processing.

In the case of a let, forms inside the lexical context may not depend on data from each other and
therefore resolve to parallel branches by the definition of Algorithm 1.

Data parallelism can also be created explicitly by dedicated operators that produce data par-
allelism without breaking the semantics of the algorithm. Listing 2.14 uses a macro (||) to create
the opportunity to handle requests in a 3-way parallel fashion on the foundation of the let special
form.

Supporting such parallelism implicitly is not trivial and is left as future work, as it requires a
detailed understanding of the semantics of the pipeline. The resulting dataflow graph is presented
in Figure 2.15. It uses a balance-data operator that dispatches the incoming independent requests
among its outputs according to some predefined decision algorithm, e.g., round robin.

Note that parallelism is an orthogonal concern that is enabled by the algorithm but unleashed
via the sections-mapping at runtime. For example, an if condition always creates an opportunity
for data parallelism. It is, however, up to the section mapping to place the two branches onto
different sections (see Section 2.4).

2.4 FLEXIBLE PARALLEL EXECUTION

The dataflow graphs considered in Ohua are static as they represent the implementation of an
algorithm (coarse-grained parallelism) rather than the dynamic evolution of a data structure (fine-
grained parallelism). This point is important especially when reasoning about the graph in terms
of task granularity and scheduling. Our dataflow graphs are, however, not synchronous as I/O
operations prevent us from predicting the runtime schedule [145].

A dataflow graph is a representation that is easy to reason about even without detailed operator
knowledge. The execution engine in Ohua bases its decisions solely on operator meta data such
as I/O interactions or the number of outgoing and incoming arcs. The execution of the operator
function is strict, i.e., the function is executed only if all slots in its formal schema are filled. Note
that the merge operator is again an exception because it is executed as soon as some input is
available among any of its incoming arcs.

It would appear natural to define the granularity of parallelism on the basis of an operator.
However, the goal of Ohua is to run computations over dataflow graphs that are potentially very
large with hundreds of operators. Under these conditions the granularity of parallelism has been
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Figure 2.16: Three section mappings for the basic web server.

1 ’(["acc.*"] ["read.*" "par.*" "load.*" "com.*" "rep.*"])
2 ’(["acc.*"] ["read.*" "par.*"] ["load.*"] ["com.*" "rep.*"])

Figure 2.17: ’Acpt-req’ and ’1 I/O op/sec’ section mappings.

identified as a vital parameter as it must amortize the associated management costs [103]. The
same work points out another often neglected aspect when addressing parallel execution: I/O and
synchronized memory updates. Therefore, we require a flexible execution model that allows us
to adjust the granularity based on deployment-specific properties such as the number of cores,
the available RAM, or the attached storage. More specifically, current research on flexible run-
time mappings for parallel execution focuses on extracting as much parallelism as possible out of
pipelines in a loop body [205, 187]. In these approaches, the lowest degree of parallelism is given
by the number of operators. Ohua targets larger graphs, potentially much larger then the number
of cores available, and therefore requires the flexibility to reduce the degree of parallelism even
below the number of operators in the graph. As such the model should separate this concern to
adapt to different deployments without program change.

2.4.1 Parallelism Granularity Control

In order to provide this degree of flexibility, Ohua defines the concept of a section that spans
one or multiple operators in the dataflow graph. At runtime a section maps to a task that gets
executed on a thread by a scheduler. A section executes its operators cooperatively on that thread.
Therefore, sections execute in parallel and operators concurrently.

As shown in Listing 2.17, developers can specify different section mappings via regular expres-
sions at deployment,
thereby changing the degree of parallelism in the execution of the dataflow graph. For example,
the section mapping in Figure 2.16a decouples the tasks of accepting new connections from the
processing of requests, while the mapping in Figure 2.16b provides a finer code granularity per
section by decoupling all I/O operations of the dataflow graph. The most fine-granular mapping,
depicted in Figure 2.16c, assigns each operator to its own section. Future work extends this con-
cept to adapt the section mapping dynamically at runtime, for example to varying load situations
or other runtime statistics. Ohua requires every operator of the graph to be mapped to exactly
one section. That is, we exclude the parallel execution of an operator instance and the resulting
concurrency on its state because it would violate the FBP model.
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Figure 2.18: Resource access synchronization via sections.

1 (def registry (new java.util.HashMap))
2

3 (ohua
4 (let [[type req] (-> 80 accept read parse-header)]
5 (if (= type "GET")
6 (reply (compose-get-re (load req registry)))
7 (reply (compose-post-re (store (parse-post req) registry)))))

Figure 2.19: A variable map as a cache in Ohua.

2.4.2 Integration into Clojure Programs

Ohua is particularly adapted for pipeline parallel execution in the context of large complex systems.
Yes, not every aspect of such a system needs to be executed in a parallel fashion. Ohua also
integrates easily with normal Clojure programs, taking locals or variables as input and producing
output like any function call.

Listing 2.19 is a variation of our extended web server that handles HTTP POST and GET
requests.

Instead of storing and fetching the data to and from disk, it uses an in-memory registry. It
takes a variable referencing a map as an input to two Ohua functions. The algorithm designer is
in charge of assigning actuals in the surrounding closure to formals in the functions of the Ohua
computation. We do not place any restrictions on this assignment other than defined by Clojure
itself. The Ohua compiler detects that the registry variable is shared among the load (Line 7)
and the store (Line 9) operators. While the mapping of operators to different sections provides
a way to process requests in parallel, the converse is also true. Hence, the compiler can define
the restriction for the section-mapping algorithm to place these operators onto the same section
as in Figure 2.18. Thereby, it implicitly synchronizes access to the registry. Furthermore, we
used a Java typed variable for the following reason. The compiler can inspect the shared data
structure and place this restriction only if the type does not implement an interface from the
java.util.concurrent package. This means that the compiler can adapt the synchronization
mechanism automatically depending on the type. None of the implementation code would have
to be changed. In a sense, Ohua solves the problem of providing synchronization implicitly rather
than putting the burden onto the developer by introducing locks into the language. On the other
hand, not all shared resources are visible to the compiler. Consider the same example but instead of
sharing a memory reference both functions access the same external resource, e.g., a file. This may
not be known to the programmer as it is a configuration parameter and hence highly deployment
specific. Therefore, section mappings are only defined at deployment to adapt not only to hardware
but to additional requirements; in this case to enforce synchronization even for resource accesses
that are external to Ohua.

2.5 EVALUATION

Ohua targets coarse-grained parallelism but the granularity of tasks in typical benchmarks even for
pipeline parallelism is fine-grained [27]. Therefore, to evaluate the efficiency and overhead of Ohua,
we use our example of a simple web server, which represents an ubiquitous component in the days
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Figure 2.20: Latency and throughput measurements to find the optimal scheduling, section and
parallelism configuration for our HTTP server.

of web services and cloud computing, and we compare our implementation against the state-of-
practice Jetty web server. We focus on scalability and observe both latency and throughput, which
are the most important characteristics of a web server. Our evaluation encompasses different section
mappings, different degrees on (data) parallel transformations, application-specific optimizations
and a comparison of BIO and NIO-based web server design.

Our experiments simulate a high load situation where clients concurrently request a small file
from the web server. Initially, 10,000 files of 512 bytes each are created. We chose a rather small
file size to simulate a scenario that imposes a high load on the web server, similar to a news feed or
aggregator. In our experiments, clients continuously request one of these files uniformly at random.
This greatly eliminates the disk caching effect of the operating system. The delay between requests
of a single client is 20 ms and, if not stated otherwise, we report the mean over an execution period
of 100 s. Our test environment is a cluster of 20 nodes with 2 quad-core Intel Xeon E5405 CPUs
(i.e., 8 cores) and 8 GB of RAM. The machines are interconnected via Gigabit Ethernet and their
hard disks are attached via SATA-2. The operating system is Debian Linux (kernel 3.2.0) with
Java 1.7 installed. One node in the cluster is used for the web server while the clients are spread
evenly across the remaining 19 machines. We conduct our experiments until 1,200 concurrent
clients, at which point the Java garbage collector (GC) starts becoming a bottleneck. Although
we study the impact of the GC type on Jetty as well as Ohua to find the optimal configuration,
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a thorough investigation of GC bottlenecks for web server programs in Java is outside the scope
of this evaluation. For our energy studies we had to use a different server machine in a different
data center to get access to the energy counters of the processor. The machine composed of an
Intel Core SandyBridge processor with a single socket, 2 cores per socket and 2 hardware threads
per core, and 4 GB of RAM. The source code of Ohua3 as well as the web server4 along with
instructions for running the benchmarks are freely available.

2.5.1 Pipeline Parallelism

In order to find the optimal configuration for our Ohua-based web server (see Figure 2.2) with
respect to the exploited parallelism and scheduling overhead, we proceed from a concurrent to
a parallel execution. We start by investigating the impact of operator scheduling on the web
server performance. All functions of the algorithm are mapped to the same section to prevent
any parallelism. We evaluate the performance by changing the size of the arcs in between the
operators. Figure 2.20a shows the resulting latency and throughput graphs for sizes 1, 5, and 10.
Ohua translates an arc size of 1 into a direct function call and therewith avoids operator scheduling.
As appears clearly in the graphs, this results in improved latency and even better throughput.
When increasing the load, however, the batch-oriented processing model catches up and exhibits
similar performance characteristics. We report measurements only up the 400 concurrent clients
because a higher load already forced the server to drop requests. Based on these results, we select
the direct function call as the optimal configuration for operator execution among the sections in
the rest of our evaluation.

Next, we investigate the impact of different section mappings. In addition to the three mappings
defined in Figure 2.16c, we add the “sgl-rd-rp” (single-read-and-reply) mapping, which assigns each
network I/O function its own section and puts the functions parse, load and compose together
in a different section. Results in Figure 2.20b show that this mapping is by far the best choice in
terms of both metrics, even though it defines the same degree of parallelism as the “1-I/O-op/sec”
mapping and even less than “op/sec”.

Figure 2.22 presents detailed breakdowns to understand the reason for this odd behavior. The
graph depicts the average, minimum, and maximum processing times of each of the five web server
functions for a run of our first experiment. The log-scaled y-axis shows that outliers are the
predominant bottleneck, especially in the case of the read. While the average processing times
clearly converge to the minima, the average processing time of the read is still almost twice that of
load and compose. The parsing of the request exhibits the lowest average processing time. In our
implementation, we use the sendfile option to enables a zero copy operation for the requested
feed from disk straight to the network interface. Similarly, the processing time of the load is
comparatively low because it consists of a single disk seek operation. In contrast, interfacing
the network for sending the response exhibits the highest average processing time. We point
out again that our Ohua-based server is implemented using blocking I/O only. It represents the
most straightforward approach for the programmer and does not impose a complex or unfamiliar
programming model on the whole program as non-blocking I/O frameworks do, with one central
event dispatcher that clutters the code and makes it hard to reason about.

Finally, we study the impact of section scheduling in Figure 2.20c. Note that we define a safety
limit in the size of the inter-section arcs for the unlikely case that one of the I/O functions blocks
for a unusually long time, but this limit is not of interest with respect to our section scheduling.
Therefore, we compare two different implementations. The first one uses a concurrent non-blocking
queue while the second one uses a blocking version. The difference with respect to scheduling is that
an unsuccessful dequeue operation in the first case results in a section scheduling cycle, while in
the latter case the operation just blocks until data becomes available, thereby avoiding scheduling
overhead. The results verify the expected superior performance of the blocking version in terms of
latency. These benefits however vanish when the server is highly loaded (beyond 600 concurrent
clients) and the amount of unsuccessful dequeue operations becomes negligible. Furthermore, at
that point the lock-based nature of the queues does not scale with the number of items and starts
to yield substantial overhead in terms latency and a decrease in throughput. This illustrates the
importance of a flexible runtime system that adapts automatically to the system load in order to
improve performance. Ohua provides the functionality necessary to achieve this goal.

3https://bitbucket.org/sertel/ohua
4https://bitbucket.org/sertel/ohua-server
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Figure 2.21: Comparison of Jetty against the simple web server implemented in Ohua.

2.5.2 Data Parallelism

We next investigate the potential for processing requests in a data parallel fashion using the
balancemacro from Listing 2.14. On the basis of our previous results, we use the “sgl-rd-rp” section
mapping for each of the parallel branches, in combination with the concurrent arc implementations.
Figure 2.20d shows the results for different replication factors (as the first argument to balance).
The graphs indicate that additional parallelism does not improve performance, because it translates
into more parallel I/O operations that in turn add overheads, likely due to increased contention
on internal lock structures. Our Ohua-based web server implementation reaches the I/O boundary
here. At this point the only possible way to further improve performance would be to change
from the simple blocking I/O model to a more advanced version that would scatter read and write
operations to better interface with the network. Although Jetty makes use of all these features,
they are left to future work in Ohua.

2.5.3 Comparison with Jetty

To put our results in context with prevalent I/O programming models in current state-of-practice
Java-based web servers, we compare the best configuration of our Ohua web server against Jetty
(version 8.1.9) in Figure 2.21. In all our experiments, we ran Ohua with the concurrent-mark-
and-sweep (CMS) garbage collection (GC) algorithm to minimize the overhead on request latency.
Figure 2.21a shows that Jetty’s performance actually varies across the different garbage collectors.
For CMS, we ran the experiment twice: once configured with 30 worker threads and once with 200
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Figure 2.22: Average, minimum, and maximum processing times per request for each of the web
server functions.

(default). The results show that CMS performance does not depend on the number of threads to
be inspected.5 The lowest latency is achieved by CMS while the parallel scavenge (sc), a stop-the-
world GC implementation, provides the highest throughput. The new G1 (garbage first) collector
is not yet located in between the scavenge and the cms performance-wise, as one would actually
expect. It is on par in terms of latency with scavenge but does not achieve the same throughput
especially for lower load situations. It appears that Jetty users have to decide which property is
most important to their web sites, latency or throughput. We therefore take both GC flavors into
account in our comparison.

We ran Jetty with a thread pool size of 200 in both available modes: blocking (BIO) and
non-blocking/asynchronous (NIO). In Ohua, we selected the corresponding section mapping for
our pipeline: “acpt-req” (accept-request) and “sgl-rd-rp”. Results from BIO in Figure 2.21b show
that Jetty with CMS performs better than Ohua latency-wise. As for throughput, Ohua is the
better choice even compared to Jetty with parallel scavenge.

Results for NIO, shown in Figure 2.21c, indicate that Ohua remains superior to Jetty in terms
of throughput. The average latency overhead for Ohua is about 3 ms as compared to Jetty with
parallel scavenge, which has in turn higher latency than Jetty with CMS. The latter does, however,
exhibit the worst performance in terms of throughput.

We take a closer look at these values for the run with 800 concurrent clients in Figure 2.21d,
which presents the cumulative distribution of request latencies. The constant overhead for Ohua
most likely results from the blocking nature of the I/O operations. The GC impact, as experienced
by roughly 10% of the requests, is similar to the Jetty executions.

2.5.4 Energy Comparison

Next, we want to validate claims by some researchers [193, 218, 122] that dataflow, message
passing, or lock-free algorithms are more energy-efficient than traditional multi-threading with
shared-memory synchronization and locks. We are also interested in understanding the perfor-
mance/energy trade-offs of Ohua’s runtime parameters. To that end, we ran experiments on the
Intel machine. Each experiment executed for 80 s. After 20 s into the computation we gathered the
energy consumption of the server machine for 30 s using perf state on the power/energy-cores
event. In Figure 2.23 we investigate the energy consumption for different configurations of Jetty
and Ohua in NIO mode using the CMS GC configured with 3 GB of memory. In the first row,
we report the average, minimum, and maximum energy consumption during the probing period in
the different client configurations while the second row depicts the energy consumption per request
depending on the load situation on the server. In our first experiment, we deployed Jetty with and
without caching enabled. The results of our energy analysis in Figure 2.23a show that executing
Jetty without a cache is far more energy efficient and scales better to more intensive load situations.

5Ohua adapts the thread count to the number of sections automatically.
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Figure 2.23: Energy consumption for Jetty and our HTTP server implemented in Ohua.

This is due to the fact that Jetty uses the sendfile primitive to serve static file content without
copy operations. The cached version needs to first copy the file to memory and then back to the
socket for sending. As shown in Figure 2.23d, this translates into more cycles and a higher energy
demand respectively.

In our second experiment we compare the same 4 section strategies as in Figure 2.20b. The
mean energy consumption in Figure 2.23b shows that the more sections we have, the more energy
is consumed: the “op/sec" strategy with 6 sections consumes the most while the “acpt-req" strategy
with only 2 sections consumes the least. As the load increases, however, the mappings with more
sections become more efficient. This suggests that section strategies should not only adapt to the
execution infrastructure, but also to the load of the system. Note that the load situation is not
the same as in the cluster experiment: a similar load of around 13000–14000 requests/s is likely
to show again that the “sgl-rd-rp" strategy outperforms the others. Finally, a comparison of the
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Figure 2.24: Latency and throughput for concurrent requests on feeds (512 Bytes) residing in
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1 (ohua
2 (let [[_ resource-ref] (-> 80 accept read parse)]
3 (if (.startsWith resource-ref "news/")
4 (-> resource-ref load-ram write reply)
5 (-> resource-ref load-hd write reply))))

Figure 2.25: Conditional Statement on the Resource Location.

graphs in Figure 2.23a with those in Figure 2.23b indicates that Ohua is more energy efficient and
scalable than Jetty.

Our last experiment replaces once more the concurrent non-blocking arcs of the inter-section
arcs in the “sgl-rd-rp" strategy with blocking implementations. For the load situations depicted in
Figure 2.23c, the blocking variant outperforms the non-blocking one in terms of energy consumption
but also exhibits lower throughput. Indeed, with low load, the blocking variant provides the
opportunity for the system to put blocked cores into halted state where energy consumption is
low. One can observe, however, energy-efficiency per request of the non-blocking variant improves
with the load because of the lower scheduling costs.

2.5.5 Data-sensitive Request Handling

Finally, we consider the impact of optimizations that use application-specific knowledge. Assume
that our small web documents are news snippets that catch the interest of clients and bring them
to load the full article. The size of a snippet is only around 512 bytes while the article (in a
compressed form) is around 20 kB. The goal is for the snippet requests to scale independent of
the requests for the full articles. We therefore store the snippets separately in an in-memory file
system, essentially removing disk I/O bottleneck. Finally, to ensure that no snippet request is
blocked by the disk I/O of an article being loaded, Listing 2.25 defines a condition that dispatches
requests according to the location of the requested resource.

Each branch is mapped onto a different section. We run this experiment with an equal number of
clients requesting snippets and articles. The graphs in Figure 2.24 strongly support one of Ohua’s
main arguments: parallelism and concurrency are highly sensitive to the deployment context.
Separating the aspect of parallelism from the program fosters clean algorithm design and allows
for a highly flexible runtime system with powerful optimizations.

2.6 RELATED WORK

Purely functional languages are best described by their absence of global state and side-effects
(state mutations): data flows through the functions of an algorithm. In this respect, Ohua—and
more generally FBP and dataflow—are by nature tied to a functional programming style [178].
It does, however, use the object-oriented paradigm to encapsulate state inside operators with a
set of functions that are never executed concurrently. As a result, state access is guaranteed
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to be sequential and limited to the scope of the functional set of the operator class. Scala unifies
functional and imperative programming but does so to rather shorten the code to be written rather
than to address the multi-core challenge. Actors are Scala’s main concept to address coarse-grained
parallelism but it lacks a concept to map it onto the different programming styles and leads to
heavily cluttered code [101]. Dataflow languages such as Lustre [99] and Lucid [221] derive the
dataflow graph from the program but do not unify functional and imperative programming. To
the best of our knowledge, no approach exists that implicitly derives a dataflow graph from a
functional program where each of the functions is programmed imperatively with attached state.

Functional languages like Haskell can support implicit parallelism, but the degree at which
it operates is typically too fine-grained for our needs [103]. Haskell falls back to explicit lan-
guage constructs to enable coarse-grained parallelism [156]. Manticore relies on message-passing
to achieve similar functionality [80]. Dataflow languages, just as the dataflow monad of Haskell,
target fine-grained data parallelism. This is also the case for StreamIt [211], an explicit data
streaming framework that targets special hardware such as GPUs to perform computations in a
massively parallel fashion, and pH [1], a completely implicit parallel language that uses the execu-
tion model of Id [169] and the syntax of Haskell to address special non-von-Neumann architectures.
In contrast, Cilk [28] defines again abstractions to separate the data dependencies of imperative
C/C++ programs into tasks. Ohua notably differs from other programming models by separating
the concern of parallelism from the program. The programming model allows to derive parallelism
implicitly from the program.

Recent work on regulating the degree of parallelism focuses especially on loops. DoPE also
build explicit dataflow graphs and allows to define the degree of parallelism independent from
the program to adapt to different architectures [187]. However, DoPE does not define a concept
to essentially decrease the degree of parallelism below the number of tasks. Similarly, feedback-
directed pipeline parallelism (FDP) builds explicit dataflow graphs (pipelines) but introduces no
concept to reduce the degree of parallelism below the number of operators [205]. FDP concludes
that the operator with the highest processing time should be assigned the most resources. Ohua
makes the opposite observation especially for I/O blocked operators. Manticore [81] uses the
concept of continuations to allow multiple fibers to be executed on the same thread. Yet, the
assignment of fibers to threads is specified explicitly in the source code at compile-time. Scala
provides support for continuation via a react operation. The task of the reacting actor is executed
on the sending thread and the developer must decide at compile-time whether a thread-based
receive or an event-based react is appropriate. Ohua’s sections concept provides maximum
flexibility to adjust the degree of parallelism to different architectures separated from the program.

2.7 FUTURE WORK

In this paper we introduced the main concepts and ideas of the stateful functional programming
model and its implementation in Ohua. In the following, we highlight three extensions that we
intend to target as future work to emphasize the potential of SFP to exploit multi- and many-core
architectures.

SFP for scalable systems design In order to investigate the scalability of our programming
model beyond a web server, we will turn towards more complex systems. Interestingly, the popular
map/reduce (MR) [59] programming model, which enables implicit data-parallel programming on
a cluster of commodity machines, also shares many commonalities with FBP. Processing happens
in map and reduce phases, which are executed as tasks on small chunks of the data. The main
structure of MR task processing, expressed as a dataflow in Ohua, is shown in Listing 2.26.

In comparison, the implementation of the map and reduce task drivers in Hadoop [10] respec-
tively take ∼1,800 and ∼3,000 lines of Java code with algorithm and functionality mixed within
the same classes.

Loops vs. higher-order functions Most complex systems contain a substantial amount of
loops. We are well aware of the great deal of research that has been conducted for loop paral-
lelism. However, most of these approaches require loop operations to be stateless. Even more so,
they often parallelize loops that are only present in the code because the concept of higher-order
functions was missing. Higher-order functions are to declarative languages what loops are to im-
perative languages [192]. Hence, the investigation of loop parallelism in SFP must be accompanied
with the introduction of higher-order functions into the declarative functional part. This will in-
crease opportunities for data parallelism via programming level concepts rather than concurrency
abstractions.
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1 ; map task
2 (ohua
3 (-> read-dfs parse-chunk map sort serialize compress store-disk))
4

5 ; reduce task
6 (ohua
7 (-> fetch-map-results deserialize merge reduce serialize compress store-dfs))

Figure 2.26: Dataflow in the Map-Reduce programming model.

Automatic scheduling and section configuration Finally, a large portion of our future work
will focus on runtime optimizations. In current systems, the adaptation to the hardware is rather
limited often only to the configuration of a thread count. Our section-mappings allow for a much
more powerful and flexible adaptation of the program to the underlying infrastructure. Since
manually defining sections for very large programs does not scale, automatic section configuration
will be the first goal that we address. In a later step, we will turn towards configuring the sections
dynamically at runtime to adapt to changes in the load of the system. Furthermore, due to
the explicit nature of threads the presence of a scheduler is often missing. Scheduling often relies
either on the JVM or on the operating system that both have very little knowledge on the executing
program. The newly introduced fork-join framework and its work-stealing scheduler are first steps
into the right direction [142]. However, the success of this model on the JVM may be limited
because it breaks computations, and therewith also data, apart into many small pieces. This either
has a strong impact on object creation and garbage collection respectively or requires developers
to highly optimize the way in which input data is split and results are joined [58]. The presence
of a scheduler in Ohua programs allows for far more research on scheduling algorithms in many
different application domains.

2.8 CONCLUSION

The stateful functional programming model is a promising approach to develop concurrent and par-
allel applications for the new generation of multi-/many-cores architectures. Ohua is a program-
ming framework and runtime system that goes beyond existing dataflow engines by supporting
implicit parallelism. An application is composed of two parts: the actual functionality developed
as a set of functions in an object-oriented language with a rich ecosystem (Java) and the algorithms
written in a functional language that naturally fits the dataflow model (Clojure). Ohua derives
the dataflow graph from the algorithm at compile time, and schedules the execution of groups of
operators (sections) on parallel threads at runtime. The partitioning of operators into sections is
key to scalability as it allows to control the granularity of concurrency and parallelism.

Ohua does not only provide a safe approach to developing correct concurrent applications, but
it also supports highly-efficient implementations. We showed that a web server developed on the
basis of simple sequential code performs better than the hand-optimized Jetty implementation in
terms of throughput and competitively in terms of latency on a multi-core architecture, while being
also energy-efficient. The more general insight gained from our evaluation: Ohua uses blocking
calls in combination with threads to achieve asynchronous I/O while Jetty’s highest performing
implementation uses NIO. Our results give rise to the assumption that event-based programming
via Java’s NIO framework does not directly translate into more scalable systems than thread-based
asynchronous I/O. A focused study on I/O models in Java has to show the universality of this
assumption.

Postscript The presented programming model removes the burden from the program-
mer to construct the dataflow graph manually. It involves the design of a compiler and
a runtime system that can perform optimizations. In this paper, we show how our
programming model helps to make the code concise. Our runtime system allows to
create classical server designs easily without the need to change a single line of code.
However, the programming model does not yet fully abstract from the notion of a
dataflow graph. The developer has to understand that nodes without incoming edges
are re-executed such as the accept function that accepts client connections. This
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diverges from the normal programming model because the algorithm does not express
this aspect explicitly and makes it harder to understand for the developer. Furthermore,
it would require a special type of stateful function to notify the runtime system when
no new input is being retrieved anymore. A web server is meant to run forever but
for example the map and reduce tasks listed in Figure 2.26 should stop after the last
line was read from the file. The next paper addresses these missing control constructs
in the algorithm language to re-implement Hadoop’s Map task and exploit pipeline
parallelism.
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3 SUPPORTING
FINE-GRAINED DATAFLOW
PARALLELISM IN BIG DATA
SYSTEMS

Prelude This section covers the paper with the same title co-authored by Justus
Adam and Jeronimo Castrillon that I presented at the International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores in 2018 [72]. This
work extends the stateful functional programming model with its first higher-order
function: smap. It is a version of the well-known higher-order map function. In com-
bination with the concept of the stateful functions, smap enables implicit pipeline and
task-level parallelism. More importantly, it removes the remaining dataflow aspect from
the stateful functional programming model. Using smap, the developer has clear se-
mantics of the algorithm’s execution and does not need to be aware of special functions.
All stateful functions called in an algorithm have the same well-known application se-
mantics. Towards a more formal description of these semantics, the paper defines the
syntax of the language and a translation of the language constructs into dataflow.

3.1 INTRODUCTION

Over the last decade big data analytics became the major source of new insights in science and
industry. Applications include the identification of mutations in cancer genome [124] and the
tracking of other vehicles around an autonomously driving car. The big data systems (BDS) that
enable such analyses have to be able to process massive amounts of data as fast as possible. In
order to do so, current BDS apply coarse-grained data parallelism, i.e., they execute the same code
on each core of the nodes in a cluster on a different chunk of the data. As such, the application
is said to scale with the number of cores in the cluster. However, not every aspect of a big data
application exposes data parallelism. Whenever this is the case, current big data systems fail to
scale.

3.1.1 Scalability Issues of Big Data Systems

A typical big data analysis program assembles a set of predefined operations and applies them to
the data. Execution proceeds in multiple phases where each phase applies a part of the program to
the data that was output by a previous one. Afterwards, the results are redistributed among the
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Figure 3.1: Data processing cores in Hadoop’s MapReduce.

nodes in the cluster to compute the next phase. For example, the famous MapReduce programming
model defines exactly two phases as shown in Figure 3.1: a map and a reduce phase [59]. The
map phase is data parallel by definition but the data parallelism of the reduce phase depends on
the application. For example, in data analytics queries, the join operation for two tables can not
be performed in a data parallel way (when the input data is not partitioned). In such a case,
a single node receives all results from the map phase and becomes the throughput bottleneck.
Even if the reduce phase runs in a data parallel fashion, the load across the reducers can only
be balanced evenly by making assumptions on the map output. These assumptions are hard to
estimate correctly such that the load is often spread unevenly decreasing data parallelism.

BDS have been traditionally designed to execute applications in a massive coarse-grained data
parallel way across a cluster of machines. The assumption was that applications would process
large amounts of simply structured data, e.g., text, that is fast to serialize and deserialize, i.e.,
transforming them to bytes (and its inverse operation on the receiver side). This setup led to the
common belief that network I/O, instead of computation, is the performance bottleneck in these
systems.

Only recently, researchers have shown that I/O is not always the limiting factor for perfor-
mance [176]. Over the last years, big data applications have grown in complexity and use much
more complex data structures especially in the area of data analytics. At the same time, network
hardware for big data appliances improved, reaching transfer rates above 40 GB/s [127]. Authors
in [216] benchmarked the current state-of-the-art BDS Apache Spark and Apache Flink in a high
bandwidth cluster setup. The results show that reduce operations do not profit from modern
multi-core architectures since their cores do not take advantage of fine-grained parallelism. Con-
sequently, the data throughput does not increase for faster network devices, i.e., it does not scale
with the network.

To better exploit new hardware, the design of BDS must be revisited. This cannot be done
with local optimizations for individual steps in the data processing core, but requires fundamental
design changes [216]. Redesign is non trivial due to the complexity of the code bases of state-of-the-
art BDS, e.g., with over 1.4 million lines of code in Hadoop MapReduce (HMR). Approaching this
task with common parallel programming means, like threads, tasks or actors and their respective
synchronization via locks, futures or mailboxes, inevitably increases code complexity even further.
As a result, these systems become even harder to reason about, maintain and extend. We believe
that a much more concise and scalable redesign can be achieved with new programming abstractions
that enable a compiler to prepare the code for an efficient parallel execution at runtime. This paper
represents first steps in this direction.

3.1.2 Contributions

In this paper, we present a rewrite for the processing core of current big data systems to increase
data throughput, effectively improving scalability with new hardware. Our rewrite uses an implicit
parallel programming language to provide concise code that is easy to maintain. The correspond-
ing compiler transforms the program into a dataflow graph that the runtime system executes in
a pipeline and task-level parallel fashion across the cores of a single cluster node. Hence, our ap-
proach extends the coarse-grained data parallelism in BDS with fine-grained pipeline and task-level
parallelism inside the data processing cores to resolve the throughput bottlenecks.

The contributions of this paper are as follows:
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1 public class Mapper<KEYIN, VALUEIN,
2 KEYOUT, VALUEOUT> {
3 /* The default implementation
4 is the identity function. */
5 protected
6 void map(KEYIN key, VALUEIN value,
7 Context ctxt) {
8 ctxt.write((KEYOUT) key,
9 (VALUEOUT) value);

10 }
11

12 public
13 void run(Context ctxt) {
14 while (ctxt.nextKeyValue())
15 map(ctxt.getCurrentKey(),
16 ctxt.getCurrentValue(),
17 ctxt);
18 }}

(a) Hadoop

1 private[spark] class
2 ShuffleMapTask(partitionId: Int,
3 partition: Partition)
4 extends Task[MapStatus] {
5

6 override
7 def runTask(ctxt: TaskContext)
8 : MapStatus = {
9 /* Deserialization and init of

10 variables omitted for brevity. */
11 var writer: ShuffleWriter[Any, Any] =
12 manager.getWriter[Any, Any](
13 dep.shuffleHandle,
14 partitionId, ctxt)
15 writer.write(rdd.iterator(partition, ctxt)
16 .asInstanceOf[
17 Iterator[_<:Product2[Any, Any]]])
18 writer.stop(success = true).get}}

(b) Spark

1 public class DataSourceTask<OT> extends AbstractInvokable {
2 private InputFormat<OT, InputSplit> format;
3 private Collector<OT> output;
4

5 @Override public void invoke() throws Exception {
6 OT reuse = serializer.createInstance();
7 while (!this.taskCanceled && !format.reachedEnd()) {
8 OT returned;
9 if((returned = format.nextRecord(reuse)) != null)

10 output.collect(returned);
11 }}}

(c) Flink

Figure 3.2: The data processing cores of Hadoop MR, Spark and Flink are all based on the ab-
straction of a context.

1. We contribute an analysis of the code base of HMR, Spark and Flink. This analysis shows that
the different data processing cores are structurally equivalent and thus suffer the same scal-
ability issues. Further, our study reveals design patterns that indicate pipeline-parallelizable
code.

2. As a case study, we change the HMR data processing core and present four different rewrites
using an implicitly parallel language. Our rewrites are minimally invasive and reuse existing
code. The rewritten code is concise and free of concurrency abstractions.

3. We compare our data processing core to the original HMR implementation using parts of
the TPC-H database benchmark. Experimental results report throughput speedups of up to
3.5x for compute-intensive configurations.

The rest of the paper starts with the analysis of state-of-the-art big data systems in Sec-
tion 3.2. Afterwards, we give a brief introduction into implicitly parallel programming with Ohua
(Section 3.3) and then present the HMR rewrites in Section 3.4. Section 3.5 compares our rewrit-
ten data processing core to the original one. Finally, we review related work in Section 4.4 and
conclude in Section 3.7.
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3.2 THE CORE OF BIG DATA PROCESSING

In this section, we study the three big data systems with a focus on the programming style of their
data processing cores. This analysis serves to identify common code patterns across the different
BDS that lend themselves well for a pipeline and task-level parallel execution. With this analysis
we also provide concrete reasons for the scalability issues discussed above (cf. Section 3.1.1) and
reported in [216]. This has only been supported by experimental observations but not by an in-
depth analysis of the code structure. The first part of this section lists and explains the code of
the data processing cores in these BDS. Then, Section 3.2.2 analyzes promising code patterns to
exploit other forms of parallelism.

3.2.1 Data Processing: Code Study

We investigate the three most-widely-used systems in todays big data domain, Hadoop MapReduce
(HMR), Spark and Flink.

Hadoop MapReduce

The MapReduce programming model consists of two functions: a map function that pre-processes
the data and a reduce function that performs an aggregation [59]. The map function is executed in
a data parallel fashion on every chunk of the input data. The results are partitioned and dispatched
to nodes that execute the reduce code. The number of reduce tasks depends on the number of
partitions defined by the application.

Figure 3.2a lists the data processing core of the framework in the run method. The main
concept is the abstraction of a context through which data is retrieved and emitted. The Context
class implements an iterator-like interface that is used in the run method to drive the input side,
i.e., retrieve the data. In case of the Mapper, it retrieves one key-value pair at a time and passes
it to the map function (Lines 14–17). The implementation of the Reducer looks almost identical,
expect for the fact that it receives a list of values with each key. We omit it here for brevity and
concentrate in the rest of the paper on the Mapper keeping in mind that our rewrites apply in the
same way to the Reducer. The map function emits data via the context, driving the output side
of the processing in the task (Lines 8–9). The context implementation uses the abstractions of
the InputFormat and OutputFormat to interface with the various big data storage systems such
as HDFS [197] and HBase [42, 83].

Spark

Spark [231] provides a new API which is heavily based on Scala and much closer to the original
higher-order functions map, reduce and filter. In Spark, these functions, also called transforma-
tions, are applied to Resilient Distributed Datasets (RDD), the key abstraction in Spark. RDDs
are immutable and therefore transformations create new RDDs. Like HMR, Spark partitions the
input data and the intermediate results (if possible) to apply coarse-grained data parallelism.

Internally, Spark distinguishes among two types of tasks: the ShuffleMapTask and the ResultTask.
All transformations are executed on a ShuffleMapTask, except the one performed on the final RDD
in the program. A ShuffleMapTask first performs transformations and finally shuffles the result
data over the network. Lines 15–18 in Figure 3.2b list the corresponding implementation code.
Spark groups transformations to compose a pipeline that executes in a single task. Each transfor-
mation applies a function to all key-value pairs of the partition/RDD. While doing this, it uses the
concept of an iterator to navigate over the whole set of key-value pairs in a partition. Spark chains
iterators where each iterator performs one transformation and passes the results on to the next.
The code that uses the outermost iterator instance moves one key-value pair through the whole
transformation pipeline before acquiring the next. In the ShuffleMapTask, the writer shuffles the
results over the network. This on-demand processing of data actually implements a lazy evaluation
strategy such that actions like take(n) do not process the whole data but only the first n records
requested. The ResultTask either sends the results back to the program executing the Spark query
or persists them in the underlying storage system.

48 Chapter 3 Supporting Fine-grained Dataflow Parallelism in Big Data Systems



computation

serializedeserialize
compressdecompress

write I/Oread I/O
map, reduce, 
query graph

context context

Figure 3.3: The data processing core of all three BDSs.

Flink

HMR and Spark were designed to perform computations over data stored in a distributed stor-
age system, called batch processing. However, big data applications often gather and process data
continuously which is referred to as data streaming. Therefore, Flink [35] extends Spark’s program-
ming model with a notion of time which in turn requires to incorporate stateful transformations
into the runtime system. In order to do so, Flink builds on top of the dataflow execution model
that is popular for massively parallel processing (MPP) in distributed database systems [93]. It
derives a dataflow graph from a program where each function call is represented as a node, referred
to as operator. An operator can be replicated for a data parallel execution if its private state and
its incoming data streams can be partitioned.

Similar to Spark, Flink groups pipelines of operators working on the same data partition to-
gether into a chain of operators and executes them in a single task. Flink uses a push-based model
to drive the pipeline while Spark builds on a pull-based approach. Therefore, the first operator
in the pipeline retrieves the data and drives the rest of the pipeline. We list the code for the
DataSourceTask in Figure 3.2c. Like HMR, it uses an InputFormat abstraction to load data from
distributed storage and pushes every element into a chain of collectors, i.e., operators (Lines 11–
17). Each collector applies a reduction function to the pushed element and stores the result into
its private state. A collector emits its private state to the next collector in the chain only when all
values were processed and close was called by the previous collector.

3.2.2 Analysis

We now analyze these three implementations in terms of execution models, design patterns and
their applicability to pipeline and task-level parallelism.

Dataflow Inside

All three systems are dataflow systems. They all build a directed acyclic graph (DAG) to represent
the computation. The state of the nodes in the DAG is partitioned and replicas are created for
each partition to introduce data parallelism. HMR implements a very coarse-grained system that
allows to write a DAG with only the two nodes, map and reduce, that are executed in a massively
parallel way. Higher-level systems and languages such as Hive (SQL) [214], Pig (Pig Latin) [173, 85]
and IBM’s SystemML (R) [86] derive more fine-granular DAGs and use HMR as a foundation to
execute them. Spark has such a program analyzer that automatically converts the program into a
DAG built-in. This allows Spark to inspect the dependencies and derive data pipelines for RDDs
which are then run in a data parallel fashion across the RDD partitions. HMR with Hive or Pig,
Spark and Flink analyze the DAG, use certain metrics to fuse nodes and map them onto tasks
which are then executed in a single JVM process [117]. Hence, the dataflow execution model can
be seen as the de-facto standard for big data processing engines.

However, the dataflow processing model has not been used to execute the data processing
pipeline inside a task. Instead, parallelism is exploited very sparsely. HMR uses a dedicated
thread on the output-side of the mapper in order to buffer and combine records before writing
them to local disk. Furthermore, the reducer uses multiple threads to retrieve the map outputs
for its partition over the network in parallel. The rest of the processing is performed sequentially.
While HMR executes each task on a new JVM process, Spark and Flink use a single JVM per
cluster node to run tasks in parallel which speeds up task startup times significantly. However,
for reduce tasks which are not executable in a data parallel fashion, even Spark and Flink do not
benefit from a multi-core machine.
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Design Patterns and Parallelism

Interestingly, although only reductions are purely sequential, a lot more code is executed sequen-
tially. This is due to the composition of the data processing pipeline shown in Figure 3.3 which
always consists of at least the following steps: retrieval of the data from I/O (disk or network),
deserialization, computation, serialization and writing the data to I/O (disk or network). Decom-
pression and compression can be dynamically added via configuration parameters. Furthermore,
in HMR (Hive, SystemML), Spark and Flink, the computational part, i.e., the actual operations
applied to the data, often encompasses more than a single function. To enable this dynamic
composition of the processing core, the code uses the iterator and observer design patterns. The
iterator allows chaining transformations in Spark while the observer pipelines operators in Flink.
Furthermore, all three BDS integrate the various file formats to access the vast landscape of big
data storage systems. For this, they all rely on the InputFormat and OutputFormat abstrac-
tions that were defined in earlier HMR versions. The InputFormat defines an iterator while the
OutputFormat uses an observer, i.e., data is pulled from and pushed to I/O. The iterator and
observer design patterns are duals [160] and we use them as an indicator in the code to derive
parallelism. Both enforce encapsulation of state inside the concrete class. Hence, in between these
two sequentially executing duals there exists a pipeline parallel execution which is semantically
equivalent. Furthermore, we found that the (de-)compression and (de-)serialization steps can be
executed in a task-level parallel fashion for a key and its value(s).

In the rest of the paper, we investigate how an implicitly parallel language would influence the
code structure and scalability of such a data processing core. Although, we port only HMR to
Ohua, this section made the case that Spark and Flink would benefit from the same rewrites.

3.3 IMPLICIT PARALLEL PROGRAMMING IN OHUA

This section introduces the main concepts of Ohua’s language and runtime system using the sim-
plest HMR rewrite as an example.

3.3.1 Algorithms and Stateful Functions

The Ohua programming model makes the following fundamental observation: An application is
defined in terms of an algorithm that comprises smaller independent and self-contained functional
building blocks. For example, in the HMR system, one algorithm defines the data processing
for a mapper and another for the reducer. The associated functional building blocks include the
functions to deserialize and decompress a single record in the data set. In Ohua, these functions
may access their private state throughout the whole computation and are therefore called stateful
functions.

We list the most coarse-grained algorithm implementation for the mapper in Figure 3.4a. We
define the algorithm inside a Clojure function called coarse, because Ohua is an embedded domain
specific language in Clojure1. We invoke this algorithm inside the run method of our new Mapper
(see Figure 3.2a). The algorithm uses a higher-order map function (smap) to define a computation
(Lines 8–12) that is applied to each of the records (Lines 5 and 13) in the data chunk to be
processed by this Mapper. Note that we define this computation in terms of another algorithm
named compute-and-output, i.e., algorithms may call other algorithms. In the following, we refer
to this language as the algorithm language.

The overall algorithm uses the application-defined Mapper and HMR’s Context abstraction.
The iterator that is defined at Line 5 uses the Mapper$Context to retrieve one record at a time.
The hmr-map function (Line 8) emits the list of key-value pairs produced for a single map invocation
on the user-supplied Mapper. The output function (Line 10) passes one key-value pair at a time to
the Mapper$Context and executes the output side of the pipeline. As an example of a functional
building block for this algorithm, we list the implementation of the output function in Figure 3.4b.

1 Clojure primer: Function abstraction such as (defn fun [arg 1 arg2] code) is equivalent to
public Object fun(Object arg1, Object arg2){ /*code*/ } in Java. Function application such as (fun 4 5) is
equivalent to fun(4, 5).
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1 (defn coarse
2 [^org.apache.hadoop.mapreduce.Mapper$Context reader
3 ^org.apache.hadoop.mapreduce.Mapper mapper
4 ^org.apache.hadoop.mapreduce.Mapper$Context writer]
5 (let [records-on-disk (new InputIterator reader)]
6 (ohua
7 (smap
8 (algo compute-and-output [ [line content] ]
9 (let [kv-pairs (hmr-map line content mapper)]

10 (smap
11 (algo output-side [ [k v] ] (output k v writer))
12 kv-pairs)))
13 records-on-disk))))

(a) Coarse-grained algorithm for the data processing in HMR’s mapper.

1 public class Output {
2 @defsfn public
3 void output(Object key, Object value, Context ctxt) {
4 ctxt.write(key, value); }}

(b) Stateful function output.

destructsmap collectsmap destructhmr-map collect
[line content] kv-pairs [k v]

output

output-sidecompute-and-output

(c) The dataflow graph that Ohua derives.

Figure 3.4: The data processing core of HMR implemented in Ohua. Figure 3.4a lists the code
of the algorithm defined in the Mapper implementation of Figure 3.2a. The algorithm code is
concise, i.e., free of clutter and concurrency constructs, and reuses the original implementation.
For example, the stateful function output is written in Java (see Figure 3.4b) emits the key and
its value via HMR’s context abstraction. From the algorithm code, Ohua derives the dataflow
graph in Figure 3.4c.

It is implemented as a Java class and identified as stateful function via the @defsfn annotation2.
A call to output in a Java program differs from one in an Ohua algorithm:

Java Ohua
o.output(k, v, writer); (output k v writer)

The Java call needs an instance o of class Output which defines the state that is accessible inside
the function. At runtime, the instance encapsulates this (private) state while the surrounding Java
program needs to create and maintain it. In Ohua this instance is implicit, i.e., it is created and
managed by the runtime system. For each function call Ohua creates such an instance once and
reuses it throughout the entire computation. When the function performs side-effects against a
field of the class in one call then these changes are visible to the succeeding calls. An example for
such a state is the dictionary used in many compression algorithms. Note that the tried to keep
our rewrite as minimal as possible without requiring edits to the HMR code base. As such, the
class Output does not extend from Context but delegates to a context instance it receives from the
surrounding program. This instance counts towards the state of output, including all transitive
references such as for instance to the compression dictionary.

We define the Ohua language (constructs relevant to this paper) in Figure 3.5. The syntax
is in line with that of Clojure. The language features variables, abstractions and applications
for algorithms and lexical scoping of variables. The central contribution is the application of

2Ohua additionally supports stateful function implementations in Scala and Clojure.
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Terms:
t ::= x variable
| (algo [x] t) abstraction
| (t t) application

| (let [x t] t)
lexical scope

(variable binding)

| (f x1 . . . xn)
apply JVM function f

to x1 . . . xn with n ≥ 0
| (if t t t) conditionals

| (seq t t)
sequential evaluation order

(side-effect dependency)

Values:
v ::= o ∈ VJVM JVM value
| (algo [x] t) abstraction
| [v1 . . . vn] list of n values

Predefined Functions:
(smap (algo [x] t) [v1 . . . vn]) apply abstraction to list

Figure 3.5: Definition of Ohua’s algorithm language.

potentially stateful functions defined on the JVM in either Java, Scala or Clojure to variables.
Program evaluation is entirely data driven just as known from any other functional language. To
control the evaluation otherwise, the developer can either use conditionals or the higher-order
function seq. With seq, the developer can express dependencies on I/O side-effects such as for
example writing to disk or network communication. In the next section, we show that HMR relies a
lot on such dependencies when reporting the mapper’s progress, e.g., the bytes written to HDFS. A
value is either an object o from the domain VJVM, i.e., JVM objects emitted by stateful functions,
an algorithm abstraction or a list of values. We also predefine the function smap, Ohua’s variant
of the well-known higher-order function map.

3.3.2 Dataflow-based Runtime System

Despite incorporating state, Ohua can derive a parallel execution. To this end, the compiler first
transforms the program expression into a form that binds each result of a stateful function call to a
variable and then lowers this expression into a dataflow graph. In Figure 3.6a, we define the terms
of our dataflow representation. The basic constructs of our dataflow representation are nodes,
edges and ports. A node retrieves data via its input ports, performs a computation (step) and
emit the result via its output ports. The data travels through the graph via edges where an edge
originates at one output port and terminates at an input port. An output port may have multiple
outgoing edges to pass the value to more than a single node while an input port always only
connects a single incoming edge. We classify nodes according to their correspondence of retrieved
and emitted data. A 1−1 node retrieves at most one data item from any of its input ports to
produce one data item to be emitted via its output ports. A 1−N node emits n data items to its
output port before it retrieves the next data item among its input ports. A N−1 node retrieves
n data items from any of its input ports before it produces a single output data item. Predefined
1−1 dataflow nodes include not, the negation of a boolean value, true, the mapping of any value
to a boolean true value, ctrl, the conversion of a boolean value into a control signal and sel, a
selection. A selection node receives a choice on its lower input port that specifies from which of
its input ports to forward the next data item. We also define nodes to work with list values. The
len−[] node has a 1−1 correspondence. The 1−N node [] takes a list and emits the values one at
a time, i.e., it streams the values. In order to perform the inverse N−1 operation, the  [] requires
n, the number of elements in the result list, to be available on its upper input port. Finally, the
node [ streams the values from a list that is unbounded. An unbounded list resembles the idea
of an iterator, i.e., a list where it is possible to walk over the values but where the actual size is
only known once the last value was accessed. This is especially important when we retrieve data
via I/O such as the records from the chunk file. As such, [ additionally outputs the length of the
list.
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With these constructs defined, we translate the terms of our language from Figure 3.5 into
dataflow in Figure 3.6b. Note that a stateful function call maps to a node with an edge to itself
that transfers the state from one invocation to the other. This is the common representation for
state in dataflow models. We translate control flow into dataflow using ctrl node. In case of
seq, the ctrl node always receive a positive input and sends a control signal that enables the
downstream subgraph to proceed with the computation. In case of conditionals, the downstream
subgraph to enable depends on the result of the subgraph for the condition. The translation of
smap computations over bounded and unbounded lists is a straightfoward use of the according list-
handling nodes. For brevity reasons, we omit the translation of access to variables in the lexical
scope from within an expression passed to if or smap and refer the interested reader to [215]. To
keep the visual presentation of the algorithms in their dataflow representation concise and clear,
we omit state edges and translation details such as len−[] nodes. For clarity reasons, we refer to
[] and [ as smap and to  [] as collect. For example, Figure 3.4c depicts the dataflow graph
for the algorithm listed in Figure 3.4a. It contains the three coarse steps from Figure 3.3 that
our analysis found: the first smap node retrieves the data via the context, the hmr-map function
performs the computation and output uses again the context to emit the results. Note that streams
inside the dataflow graph represent an opportunity for pipeline parallelism and independent nodes
for task-level parallelism. A scheduler finally uses a thread pool to execute the graph.

3.4 REWRITING HMR’S MAPPER IN OHUA

This section presents the algorithms that we extracted from the original Hadoop MapReduce code
and re-implemented in Ohua. We already listed a coarse-grained version for the map task in
Figure 3.4a. In the following, we rewrite the steps before and after the hmr-map function call
which include decompression, deserialization and their inverse operations. In HMR these steps are
encapsulated in the InputFormat and OutputFormat classes that are instantiated in the Context of
the map task. We focused our rewrite on the implementation for the SequenceFile3 format which
ships with HMR and is widely used. Figure 3.7a lists the algorithm for the map task. It applies
the data-ingress algorithm to the raw bytes of a single key and its associated value as retrieved
from disk (Lines 14–15). Note that this actually defines a computation for all key-value pairs
retrieved via the network, i.e., data residing on remote disks, instead of from an in-memory data
structure. The retrieved line and content objects are then input to the function call that runs
the application-defined mapper (Line 16). The produced key-value pairs are finally input to the
data-egress algorithm that handles one pair at a time (Lines 17–20). We define the data-ingress
algorithm in Figure 3.7b. It decompresses the value bytes and returns the deserialized key and
value. The data-egress algorithm in Figure 3.7c applies the inverse functions. It first serializes
the objects in Lines 5 and 6 and then compresses the bytes at Line 7 before they are written to
disk (Line 8). The rest of the stateful function calls concern HMR’s status reporting and statistics,
i.e., their execution order depends on their side-effects to the distributed file system. We use seq
to encode these dependencies into the program.

We believe the Ohua code for the map task is concise. It only requires a few lines and omits
implementation details. Instead, it allows the BDS developer to immediately understand the
algorithms of the data processing core. Additionally, our rewrites use almost all of the existing
code, i.e., we solely changed the composition of the data processing steps. Ohua’s algorithm
language allows to bind abstractions to variables. This establishes similar compositional flexibility
that the iterator and the observer design patterns provide. We use it to define 4 programs with
the following composition:

Coarse (C) uses the coarse-grained Context abstraction for the input and output side as shown
in the algorithm of Figure 3.4a.

Coarse-Input-Fine-Output (CIFO) uses the Context for the input side and the fine-grained
algorithm of Figure 3.7c for the output side.

Fine-Input-Coarse-Output (FICO) uses the fine-grained algorithm of Figure 3.7b for the in-
put side and the Context for the output side.

Fine (F) uses the fine-grained algorithms for the input and output side.

3https://wiki.apache.org/hadoop/SequenceFile
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Dataflow Elements:
d ::= 1-1 node
| edge
| port
| 1-N node

| N-1 node

Dataflow Nodes:
| not negation

| true map to true value

| ctrl data to control signal

| sel selection

Predefined Value Functions:
| len-[] length of list

| []~> list to stream

| ~>[] stream to list

| [~> unbounded list to stream

(a) Dataflow Representation

Terms:
x 7→ variable

t 7→ term

(let [x t] t) 7→ x lexical scope

(f x) 7→ fx apply stateless
function f to x

(g x) 7→ gx state apply stateful
function g to x

Control Flow:

(if t t t) 7→ sel
ctrl

ctrlnot
conditionals

(seq t t) 7→ ctrltrue sequential
evaluation

Predefined Functions:

(smap (algo [x] t)
[v1 . . . vn])

7→ []~> ~>[]
[v1…vn]

len-[]
bounded list

(smap (algo [x] t)
[v1 . . .])

7→ [~> ~>[]
[v1…] unbounded list

(b) Translation

Figure 3.6: Definition of the dataflow representation and the translation from the language terms
to the dataflow representation.
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1 (defn map-task
2 [; decomposed input context
3 ^SequenceFile$Reader reader ^Deserializer key-deserializer
4 ^Deserializer val-deserializer
5 ^Mapper mapper ; app-supplied map implementation
6 ; decomposed output context
7 ^Serializer key-serializer ^Serializer val-serializer
8 ^Progressable reporter ^List stats
9 ^FSDataOutputStream out ^Counter map-out-records

10 ^Counter file-out-bytes ^CompressionCodec codec]
11 (let [records (new NetworkDataIterator reader)]
12 (ohua
13 (smap
14 (algo map-task-algo [[key-buf value-buf]]
15 (let [[line content] (data-ingress key-buf value-buf
16 key-deserializer val-deserializer)
17 kv-pairs (hmr-map line content mapper)]
18 (smap
19 (algo kv-algo [kv-pair]
20 (data-egress kv-pair reporter stats
21 key-serializer val-serializer codec
22 out map-out-records file-out-bytes))
23 kv-pairs)))
24 records))

(a) Algorithm for the map task.

1 (defalgo data-ingress [serialized-key serialized-val
2 key-deserializer val-deserializer]
3 (let [key-in (deserialize serialized-key key-deserializer)
4 val-in (deserialize (decompress serialized-val) val-deserializer)]
5 (array key-in val-in)))

(b) Algorithm for the data ingestion.

1 (defalgo data-egress [kv-pair reporter stats key-serializer
2 val-serializer codec out
3 map-out-records file-out-bytes]
4 (let [[k v] kv-pair
5 bytes-before (seq (report-progress reporter) (fs-stats-out stats))
6 key-ser (seq bytes-before (serialize k key-serializer))
7 val-ser (seq bytes-before (serialize v val-serializer))
8 val-compressed (compress val-ser codec)
9 bytes-after (seq (write key-ser val-compressed out)

10 (fs-stats-out stats))]
11 (update-counters bytes-after bytes-before
12 map-out-records file-out-bytes)))

(c) Algorithm for the data emission.

Figure 3.7: The modular rewrite for the HMR data processing core of the map task allows to
construct four different scenarios. It facilitates to exchange the coarse-grained implementations
of the data-ingress (see Figure 3.4) and data-egress algorithms for the fine-grained ones (see
Figure 3.7b and 3.7c).
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Figure 3.8: The dataflow graph for the Fine rewrite expresses the inherent task-level parallelism
in the decompression/deserialization of key and values. The same accounts for the inverse op-
erations in the data-egress algorithm. The overall program uses two nested smap applications
which directly translate into pipeline parallelism at runtime.

Since Ohua inlines algorithm calls, this composition does not sacrifice parallelism. Figure 3.8 shows
the dataflow graph for the Fine rewrite. It contains nodes for language constructs such as seq and
destruct for destructuring tuples, arrays and lists4. The graph contains nested uses of smap and
thus enough potential for a pipeline parallel execution. Additionally, deserialization, decompression
and its inverse functions on the output side are independent for a key and its value and therefore
can benefit from task-level parallelism.

3.5 EVALUATION

In this section, we evaluate the increase in throughput that can be achieved with our Ohua-based
HMR rewrites. We first describe the setup for our experiments and then give breakdowns of the
execution times of the individual stateful function calls of the program. Only these breakdowns
allow to fully understand the speedup that can be achieved with Ohua’s dataflow execution. Af-
terwards, we verify that Ohua achieves the maximal speedup possible for throughput and analyze
the overheads of the Ohua-based execution.

3.5.1 Experimental Setup

In order to evaluate the data processing core of the HMR map task, we executed a single HMR
map task on a 12- core (24 hardware threads) Intel NUMA machine at 2.6 GHz with 2 CPU sockets
and 128 GB of RAM. All experiments used a JVM (JDK 1.8) with G1 enabled, 10 GB initial and
30 GB maximal heap size. A study of our new data processing core on the overall throughput of a
job executed across multiple machines is future. This is due to that fact that normal benchmarks
such as WordCount and Sort do not apply because of their simple data formats and their low-
profile reduce phases. We studied the internals of Hive and found that the query execution engine
does not use HMR’s InputFormat and OutputFormat interfaces for data (de-)serialization. Hive
developers moved these aspects into the computational part of HMR’s data processing core in
order to use the same code base for executing queries on HMR, Spark and Tez5. As such, we
focus our evaluation on the data processing core directly. Instead of the Hadoop Distributed File
System, we implemented our own Network File System (NFS) on Hadoop’s file system abstraction
to enforce data retrieval over the network. It retrieves a file chunk from local disk and transfers
it over the network. This also happens during normal processing when the map task can not be
executed on the node that hosts the input data chunk and hence enables complete code reuse on

4The actual graph also contains constructs such as scope for scoped variable usage and size to get the num-
ber of items a collect must gather for a single result.

5https://tez.apache.org/
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1 CREATE TABLE PART (
2 P_PARTKEY SERIAL PRIMARY KEY,
3 P_NAME VARCHAR(55),
4 P_MFGR CHAR(25),
5 P_BRAND CHAR(10),
6 P_TYPE VARCHAR(25),
7 P_SIZE INTEGER,
8 P_CONTAINER CHAR(10),
9 P_RETAILPRICE DECIMAL,

10 P_COMMENT VARCHAR(23) );

Figure 3.9: TPC-H table for parts.
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Figure 3.10: Execution breakdowns for executions of the Fine rewrite.

the input side. The requested file chunk for our experiments stores 1.4 GB of data. In order to
achieve high bandwidth the NFS data provider transfers the file without copy overhead (sendfile)
from the disk to the network while the map task executes on the same machine. To nevertheless
study a portion of a real data analytics query, we retrieve and process randomly generated data
for the PART table as defined in Figure 3.9 from the TPC-H benchmark [52]. Table records are
stored in the widely used JSON format. We study the impact of Snappy and LZO compression in
combination with either the default identity function in the mapper or a map function that applies
a filter in a WHERE clause of an SQL query. For the latter we provide two versions: The first checks
the conditions given in TPC-H query 19. The second implements a blacklist filter that tries to
locate certain words in the P_COMMENT column.

3.5.2 Runtime Analysis

It has been observed that it is hard to analyze in detail the performance of current BDS, mainly
due to a lack of support for instrumentation [176]. This lack of analysis support could explain why,
for so many years, researchers stuck to the common believe that big data applications are network-
bound. The modular structure of Ohua’s dataflow graph makes such an instrumentation straight
forward. We use it in the following to perform an in-depth analysis for the Fine rewrite. It allows
us to understand the execution pattern of the data processing core and to analyze Ohua’s runtime
overheads. Afterwards, we study the throughput of our rewrites and the impact of maintaining
state.

Execution Pattern Analysis

Figure 3.10 shows the total execution time of the stateful functions for the Fine rewrite. The
stateful functions that facilitate constructs of the algorithm language are depicted on the left of
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Figure 3.11: Speedups in throughput of the rewrites in the four configurations.

each plot and prefixed with “ohua”6. The rest of the functions execute HMR functionality. The
execution time of each function is broken down into the time spent in the Ohua operator framework
code and the time spent in the actual stateful function. With this analysis, we can differentiate
three aspects: 1) the overhead that comes with the algorithm language, 2) the runtime overhead of
Ohua’s operator framework and 3) the actual execution of the HMR functionality. The breakdown
shows that most time is spent in (de)-serializing the value from and into JSON. Execution times
vary slightly across the four configurations due to the fact that these functions create a lot of
objects. Note that the execution time includes garbage collection. The more work other functions
perform, the more likely it is that they are also interrupted by a garbage collection. Furthermore,
the breakdown shows that Snappy requires much less CPU cycles than LZO, but LZO provides
better compression rates. As a result, the configuration with LZO provides a higher potential to
speedup the pipeline parallel execution than the one with Snappy because more processing can
be performed in parallel. This potential further increases when the mapper performs actual work
such as evaluating the conditions of TPC-H query 19 or our blacklist filter.

Throughput

Figure 3.11 depicts the throughput speedup for our four rewrites across each of the configurations.
In all four configurations the Fine rewrite achieves the highest speedup with 3.5× for the LZO
+ Blacklist Filter configuration. Naturally, no configuration reaches the maximum theoretical
speedup due to the overhead of the Ohua framework and the load profile of the different functions
(cf. Figure 3.10). This is particularly notable in the case of Snappy + Identity, with a speedup
below a maximum of around 2×7. In this configuration the overhead of the Ohua framework has
a higher impact on the throughput. The overall function execution is less than in other workloads
while the overheads are the same in all configurations. The resulting performance penalty is roughly
0.4×, leading to maximum achievable speedup of 1.6×. In the other configurations this penalty is
negligible with speedups around 0.1× below the maximum.

Cost

The COST metric refers to the number of additional cores that are necessary in order to achieve
the same performance as the original implementation [159]. Figure 3.12 shows the COST results
for the four configurations and compares a stateless implementation (as suggested by the internal
HMR API) to a stateful one. Note that the original (coarse) parts are stateful. The graphs provide
an important argument in favor for stateful computations and thus Ohua’s programming model.
The two functions with state are decompress and compress which both use a dictionary to speed
up the discovery of words in the bytes. Removing this state can degrade the performance by as
much as an order of magnitude, as in the case of our last two compute-heavy configurations.

6Ohua implements language constructs as stateful functions as well.
7Intuitively, the maximum speedup is calculated by determining the most appropriate pipeline, i.e., number of

stages and stage balancing (load in Figure 3.10). For Snappy + Identity, with clearly two dominant functions of
comparable load (deserialize-2, serialize-1), a two stage configuration would deliver around 2× speedup.
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Figure 3.12: COST of the four rewrites when implemented with or without state.

3.6 RELATED WORK

We could not find any work that tries to make current big data systems scale with new hardware
by introducing parallelism into their data processing cores. To the best of our knowledge there
is no existing approach to do so using an implicitly parallel language. For example, Weld [177]
applies compiler optimizations such as loop tiling and vectorization to speed up data analytics
across different frameworks. It requires to re-implement main functions and operators to make
them Weld-aware. Weld works on the application level rather than the data processing core of
BDS. Crail [202] leverages RDMA and storage tiering to speed up the I/O functions (load-ndfs
and write in the HMR data processing core). This works for sorting data but fails to scale as soon
as additional analytics take place which require complex data types, their associated serialization,
compression and perform additional operations on the data. Researchers also made the case of a
single global cluster-wide address space to further speed up serialization and deserialization [131].
The Apache Spark project Tuncsten tries to remove garbage collection penalties via their own
off-heap memory management similar to Flink [35]. However, all these approaches optimize only
isolated parts of the data processing core, i.e., they shrink one bar in the execution breakdown
graphs of Figure 3.10 just for another to become the bottleneck. They speed up individual parts
instead of making the data processing core scale via an impacting structural change as researchers
concluded [216]. In this paper, we do exactly this. We re-implemented the algorithms of the
data processing core using an implicitly parallel language that can automatically exploit pipeline
and task-level parallelism to scale the computation without increasing code complexity. Note that
there exist frameworks such as Phoenix [189] or Metis [154] that scale analytics applications for
in-memory data on multi- and many-core architectures. Although Ohua can be used for that as
well, this is not the topic of this paper. In this paper, we give a redesign of the data processing
cores of the most-widely-used big data systems in the field today.

3.7 CONCLUSION AND FUTURE DIRECTIONS

The data processing core of current big data systems do not scale with improved network perfor-
mance. An analysis of Hadoop MapReduce, Spark and Flink found that the implementations use
either the iterator or the observer design pattern. Both provide the opportunity for a semantically
equivalent pipeline parallel execution. We replaced these patterns in Hadoop MapReduce using
Ohua, an implicitly parallel language. The resulting Ohua program heavily reuses the existing code,
while being more concise. Furthermore, our evaluation shows that our rewrites provide speedups
of up to 3.5x exploiting pipeline as well as task-level parallelism. In the future, we want to inte-
grate a compiler-based approach that finds stateful functions that are applicable to a data parallel
execution. This would enable us to make the data processing cores fully scalable independent of
the size of the data processing pipeline.

Postscript This paper shows that our programming model is essentially a good can-
didate to replace the streams, iterator and observer programming model. More use
cases need to be studied in order to fully make that conclusion. This paper focused
on the runtime system and especially on its pipelined execution. The next chapter
presents the details of the compiler for the algorithms.
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4 COMPILING FOR CONCISE
CODE AND EFFICIENT I/O

Prelude This section covers the paper with the same title co-authored by Andrés
Goens, Justus Adam and Jeronimo Castrillon that I presented at the International
Conference for Compiler Construction in 2018 [77]. This work focused primarily on
the compiler that translates a program that uses our stateful functional programming
model into a dataflow graph. In Section 2, the extraction of the dataflow graph from
an algorithm was based on the Clojure syntax tree. In this section, we provide a
more general approach on the abstraction of an intermediate language that follows
the call-by-need lambda calculus. As a result, we can perform semantic-preserving
transformations to arrive at, what we called extended data dependency (EDD) form.
This form allows us to derive a dataflow graph easily and builds the foundation for an
intermediate representation where (semantic-preserving) transformations optimize I/O
calls.

4.1 INTRODUCTION

In today’s Internet applications, I/O is a dominating factor for performance, an aspect that has
received little attention in compiler research. The server-side infrastructures of internet companies
such as Facebook [3], Twitter [68], and Amazon [60] serve millions of complex web pages. They
run hundreds of small programs, called microservices, that communicate with each other via the
network. Figure 4.1 shows the interactions of the microservices at Amazon. In these infrastructures,
reducing network I/O to satisfy sub-millisecond latencies is of paramount importance [22].

Microservice code bases are massive and are deployed across clusters of machines. These systems
run 24/7 and need to be highly flexible and highly available. They must accommodate for live
(code) updates and tolerate machine and network failures without noticeable downtime. A service-
oriented architecture [179] primarily addresses updates while the extension to microservices deals
with failures [34]. The idea is to expose functions as a service that runs as a stand-alone server
application and responds to HTTP requests. It is this loose coupling of services via the network
that enables both flexibility and reliability for the executing software. But this comes at the cost
of code conciseness and I/O efficiency. Code that calls another service over the network instead of
invoking a normal function loses conciseness. The boilerplate code for the I/O call obfuscates the
functionality of the program and makes it harder to maintain. The additional latency to receive
the response adds to the latency of the calling service.
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[Source: I Love APIs 2015 by Chris Munns, licensed under CC BY 4.0, available at:
http://bit.ly/2zboHTK]

Figure 4.1: Microservices at Amazon.

4.1.1 Code Conciseness versus I/O Efficiency

Programmers commonly use frameworks, like Thrift [6], to hide the boilerplate network code behind
normal function calls. This improves code conciseness but not I/O efficiency. There are essentially
two ways to improve I/O latency: by reducing the number of I/O calls and through concurrency.

To reduce the number of I/O calls in a program, one can remove redundant calls and batch
multiple calls to the same service into a single one. Redundant calls occur naturally in concise
code because such a code style fosters a modular structure in which I/O calls can happen inside
different functions. The programmer should not have to, e.g., introduce a global cache to reuse
results of previous I/O calls. This would add the optimization aspect directly into the algorithm
of the application/service, making the code harder to maintain and extend, especially in combi-
nation with concurrency. Batching, on the other hand, does not necessarily reduce the amount of
data transferred but does decrease resource contention. A batched request utilizes only a single
HTTP connection, a single socket on the server machine and a single connection to the database.
If all services batch I/O then this can substantially decrease contention in the whole infrastruc-
ture. Network performance dramatically benefits when multiple requests are batched into a single
one [168].

As a simple example, consider a web blog that displays information on two panes. The main
pane shows the most recent posts and the left pane presents meta information such as the headings
of the most frequently viewed ones and a list of topics each tagged with the number of associated
posts. The blog service is then responsible of generating the HTML code. To this end, it fetches
post contents and associated meta data via I/O from other (database) services at various places in
the code. We implemented the database service for our blog using Thrift and introduced a single
call to retrieve the contents for a list of posts. Figure 4.2 compares the latency of this batch call
with a sequential retrieval of the blog posts. The batched call benefits from various optimizations
such that retrieving 19 (4 kB) blog posts becomes almost 18× faster. Note that batched retrievals
with a larger latency cannot be seen in the plot because of the scale.

A concurrent program can be executed in parallel to decrease latency. When the concurrent
program contains I/O calls, these can be performed in parallel even if the computation is executed
sequentially. A concurrent execution of the program can fully unblock computation from I/O, but
is at odds with a reduction of I/O calls. To reduce I/O calls, they need to be collected first which
removes the concurrency between the calls. Not all I/O calls can be grouped into a single one,
for example if they interface with different services. Such calls would now execute sequentially. In
order to benefit from concurrency, a batching optimization must preserve the concurrent program
structure, not only between the resulting I/O calls but also between said calls and the rest of the
computation.

To introduce concurrency, the developer would have to split up the program into different
parts and place them onto threads or event handlers. Threads use locks which can introduce
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Figure 4.2: Latency reduction via batching in a simple microservice for a blog.

deadlocks [143] and event-based programming suffers from stack ripping [5]. There is a long debate
in the systems community which of the two approaches provides the best performance [219, 175].
Programming with futures on the other hand, needs the concept of a monad which most developers
in imperative languages such as Java or even functional languages such as Clojure struggle with [71].
All of these programming models for concurrency introduce new abstractions and clutter the code
dramatically. Once more, they lift optimization aspects into the application code, resulting in
unconcise code.

We argue that a compiler-based approach is needed to help provide efficient I/O from concise
code. State-of-the-art approaches such as Haxl [155] and Muse [130] do not fully succeed to provide
both code conciseness and I/O efficiency. They require the programmer to adopt a certain pro-
gramming style to perform efficient I/O. This is due to the fact that both are runtime frameworks
and require some form of concurrent programming solely to batch I/O calls. Both frameworks fall
short on exposing the concurrency of the application to the system they execute on.

4.1.2 Contribution

In this paper, we present a compiler-based solution that satisfies both requirements: concise code
and efficient I/O. Our approach, depicted in Figure 4.3, builds on top of two intermediate repre-
sentations: an expression language and a dataflow representation [16]. The expression language
is based on the lambda calculus which we extend with a special combinator to execute I/O calls.
The dataflow representation of an expression is a directed graph where nodes represent operations
of the calculus and edges represent the data transfer between them. The compiler translates a
program, i.e., an expression, into a dataflow graph. To reduce the number of I/O calls, we define
a set of transformations in the expression language which are provably semantic-preserving. This
batching transformation introduces dependencies which block computation from making progress
while I/O is performed. To remove these dependencies, we define transformations on the dataflow
graph. To validate our approach in practice, we implemented it as a compiler and runtime system
for a domain-specific language called Ÿauhau, that can be embedded into Clojure and supports
arbitrary JVM code. For our simple blog example, our transformations improve latency by a factor
of 4×. To evaluate Ÿauhau in the context of more complex microservices, we use a tool that builds
programs along the characteristics of real service implementations. For the generated services in
our experiments our transformations are superior to Haxl and Muse in terms of latency.

The rest of the paper is structured as follows. Section 4.2 introduces the expression IR and
the transformations to reduce the number of I/O calls. In Section 4.3, we define the dataflow
IR and the transformations to support a fully concurrent execution. We review related work in
Section 4.4. Section 5.7 briefly describes our Ÿauhau implementation and evaluates it before we
conclude in Section 5.9

4.2 REDUCING I/O ON AN EXPRESSION IR

We now present our expression IR. It is based on the call-by-need lambda calculus [13, 12], which
prevents duplicated calculations. We want this for two reasons. First, our expressions can contain
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Figure 4.3: Overview of Ÿauhau.

Terms:
t ::= x variable
| λx.t abstraction
| t t application
| let x = t in t lexical scope (variable binding)
| if(t t t) conditionals
| fff (x1 . . . xn) apply foreign function f

to x1 . . . xn with n ≥ 0
| io(x) apply I/O call to x

Values:
v ::= o ∈ Vff value in host language
| λx.t abstraction
| [v1 . . . vn] list of n values

Predefined Functions:
map(λx.t [v1 . . . vn]) ≡ [(λx.t) v1 . . . (λx.t) vn]
nth(n [v1 . . . vn . . . vp]) ≡ vn

Figure 4.4: Language definition of the expression IR.

side-effects and duplicating them would alter the semantics of the program. Second, our intention
is to minimize the computation, i.e. the I/O calls in the program expression. Figure 4.4 defines
our IR as an expression language. In addition to the terms of the call-by-need lambda calculus
for variables, abstraction, application and lexical scoping, we define combinators for conditionals,
foreign function application and I/O calls. The combinator fff applies a function f that is not
defined in the calculus to an arbitrary number of values. This addition allows to integrate code
written in other languages, such as Java. It allows to integrate legacy code and makes our approach
practical. For this reason, our values may either be a value in Vff, the value domain of the
integrated language, an abstraction or a list of values. Instead of recursion, we define the well-
known higher-order function map to express an independent computation on the items in a list.
In Section 4.2.2, we argue that map is sufficient to perform I/O optimizations. The nth function
retrieves individual items from a list. We facilitate I/O calls in the language with the io combinator
that takes a request as input and returns a response as its result. Both values, the request and
the response, are defined in Vff. As such, io can be seen as a foreign function call and the
following semantic equivalence holds: io ≡ ffio. A request is a tuple that contains the (HTTP)
reference to the service to be interfaced with and the data to be transferred. A response is a single
value. To denote the I/O call to fetch all identifiers of the existing posts, we write iopostIds. As
an example, Figure 4.5 lists the expression for our blog service. Two requests query the same
service if their references are equal. Since we define this equality over the values instead of the
types, our transformations need to produce code that finds out at runtime which I/O calls can
and cannot be batched. In the remainder of this section, if not stated otherwise we transform
(�) expressions only by applying the standard axioms from the call-by-need lambda calculus [12].
That is, all transformations preserve the semantics of the expression. We first introduce the
transformations that can reduce the number of I/O calls whose evaluation is not influenced by
control flow. Afterwards, we show how even I/O calls in expressions passed to conditionals and
map can participate in these transformations.
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let xmainPane =
ffrender( 5. produce HTML
map(λx.io(ffreqPostContent(x)) 4. fetch post contents

fflast-n(10 3. filter last 10 posts
map(λx.io(ffreqPostInfo(x)) 2. fetch meta data

io(ffreqPostIds()))))) in 1. fetch ids of all posts
let xtopics =
ffrender( 4. produce HTML
fftag( 3. tag topics

map(λx.io(ffreqPostInfo(x)) 2. fetch meta data
io(ffreqPostIds())))) in 1. fetch ids of all posts

let xpopularPosts = tpopularPosts in (omitted for brevity)
let xleftPane = ffrender(ffcompose(xtopics xpopularPosts)) in
ffrender(ffcompose(xmainPane xleftPane))

Figure 4.5: Lambda expression for the blog example.

4.2.1 I/O Reduction

Intuitively, we can only reduce the number of I/O calls (to the same remote service) inside a group
of I/O calls that are data independent of each other. This means that there exist no direct nor
transitive data dependencies between the calls in this group.

This limits the applicability of our approach. However, we believe it is enough to cover a
great number of use-cases. In future work we plan to investigate how to batch I/O calls with
dependencies, effectively sending part of the computation to a different service, and not only a
simple I/O request.

In order to find such a group of independent calls, we first transform the expression into a form
that makes all data dependencies explicit.

Definition 1. An expression is in explicit data dependency (EDD) form, if and only if it does
not contain applications and each result of a combinator or a (predefined) function is bound to a
variable.

Thus, the data dependencies in the expression are explicitly defined by the bound variables
x1 . . . xn

let x1 = t1︸ ︷︷ ︸
binding

in let x2 = t2 in . . . let xn = tn in xn

Each expression t is a term with a combinator (io, ff, if) or a predefined function, e.g., map, nth.
For example, the construction of the main pane of the web blog in EDD form is as follows:

let x1 = ffreqPostIds() in
let x2 = io(x1) in
let f = λxpostId.let y1 = ffreqPostInfo(xpostId) in

let y2 = io(y1) in y2 in
let x3 = map(f x2) in
let x4 = fflast-n(10 x3) in
let g = λxpostInfo.let z1 = ffreqPostContent(xpostInfo) in

let z2 = io(z1) in z2 in
let x5 = map(g x4) in
let x6 = ffrender(x5) in x6

(4.1)

In order to find independent groups of I/O calls in the EDD expression, we use a well-known
technique called let-floating that is also used in the Haskell compiler [183]. Let-floating allows
to move bindings either inwards or outwards for as long as the requirements for variable access
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are preserved, i.e., no new free variables are created. As such, let-floating is completely semantic
preserving. In our case, we float each I/O binding as much inward as possible, i.e., we delay the
evaluation of I/O calls until no further progress can be made without performing I/O.

let x1 = ffreqPostIds() in 1. mainPane
let x2 = ffreqPostIds() in 1. topics

I/O group
{ let x3 = io(x1) in 2. mainPane

let x4 = io(x2) in 2. topics
e

For the sake of brevity, we use e to denote the rest of the blog computation. At this point, we
perform the final step and replace the group of I/O calls with a single call to the function bio
which performs the batching and executes the I/O. As such the following semantic equivalence
holds:

bio(i1 . . . in) ≡ [io(i1) . . . io(in)] (4.2)

The function is defined using two new (foreign) functions, batch and unbatch:

bio(x1 . . . xn) ::= let y1...m = batch(x1 . . . xn) in

let z1...m = map(λx.io(x) y1...m) in

let y1...n = unbatch(z1...m) in y1...n

We say that variable y1...m stores the list of values that would otherwise be bound to variables
y1, . . . , ym. Since we do not know at compile-time which calls can be batched, batch takes n I/O
requests and returns m batched I/O requests with n ≥ m. Each batched I/O request interfaces
with a different service. A batched request contains a list of references to the original requests
it satisfies, i.e., the positions in the argument list of bio. We assume that this information is
preserved across the I/O call such that unbatch can re-associate the response to the position in
the result list. That is, it preserves the direct mapping between the inputs of batch and the
outputs of unbatch to preserve the equivalence defined in Equation 4.2. Finally, this list needs to
be destructured again to re-establish the bindings:

let y1 = io(x1) in . . . let yn = io(xn) in e
� let y1...n = bio(x1 . . . xn) in

let y1 = nth(1 y1...n) in . . . let yn nth(n y1...n) in e

Note that the order of I/O calls inside an I/O group is normally non-deterministic. This includes
calls with and without side-effects to the same service. But I/O calls that are located in different
functions may nevertheless assume an implicit order, i.e., on the side-effects occurring to the service.
This fosters a modular program design by allowing to add new functionality without making these
dependencies explicit. In order to preserve the consistency of the program, we require that the
service receiving the batch defines the execution order of the contained requests. For example, a
service may define to always execute all side-effect-free requests before side-effecting ones.

4.2.2 I/O Lifting

The lambda calculus does not directly incorporate control flow. For that reason, most programming
languages define at least two additional forms: conditionals and recursion. Instead of relying on
the more general concept of recursion, we base our I/O lifting on the higher-order map function.
The reasoning behind this decision is as follows: We cannot optimize I/O across recursive calls that
strictly depend on each other. From the perspective of the I/O call that is located in a recursive
function, we have to make the distinction whether the recursion is strictly sequential or not. The
higher-order function scan1 is a synonym for a strictly sequential recursion while map does not
define an order on the computation of the results. For the rest of this paper, we assume that the
abstraction passed to scan is strictly sequential and define scan ≡ ffscan.

The if combinator and map function are special because they control the evaluation of the
expression(s) passed to them as arguments. The if combinator may evaluate only one of the two

1scan is a version of fold/reduce that emits not only the result of the last recursion step but the results of all
recursion steps.
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expressions passed to it. The map function applies the expression to each value in the list. Although
we transform the argument expressions into EDD form, I/O calls located inside of them cannot
directly participate in the rest of the I/O-reducing transformations. To enable this, we need to
extract, i.e, lift, I/O calls out of these argument expressions while still preserving the evaluation
semantics. To this end we use the following two simple and semantic-preserving rewrites:

if(c io(x) io(x)) ≡ io(x) (4.3)

map(λx.io(x) [v1 . . . vn]) ≡ [io(v1) . . . io(vn)] (4.4)

In general, instead of the expressions io(x) and λx.io(x) on the left-hand side of these rules we
could find arbitrary expressions. The challenge is to find a chain of transformations that creates a
form where the expression passed to an if or a map is only an I/O call, as in rules 2 and 3.

We proceed in two steps. At first, we explain how to transform an expression into a form with
three individual parts, where one of them contains solely an I/O call. Afterwards, we use this new
form to extract I/O calls out of an if and a map using the rewrite rules defined above.

We start with an arbitrary expression in EDD form and use a concept called lambda lifting [125].
Figure 4.6 visualizes the transformations. Figure 4.6a shows an EDD expression in a form where
the right-hand side of the jth binding applies an I/O call to the variable xj−1 bound in the j−1th
binding. Without loss of generality we assume that tj = io(xj−1) because we can find this form
via let-floating. In Figures 4.6b, 4.6c and 4.6d, we apply the lambda lifting transformations in
order to devise an expression with three individual functions: the computation of the request (f),
the I/O call (g), and the continuation of the computation (h). To lambda lift the expression tj
that executes the I/O call in Figure 4.6b, we

1 create an abstraction for tj that defines all its free variables, in that case xj−1, as arguments
and bind this abstraction to g,

io(xj−1)→ g = λxj−1.io(xj−1)

2 apply g in place of tj and
tj → g xj−1

3 reconstruct the lexical scope for the rest of the computation ej+1...n.2

let xj = g xj−1 in ej+1...n

In Figure 4.6c, we lift the computation of the request e1...j−1 and in Figure 4.6d the continuation
of the computation on the result of the I/O call ej+1...n. To cover the general case, we assume
that ej+1...xn

does not only contain applications to the I/O result xj but also to all other variables
x1, . . . , xj−1 in its scope. To provide them in the lexical scope for the application to h, the lambda
lifting of e1...x−1 returns them from f and rebinds them after the application. The analysis to
reduce this set of free variables to the ones actually used in ej+1...n is straightforward and therefore
left out. With this process, we effectively created an expression that captures the three parts as
individual functions.

In the final step, we apply this approach to expressions passed to if and map such that we
can extract the application of g, i.e., the I/O call. We abstract over the specific combinator or
function with a combinator c that takes a single expression as its argument. We focus solely on
the applications and leave out the abstractions and the reconstruction of the lexical scope x1 . . . xn
from x1...j−1. For c, we define the following semantic equivalence:

c(let x1...j−1 = f x0 in
let xj = g xj−1 in
let xn = h x1 . . . xj
in xn)

≡

let x1...j−1 = c(f x0) in
let xj = c(g xj−1) in
let xn = c(h x1 . . . xj)
in xn

That is, passing a single expression to c is semantically equivalent to evaluating c on each indi-
vidual part of it. This holds under the premise that the individual applications of c preserve the

2We use the notation e1...n to refer to the part of the expression defined in Figure 4.6a that binds the results
of the terms t1 . . . tn to variables x1 . . . xn.
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let x1 = t1 in
let x2 = t2 in

...
let xj−1 = tj−1 in
let xj = io(xj−1) in
let xj+1 = tj+1 in

...
let xn = tn in xn

let g =
λx′j−1.(io(x

′
j−1)) in

let x1 = t1 in
let x2 = t2 in

...
let xj−1 = tj−1 in
let xj = g xj−1 in
let xj+1 = tj+1 in

...
let xn = tn in xn

(a) Isolated IO form (b) Lifting I/O

let f = λx′0.(
let x1 = t1 in
let x2 = t2 in

...
let xj−1 = tj−1 in
[x1 . . . xj−1]) in

let g = λx′j−1.(io(x
′
j−1)) in

let x1...j−1 = f x0 in
let x1 = nth(1, x1...j−1) in

...
let xj−1 = nth(j − 1, x1...j−1) in
let xj = g xj−1 in
let xj+1 = tj+1 in

...
let xn = tn in xn

let f = λx′0.(
let x1 = t1 in
let x2 = t2 in

...
let xj−1 = tj−1 in
[x1 . . . xj−1]) in

let g = λx′j−1.(io(x
′
i−1)) in

let h = λx′1 . . . x
′
j .(

let xj+1 = tj+1 in
...

let xn = tn in xn) in
let x1...j−1 = f x0 in
let x1 = nth(1, x1...j−1) in

...
let xj−1 = nth(j − 1, x1...j−1) in
let xj =g xj−1 in
h x1 . . . xj

(c) Lifting Request Computation (d) Lifting Continuation

Figure 4.6: We extract an I/O call out of an expression (Fig. 4.6a) using lambda lifting. In
this process, we split the expression into three parts: the I/O call g (Fig. 4.6b), the computa-
tion of the request f (Fig. 4.6c), and the continuation of the computation with the response
h (Fig. 4.6d). To extract one of the parts, we create an abstraction, apply it individually and
recreate (destructure) the original lexical scope.

operational semantics of the single application. When c is a conditional if(tcond ttrue tfalse), this
requires that the individual if applications use the same condition result bound to xcond:

let x1...j−1 = if(xcond (ftrue x0) (ffalse x0)) in
let xj = if(xcond (gtrue xj−1) (gfalse xj−1)) in
let xn = if(xcond λ.(htrue x1 . . . xj) λ.(hfalse x1 . . . xj))
in xn

The very same concept applies to the map function. Since map returns a list instead of a single
value, the variable x[j]m denotes the list of m results where each would have been bound to variable
xj .

let x[1...j−1]m = map(λx0.f [v1 . . . vm]) in
let x[j]m = map(λxj−1.g xj−1 x[j−1]) in
let x[n]m = map(λx1 . . . xj .h x1 . . . xj x[1...j]m)
in x[n]m
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For both, if and map, the application of g reduces via beta reduction to a single I/O call. That
is, it matches the left-hand side of equations 2 and 3 such that we can lift the I/O call out of
the expressions. Our I/O lifting works for a single c at a time but we can apply it again to the
resulting expression to handle deeply nested combinations of if and map. In case of conditionals,
we assumed that ttrue and tfalse both have an I/O call. If either expression does not perform an
I/O call, we simply add one to it that executes an empty request, i.e., does not perform real I/O,
and filter it out in bio. This allows optimizing the true I/O call on the other branch. Note the
importance of the map function: since the same expression is applied to all m values in the list, it
has the potential to reduce m I/O calls to one. Further note that our concept of lifting expressions
is not restricted to I/O calls. It is more general and can lift other foreign function calls or even
expressions for as long as there exists a semantic equivalence in the spirit of Equations 2 and 3.

4.3 A DATAFLOW IR FOR IMPLICIT CONCURRENCY

Our expression IR has no explicit constructs for concurrency such as threads, tasks or futures.
This is on purpose: Our intention is to hide concurrency issues from the developer and let the
compiler perform the optimization. The expression IR builds upon the lambda calculus, which is
well-suited for concurrency. The very essence of the Church-Rosser property, also referred to as the
diamond property, is that there may exist multiple reductions that all lead to the same result [12].
During reduction, a step may occur where more than a single redex (reducible expression) exists.
This can only be the case when these redexes are (data) independent of each other. To capture
this essential property, we lower our expression IR to a dataflow IR.

4.3.1 From Implicit to Explicit Concurrency

Dataflow is an inherently concurrent representation of a program as a directed graph where nodes
are computations and edges represent data transfer between them. As such, we present our dataflow
IR in an abstract fashion, as an execution model for exposing concurrency. For a concrete concur-
rent or even parallel implementation, a compiler back-end can map this graph either to threads and
queues [148] or to processors and interconnects, for example on an FPGA [215]. For this paper,
we implemented the threads-and-queues version. The details are beyond the scope of this paper.

The Dataflow IR We define our dataflow IR in Figure 4.7a. The basic dataflow elements are
nodes, edges and ports. A dataflow node receives data via its input ports to perform a computation
and emits the results via its output ports. Such a computation can correspond to foreign function
or I/O calls, as well as to one of the special dataflow or predefined value functions. Data travels
through the graph via the edges where an edge originates at an output port and terminates at an
input port.

An input port can only be connected to a single edge while an output port can have multiple
outgoing edges. An output port replicates each emitted value and sends it via its outgoing edges
to other nodes. Typical dataflow nodes dequeue one value either from one or all their input ports,
perform a computation and emit a result. That is, they have a 1−1 correspondence from the
input to the output, very much like a function. But dataflow nodes are free to define their own
correspondence. For example, a node that retrieves a value from one or all its input ports but
emits N values before retrieving the next input value has correspondence 1−N . The opposite N−1
node retrieves N values from one or all its input ports and only then emits a single result value.
This correspondence is depicted by the color of the node in our figures. In order to support this
concept, a node is allowed to have state, i.e., its computation may have side-effects. We define a
list of 1−1 dataflow nodes that allow control flow and enhance concurrency. The ctrl node takes
a boolean and turns it into a control signal that states whether the next node shall be executed
or not. If the control signal is false then the node is not allowed to perform its computation and
must discard the data from its input ports. The not node implements the negation of a boolean.
The sel (select) node receives a choice on its bottom input port that identifies the input port from
which to forward the next data item. The ds (deterministic split) node may have any number of
output ports and forwards arriving packets in a round-robin fashion. The dm (deterministic merge)
node may have any number of input ports and performs the inverse operation. Additionally, we
define three nodes to operate on lists. The len−[] computes the size of a list. The [] is a 1−N
node that receives a list and emits its values one at a time. In order to perform the inverse N−1
operation, the  [] node first receives the number N on its input port on the top before it can
construct the result list.
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Dataflow Elements:
d ::= 1-1 node
| edge
| port
| 1-N node

| N-1 node

Dataflow Functions (/Nodes):
| ctrl data to control signal

| not negation

| sel selection

| ds det. split

| dm det. merge

Predefined Value Functions:
| len-[] length of list

| []~> list to stream

| ~>[] stream to list

(a) Dataflow IR

Combinators:
ff 7→ ff foreign function call

io 7→ io I/O call
Terms:

x 7→ variable

t 7→ term

let x = t in t 7→ x lexical scope

fff (x) 7→ ffx apply ff-call f to x

io(x) 7→ iox apply I/O call to x
Control Flow:

if(t t t) 7→ sel
ctrl

ctrlnot

Predefined Functions:

map(λx.t [v1 . . . vn]) 7→ …

[]~> ~>[]
[v1…vn]

len-[]

ds

…

dm…

(b) Translation

Figure 4.7: Definition of the dataflow IR and the translation from the expression IR to the
dataflow IR.

Lowering Expressions to Dataflow From an expression in EDD form we can easily derive
the corresponding dataflow graph, as shown in Figure 4.7b. Each term on the right-hand side of a
binding form translates to a node. In EDD form this can only be an application of a combinator, a
conditional or a call to one of the pre-defined functions. The definition of dataflow nodes perfectly
matches the semantics of our ff and io combinators because both may have side-effects. Since both
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…

io

io
batch… unbatch

…

[]~> ~>[]
len-[]

ds

…

dm…

Figure 4.8: The dataflow graph for concurrent I/O.

require only a single argument, the corresponding nodes define one input port and one output port
with a 1−1 correspondence. Each variable translates into an arc. More specifically, each application
to a variable creates a new edge at the same output port. An unlabeled ellipse denotes an abstract
term which translates to a subgraph of the final dataflow graph. In order to translate control
flow into dataflow, we turn the result of the first term into a control signal and send it to the
subgraph from the second term. The subgraph for the third term receives the negated result as
a signal. Therefore, the subgraph for the second term computes a result only if the subgraph of
the first term emitted a true value. Otherwise, the subgraph for the third term performs the
computation. The translation of the map function first streams the input list and then dispatches
the values to the replicas of the subgraph derived from t. The subgraph results are again merged
and then turned back into a list that is of the same length as the input list. Computation among
the replicas of the subgraph of t can happen concurrently. To achieve maximum concurrency, the
number of subgraphs needs to be equal to the size of the input list. This is impossible to achieve
at compile-time because the size of the list is runtime information. So we need to make a choice
for the number of replicas at compile-time and route the length of the input list to the node that
constructs the output list. For both terms, the conditionals and the map function, we assume that
the terms passed as arguments do not contain any free variables. The approaches to do so can be
found elsewhere [215]. In this paper, however, we focus on concurrency transformations.

4.3.2 Concurrent I/O

We introduce concurrency for the bio function in two steps. First, we translate it into a dataflow
graph with concurrent I/O calls. Then we define a translation that also unblocks the rest of the
program.

The translation exploits the fact that a dataflow node can have multiple output ports while
a function/combinator in our expression IR can only return a single value. Most programming
languages support syntactic sugar to support multiple return values. The concept is referred to as
destructuring and allows binding the values of a list directly to variables y1 . . . yn such that

let y1...n = bio(x1 . . . xn) in
let y1 = nth(1 y1...n) in . . . let yn = nth(n y1...n) in e

::= let y1 . . . yn = bio(x1 . . . xn) in e

In languages such as Haskell and Clojure, destructuring desugars into calls to nth just as in our
expression IR. But the destructuring version captures very well the concept of multiple output
ports for the bio node in the dataflow graph, one for each value in the list. This makes the
resulting dataflow graph more concise.

Since the definition of bio uses map we can directly translate it into dataflow as shown in
Figure 4.8. The resulting graph expresses the concurrency of the I/O calls but the  [] node
requires each I/O call to finish before it emits a result. That is, the computation that depends on
I/O calls that finished early is blocked waiting for slower I/O calls that it does not depend upon.

In order to get rid of this dependency, we remove the  [] node and change the unbatch node
to receive individual I/O responses instead of the full list. Since the unbatch does not require all
I/O responses to perform this operation, it can forward results as soon as it receives them.

As an example, Figure 4.9 shows the dataflow graph of the EDD expression (4.1) that computes
the main pane.

4.3 A Dataflow IR for Implicit Concurrency 71



ffreqPostIds io
x1

ffreqPostInfo
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Figure 4.9: The dataflow graph for EDD expression 4.1 from Section 4.2.1 that computes the
main pane.

4.4 RELATED WORK

As of this writing, two solutions exist in the public domain for optimizing I/O in micro-service-
based systems. Facebook’s Haxl [155], is an embedded domain-specific-language (EDSL) written in
Haskell. Haxl uses the concept of applicative functors to introduce concurrency in programs and to
batch I/O requests at runtime. Another existing framework is the closed-source and unpublished
system Stitch, which is Twitter’s solution written in Scala and influenced by Haxl. Inspired by
Stitch and Haxl, the second framework in the public domain is Muse [130, 129], written in Clojure.
Muse implements a so-called free monad [207] to construct an abstract syntax tree (AST) of the
program and interpret it at run-time. To enable the AST construction, a developer using Muse
has to switch to a style of programming using functors and monads. While these are fundamental
concepts in Haskell, this is not the case for Clojure. Hence, the compiler can not help the developer
to ensure these concepts are used correctly, making Muse programs hard to write.

Both Haxl and Muse significantly improve the I/O of systems with language-level abstractions.
However, in contrast to Ÿauhau, these abstractions still have to be used explicitly. Furthermore,
Haxl and Muse are limited in terms of concurrency. They both don’t allow a concurrent execution
of computation and I/O by unblocking computation when some I/O calls have returned.

On the side of dataflow, there exists a myriad of systems including prominent examples such
as StreamIt [211], Flume [39] or StreamFlex [198]. Programs written for these engines do not
perform extensive I/O. They usually comprise two I/O calls, one for retrieving the input data
and another one for emitting the results. Compiler research hence focuses primarily on optimizing
the dataflow graph to improve parallel execution [117]. In contrast, our focus relies on enabling
efficient I/O for programs that contain a substantial amount of I/O calls spread across the dataflow
graph. Our approach is intertwined with the expression IR, which contains additional semantic
information. Thus, leveraging this additional information allows us to apply provably semantic-
preserving transformations in the presence of nested control flow structures. To the best of our
knowledge, this is unique to Ÿauhau.

4.5 EVALUATION

To evaluate Ÿauhau in terms of I/O efficiency and compare it against Muse and Haxl, we imple-
mented Ÿauhau by defining a macro in Clojure. The Ÿauhau macro takes code as its input that
adheres to the basic forms of the Clojure language which is also expression-based. Figure 4.10
gives a brief overview of the language constructs. For example, the function that builds the main
pane of the blog would be written as follows:

72 Chapter 4 Compiling for Concise Code and Efficient I/O



Terms:
x 7→ x

(fun [x] t) ≡ #(t) 7→ λx.t
(t t) 7→ t t

(let [x t] t) 7→ let x = t in t
(if t t t) 7→ if(t t t)

(f x1 ... xn) 7→ fff (x1 . . . xn)
(io x) 7→ io(x)

Figure 4.10: Mapping the terms of the Clojure-based Ÿauhau language to our expression IR.

Table 4.1: Execution times of the Blog Example

Version seq base batch full

Time [ms] 275± 25 292± 19 79± 21 66.5± 5.2

(fn mainPane []
(render (map #(io (reqPostContent % src1))

(last-n 10
(map #(io (reqPostInfo % src2))

(io (reqPostIds src3)))))))

In order to abstract over the types of the requests, we prefix (foreign) functions with req that
create a certain type of request. For example, reqPostInfo takes the identifier of a post as an
argument and the reference to a source (src2) to generate the corresponding request.

As a first evaluation, we implemented the blog example using Clojure, and ported it to Ÿauhau3.
Table 4.1 shows the averages and estimated standard deviations over 20 runs of this example in
four variants: the baseline sequential Clojure version (seq), a Ÿauhau version without applying any
transformation (base), only with the batching transformation (batch), and with both, batching and
concurrency (full). We see that the overhead introduced through Ÿauhau is within the standard
deviation of the experiment, while the transformations significantly improved I/O efficiency. These
results affirm the benefits of batching shown in Figure 4.2.

Although the simple blog example already shows the benefits from batching, we expect Ÿauhau’s
rewrites to shine in real-world applications where dozens of microservices interact in complex ways.
Writing such microservice-based systems and obtaining real-world data is a difficult undertaking
on its own, into which large companies invest person-decades. Thus, the individual services are
usually intellectual property and not on the public domain. This is a general problem that extends
beyond this work and hinders research in this area.

4.5.1 Microservice-like Benchmarks

Due to missing public domain benchmarks, we use a framework for generating synthetic microser-
vices [91]. It generates programs that aim to resemble the typical structure of service-based appli-
cations. To build such benchmark programs, the tool generates source code out of random graphs.
In this way, it can serialize the graph into comparable code in different languages.

The random graphs are based on the concept of Level Graphs, which are directed acyclic
graphs where every node is annotated with an integer level. These graphs are useful to capture the
structure of computation at a high level of abstraction. We use l(v) to denote the level of the node
v. A level graph can only contain an edge (v, w) if l(v) > l(w). Levels aim to capture the essence
of data locality in a program. The basic concept behind the random level graph generation, thus,
lies in having non-uniform, independent probabilities of obtaining an edge in the graph. In our
benchmarks, a random level graph has an edge (v, w) with probability 2l(v)−l(w) < 1.

3https://tud-ccc.github.io/yauhau-doc/
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Figure 4.11: An example of a Level Graph.
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Figure 4.12: Results: Baseline.

To generate code, nodes are annotated with a label for the type of code they will represent.
These labels are also assigned independently at random. We use four different annotation types:
compute(ffcompute), req->io (to simulate io(ffreq*(. . .))), subfunction and map. The first two
generate code that simulates external function calls, involving computation or I/O and foreign
function calls. Subfunction/map nodes generate a call to/a map over a local function, for which a
new (small) random graph is generated in turn.

In order to generate code from a code-annotated Level Graph, we only need to traverse the nodes
and generate functions with dependencies in accordance to the graph. If there are subfunctions
labeled as such in the graph, we need to do this recursively for all corresponding subgraphs as well.
The example of Figure 4.11 can be converted into the following Clojure code, omitting the code
generated for subfun-3.

(let [x4 (req->io "source" 100) x5 (compute 100)
x6 (req->io "source" 100) x7 (compute 100)]

(let [x3 (subfun-3 x4 x5 x7)]
(let [x1 (compute 100 x4)

x2 (req->io "source" 100 x3)]
(req->io "source" 100 x1 x2 x6))))

Generating Haskell code for Haxl is in fact very similar.

4.5.2 Experimental Setup

We designed three experiments to measure different aspects of Ÿauhau and compare it to state-of-
the-art frameworks. The size of the generated code and the included number of I/O calls is on par
with numbers from Facebook published in [155]. We performed every measurement 20 times with
different (fixed) random seeds and report the averages.

The first experiment, baseline, shows a general comparison of the batching properties of
Ÿauhau, Haxl and Muse, comparing to an unoptimized sequential execution (seq). For this, as
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Table 4.2: Experimental Setup Level Graphs

exp. indep. var. dep. var. # lvl. pr. subf.

baseline # lvl. # I/O calls 1-20 0
conc. I/O # lvl. latency 1-20 0
modular pr. subf. # I/O calls 20 0-0.4

the independent variable (indep. var.) we change the number of levels in a graph (# lvl.), between
1 and 20, and for each number of levels we look at average number of I/O calls (# I/O calls) as
the dependent variable (dep. var.).

The second experiment, concurrent I/O, is similar to the baseline comparison, with a crucial
difference in the structure of the graphs. We add an independent io operation that directly connects
to the root of our level graphs. This is meant to simulate an I/O call that has a significant latency
(of 1000 ms), several times slower (at least 3) than the other I/O calls in the program. In a
production system, the cause can be the retrieval of a large data volume, a request that gets
blocked at an overloaded data source or communication that suffers network delays. To measure
the effects of this latency-intensive fetch, instead of the total number of I/O calls, we report the
total latency for each execution.

Finally, the third experiment, modular, aims to measure the effect of having function calls
in the execution. We fix the number of levels (20). Then, we generate the same graph by using
the same seed, while increasing the probability for a node to become a function call when being
annotated for code generation (pr. subf.). This isolates the effect of subfunction calls on batching
efficiency. We do this for 10 different random seeds and report the averages.

Table 4.2 summarizes these experiments. Our experiments ran on a machine with an Intel
i7-3770K quad-core CPU, running Ubuntu 16.04, GHC 8.0.1, Java 1.8 and Clojure 1.8.

4.5.3 Results

Figure 4.12 shows the baseline comparison, see Table 4.2. The plot shows that batching in Ÿauhau
is superior to Haxl and Muse because our rewrites manage to batch across levels in the code. In
this set of experiments, Ÿauhau achieves an average performance improvement of 21% over the
other frameworks for programs with more than a single level. To maximize batching, Muse and
Haxl require the developer to optimally reorder the code, ensuring the io calls that can be batched
in one round are in the same applicative-functor block. This essentially contradicts the very goal of
Haxl and Muse, namely, relieving the developer from having to worry about efficiency and instead
focus on functionality.

With Version 8, the Haskell compiler GHC introduced a feature called applicative-do [158],
which allows developers to write applicative functions in do-notation. This should, in principle,
provide an ideal execution order for usage of applicative functor code. We tested different variants
of code for Haxl. As expected, applicative-do code produced the exact same results as code written
with explicit applicative functors, and better than the variants using a monadic-do. For this reason,
we report the results only as “haxl”, ignoring the worse results obtained from monadic-do code.

Figure 4.13 compares Haxl to Ÿauhau with and without support for concurrent I/O, showing
how it can be indeed very beneficial. To make the comparison fair, we add asynchronous I/O
support to Haxl using the async package. It internally uses forkIO to fork threads and execute
the requests in a round concurrently, effectively putting the fork back into Haxl. After retrieving
all responses, the program continues its execution. On the other hand, the non-strict unbatch
dataflow node from Ÿauhau’s concurrent I/O executes the slow io operation in parallel to the
computation in the rest of the graph. In particular at level 7, the plot starts to depict the full
1000 ms latency of the slow service as the difference between of Ÿauhau and Ÿauhau (conc I/O).
This is the case when there are enough I/O rounds to displace the slow data source as the latency
bottleneck.

Finally, the results of the modular experiment can be seen in Figure 4.14. It clearly shows
that subfunctions have an effect on efficiency in the other frameworks, but none in Ÿauhau. The
plot shows that the more modular the program, the less efficient the other frameworks become in
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terms of batching I/O requests. This is unfortunate because introducing a more modular structure
into the program is one way to simplify complex applicative expressions. This is not only true for
the explicitly applicative program versions but also for the implicit applicative do-desugaring in
GHC 8. Since Ÿauhau flattens the graph, including the graphs for subfunctions, it avoids these
problems through the dataflow execution model. Thus, it is also efficient with programs written
in a modular fashion using subfunctions. Note that we did not investigate the scalability of this
flattening for very large programs. With the moderate size of microservices we do not expect this
to be a problem. In case it is, devising a partial flattening structure favoring I/O calls would be
straightforward.

4.6 CONCLUSION AND FUTURE WORK

Todays internet infrastructures use a microservice-based design to gain maximum flexibility at
the cost of heavy I/O communication. In this paper, we argued that a compiler can provide the
necessary I/O optimizations while still allowing the developer to write concise code. To support this
claim, we presented our compiler framework Ÿauhau that uses two intermediate representations.
The first is an expression IR that allows to define semantic preserving transformations to reduce
the number of I/O calls. The second is a dataflow IR which is concurrent by design and allows to
unblock computation from I/O. We implemented Ÿauhau on the JVM in Clojure and show that
it can speedup the latency of even simple services, e.g., for constructing a web blog, by almost
4x. To compare against state-of-the-art approaches, we used a microservice benchmarking tool to
generate more complex code. For the microservices that we generated in the benchmark Ÿauhau
performs 21% less I/O than runtime approaches such as Haxl and Muse.
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Ÿauhau prioritizes batching over concurrency. This might be the best default solution, but it
is not clear it is always ideal. In future work we plan to address this trade-off. Furthermore, our
technique for batching I/O is only sound for independent calls to the same data source. We plan
to investigate the possibility of batching multiple calls to the same data source, i.e., effectively
sending part of the computation to a different service, and not only a simple I/O request.

Postscript Our EDD form is well-known in the functional programming language
community as administrative normal form (ANF) [79]. However, we are unaware of a
compiler that exploits ANF to derive a dataflow graph. Note that this paper, did not
refer to stateful functions but rather to stateless ones. This was due to the fact that the
nature of the functions did not matter for the transformations that we were targeting in
this paper. We claim that the transformations remain valid even when functions have
side-effects to their own private state. We have presented and formalized recently [74,
73] that a stateful function in our programming model behaves like a state monad
(in Haskell) [223, 141]. That is, although the monad represents a computation with
side-effects, it integrates into the program as a side-effect free function and preserves
determinism. This is possible because side-effects are only local which is also true
for our stateful functions. Based on this reasoning, it is possible to show that the
transformations are semantic-preserving even when the programming model contains
stateful functions. In fact, we also restricted ourselves to programs that only perform
read options. Supporting write operations remains an open research topic.
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5 A FRAMEWORK FOR THE
DYNAMIC EVOLUTION OF
HIGHLY-AVAILABLE
DATAFLOW PROGRAMS

Prelude This section covers the paper with the same title co-authored by Pascal
Felber that I presented at the International Middleware Conference in 2014 [75]. The
work addresses dataflow runtime system in highly loaded servers. Instead of parallelism,
it presents an algorithm for the dynamic evolution of the program. Dynamic evolution,
i.e, updating a program while it is executing without using additional hardware, is a
particularly important problem. Many software systems today are provided as software
as a service in a cloud-based setting. If the same system can service many customers
then this reduces the deployment costs. At the same time, this puts much more load
on a single program such that downtimes for updates are not an option anymore. This
paper argues that a program that executes on the abstraction of a dataflow graph can
update, extend or delete subgraphs without requiring any additional synchronization.
Therewith, we deliver a very important argument for a dataflow-based runtime system.

5.1 INTRODUCTION

Context and Motivations. The recent evolutions in micro-processor design [47] have brought
increasing numbers of cores into modern computers. While this provides higher computing power
to applications, it also introduces several challenges related to concurrent programming. First,
we need the right tools to develop concurrent applications that are both correct and efficient,
i.e., can exploit the parallel computing capacities of the cores. Second, the added complexity
of concurrent programs make debugging, testing, and software evolution much harder than for
sequential programs, in particular when dealing with dependable systems.

In this paper, we tackle the problem of software evolution for applications that have availability
requirements and must remain operational on a 24/7 basis. This is an important challenge because
on the one hand multi-cores provide us with additional resources to scale up, e.g., by dedicating
additional cores for concurrently servicing more clients; on the other hand, when an application
must be updated to a new version, orchestrating the restart of all the components running on
multiple cores and/or nodes is very challenging if service must not be interrupted. Therefore the
“live update” problem can be studied from a new perspective in the light of modern multi-/many-
core and Cloud architectures.
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Figure 5.1: Graceful restart of a Jetty web server with the default configuration and 38 concur-
rent clients requesting one out of 10000 files of 20 kB size randomly every 20ms.

To illustrate the impact of software reconfiguration on availability, we have experimented with
Jetty’s web server,1 a widely used application designed for servicing thousands of requests per
second in highly concurrent settings. For every reconfiguration or activation of a new feature,
Jetty needs to be gracefully shut down and restarted (new connection requests are dropped but
requests in progress are allowed to finish). Restarts result in loss of computational state and
persistent connections, hence penalizing request latency and throughput, and ultimately leading
to customer dissatisfaction. Figure 5.1 shows a scenario in which the default configuration of
Jetty’s cache size (2,048 files) leads to increasing delays for clients. This issue could be resolved
by increasing the cache size (10,000 files), but resulted in a measured downtime of 8 s which is
substantial considering an average request latency of 1ms. Hence, an execution environment that
allows us to update or reconfigure critical application services with negligible overheads and no
interruption of service is highly desirable.

Live Update. Early approaches to live update rely on restarting a new instance of the program
and transferring its state [105]. However, the costs of redundant hardware and the overheads of
state transfer and synchronization can be substantial [107]. Focus has therefore turned towards
the live update of running programs in-place, coined as dynamic software updates (DSU) [116].
Exchanging and altering an executing program without breaking correctness a particularly chal-
lenging [194]. In this paper, we use the notion of program state consistency to reason about
update correctness [89]. The live update process identifies three key challenges when dealing with
object-based systems as considered here: state transfer, referential transparency, and mutual ref-
erences [78].

The first step is to find a quiescent state where an update can be applied safely. This is
especially challenging in highly concurrent systems where many threads2 access shared state at
any given time. Hence, before performing a state transfer, we need to identify (i) the threads
accessing the shared state to be updated and the (ii) time at which these accesses occur. We refer
to these two elements of state quiescence detection as participants and appointment respectively.

Prominent approaches for live update systems force developers to introduce barriers into the
program to achieve quiescence [107, 184]. In addition to the blocking behaviour (i.e., forcing
threads to idle during update) and the performance penalty during normal execution, this approach
is hard to scale to large multi-threaded programs because of their complexity and the risk of
synchronization hazards (e.g., deadlocks) [90]. Further, while the timeliness of updates has been
identified as a requirement [166], no live update mechanism we are aware of is based on a solid
definition of time.

Another important challenge is to preserve referential transparency in the process of updating
all pointers to the new state, i.e., one must still be able to consistently access state while the update
is in progress.

Live updates become even more complicated when mutual dependencies between the compo-
nents exist. Consider the example of a simple web server handling requests concurrently in a
pipeline parallel fashion, as illustrated in Figure 5.2. If we want to change the processing of in-
put/output from blocking to non-blocking (NIO), it is not sufficient to halt only the load and
reply components because data containing file content might exist in between both. After the

1http://www.eclipse.org/jetty/
2We use the terms of threads and processes interchangeably to refer to concurrent execution units.
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Figure 5.2: This simple HTTP server handles requests concurrently in a pipeline parallel fash-
ion. To switch the server from blocking I/O to non-blocking I/O (NIO), we need to change the
load to retrieve a file channel rather than the file content and the reply to use NIO’s sendfile
primitive.

update the reply would not be able to handle these requests.3 Even event-based approaches that
support non-blocking live updates of individual components still have to block when the update
spans more than one component and do not address the problem of undelivered messages [89].

Another desirable property for live updates is to provide location transparency, i.e., seamlessly
handle updates of components irrespective of whether they are executing locally or remotely. This is
particularly important in cloud computing environments where servers are virtualized and services
can be dynamically relocated to other machines, e.g., for load balancing or fault tolerance.

Finally, most live update systems deal with small security patches. Support for complex updates
to also enhance the system has gained attention only recently [184, 89]. In order to fully enable
dynamic evolution of programs, updates must not be limited to new features inserted at well-defined
points but must support structural program changes.

Contributions and Roadmap. It has been shown that structured software design helps provid-
ing safe and flexible live update capabilities [90]. In light of these observations, we do not aim at
bringing live update capabilities to any existing programs or languages. We instead take the oppor-
tunity to argue for a different type of programming model [47] that can naturally solve the afore-
mentioned challenges of dynamic software evolution: (data)flow-based programming (FBP) [163].
In addition to providing powerful abstractions for multi-core programming and for implicit par-
allel and distributed applications, we strongly believe that FBP offers a promising foundation to
incorporate live updates.

In this paper we make several contributions. We first evaluate the FBP concepts with regard
to the requirements of dynamic software evolution (Section 5.2). We then introduce in Section 5.3
a live update algorithm based on Lamport’s logical time to coordinate mutual dependency updates
in a non-blocking fashion. We present in Section 5.4 FBP extensions for supporting scalable live
updates that require no programmer intervention. In Section 5.5, we extend our algorithm by
enabling unrestricted live updates even to the structure of the dataflow graph itself. We describe
the implementation of our approach in the Ohua dataflow framework in Section 5.6 and present a
case study for the dynamic development of the web server from Figure 5.2 in Section 5.7. We also
evaluate the efficiency, timeliness and overheads of our algorithm for different types of updates.
We finally discuss related work in Section 5.8 and conclude in Section 5.9.

5.2 FBP FOR LIVE UPDATES

FBP can be found at the heart of many advanced data processing systems today where parallel
and concurrent processing is key for scalability: IBM’s data integration systems [123], database en-
gines [63, 93], data streaming [40, 212], declarative network design [151] and even web servers [229].
Our Ohua dataflow framework targets a more general approach by introducing FBP as a parallel
programming model, similar to Cilk [28], but in a truely implicit way: The dataflow dependency
graph is derived from a program written in the functional language Clojure. Dataflow dependency
graphs are widely considered to be a sound basis for parallel computations and their reasoning [4].
Respectively, dataflow represents a good abstraction for our live update algorithms. This section
evaluates flow-based programming as a core foundation to support live updates.

3As a matter of fact, restarting the whole server would also involve discarding such state.
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1 ; classic Lisp-style
2 (ohua (reply (compose (load (parse (read (accept "80"))))))))
3

4 ; or using Clojure’s threading macro to improve readability
5 ; (which transforms at compile-time into the above)
6 (ohua (-> "80" accept read parse load compose reply))

Figure 5.3: Ohua-style HTTP Server Algorithm in Clojure.

1 class Reply extends Operator {
2 // stateless operator
3 @Function Object[] reply(Socket s, String resp) {
4 OutputStreamWriter writer = new OutputStreamWriter(s.getOutputStream());
5 writer.write(resp); // send response
6 writer.close();
7 s.close();
8 return null;
9 }

10 }

Figure 5.4: Ohua-style Operator Implementation in Java.

5.2.1 Referential Transparency by Design

In FBP, an algorithm is described in a directed acyclic4 dataflow graph where edges are referred
to as arcs and vertices as operators. Data travels in small packets in FIFO order through the arcs.
An operator defines one or more input and output ports. Each arc is connected to exactly one
input port and one output port. An operator continuously retrieves data one packet at a time
from its input ports and emits (intermediate) results to its output ports.

In Ohua, the dataflow graph is not explicitly created in the program or via a visual tool as is
the case in other dataflow systems. Instead, it is derived from a functional program implemented
in Clojure where functions represent operators implemented in Java. The language separation is
meant to help the developer to understand the difference between functionality and algorithm.
The algorithm of the web server example of Figure 5.2 is given in Listing 5.3.

In the classic dataflow approach [16, 62], operators are fine-grained stateless instructions. In
contrast, FBP operators are small functional code blocks, which are allowed to keep state. This
programming model is similar to message-passing with actors, which currently gains momentum
in languages such as Scala [101]. FBP cleanly differentiates between functionality such as loading
a file from disk and the web server algorithm: the former is used to implement the latter. FBP
algorithms make reasoning about complex programs easier by hiding the implementation details
(functionality). An operator neither makes any assumptions nor possesses any knowledge about its
upstream (preceding) or downstream (succeeding) neighbours. Therewith, operators are context-
free and highly reusable. As an example, Listing 5.4 shows the implementation of the reply
operator in Ohua.

Finally, an FBP program defines the communication between operators, which at runtime
translates into data dependencies, via arcs at compile-time rather than at runtime. This solves
the problem of concurrent state accesses and allows for an implicit concurrent race-free program
execution. Ohua’s programming model is similar to that of purely functional languages that
provide referential transparency by design, with the major difference that operators are allowed
to keep state. Operators do not however share state, only pointers in the realm of an operator
can point to the state that changes during a live update. For example, Ohua operators can choose
whether they want their state to be managed by the runtime engine or on their own. In the latter
case, Ohua requires getter and setter functionality for state access. This allows us to update all

4While FBP does not define restrictions on the graph structure, we restrict ourselves to acyclic graphs in this
paper for simplicity reasons.
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Figure 5.5: HTTP server handling requests in 3-way parallel.

1 (ohua
2 (let [accepted (accept 80)]
3 (balance 3 accepted (-> read parse load write reply)))

Figure 5.6: Explicit Data Parallelism via Clojure Macros.

operator-managed state pointers via a single function call and respectively preserves the referential
transparency property.

Note that state handling is not exclusively related to live updates but is also required for other
tasks, e.g., checkpointing to implement fault tolerance or operator migration to adapt to varying
workloads. The state of a program is not only defined over the state of the operators but also
includes the in-flight packets among the arcs. Packets stored inside the arcs correspond to function
calls in the synchronous programming model and therefore do not count towards program state,
which is sensitive to live updates. Nevertheless, as seen in the NIO Switch example of Figure 5.2,
in-flight packets become problematic upon mutual dependencies. We defer this problem to the
next section and assume for now that all arcs are drained before such an update can proceed.

5.2.2 Sequential Operator State Access

Although operators are executed concurrently, which introduces implicit pipeline parallelism, con-
current execution of the same operator is not allowed in FBP. Therewith, the only remaining case
where shared state might exist is when replicating an operator to process packets in parallel. Fig-
ure 5.5 shows an example of the web server graph answering requests in a 3-way parallel fashion.
FBP does not however address data parallelism as it has no knowledge on whether a part of a flow
graph can be replicated by splitting the packet flow. Therefore, this form of parallelism cannot
be directly exploited by Ohua’s execution engine. It requires either the help of the developer or a
graph inspection algorithm. Note that, in both cases, parallelism is introduced at the level of the
flow graph and not its runtime representation. For instance, Listing 5.6 relies on a user-defined
balance macro (code omitted) to insert a balance-data operator, replicate the code provided as
the last parameter three times, and create data dependencies to set up the graph in Figure 5.5.

Although, the mapping of operator instances to threads is dynamic, no concurrent execution
of the same operator instance is permitted. Each operator in the graph becomes an independent
instance at runtime. Respectively, operator state access remains strictly sequential and therewith
one can know at any point in time which thread is executing an operator and accessing its operator
state, thus precisely identifying the participants in the state quiescence problem.

5.3 A TIME-BASED ALGORITHM

In order to safely apply a live update, we must first find the right point in time when operator state
is quiescent. Certainly the scheduler has all execution knowledge of which operator is currently
being executed on which thread and which operator is currently inactive. There are, however,
several arguments against involving the scheduler. First, FBP does not declare any scheduler
interface or other scheduling details. Hence, a scheduler-based solution cannot directly leverage
FBP abstractions and would lack generality. Second, FBP does not state how often and when
an operator might return control to the scheduler. As such either the scheduler must forcefully
interrupt operator execution or timeliness of a live update cannot be guaranteed. Most importantly,
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the mutual dependency problem can not be solved using the scheduler, as already explained in the
NIO Switch example of Figure 5.2. Even when the scheduler blocks execution of both the load
and the reply, in order to make sure both operator states are quiescent, packets in between these
two operators expect the old blocking I/O API. The simple solution of draining the packets among
the arcs between the load and the reply once again forces the load, the compose and the reply
to idle while applying the update. Hence, a notion of time with respect to the computation is
required to define a solid concept of timeliness for live updates and perform non-blocking mutual
dependency updates.

5.3.1 The Right Point in Computation Time

Another way to reason about a dataflow graph without violating FBP principles is in terms of a
distributed system, i.e., a set of independent processes (with operators as functionality) communi-
cating with each other by exchanging messages (information packets) via FIFO channels.

Reasoning about time in a distributed system based on the happened-before relationship of
events was described in Lamport’s seminal paper [137]. It provides the foundation for Chandy
and Lamport’s algorithm to capture a global snapshot of a distributed system [41], which defines
the notion of computation time and explains the associated reasoning about the states of the
participating processes. The central idea is to inject a marker into the dataflow to mark a specific
time t in computation in a decentralized fashion. The marker travels along the FIFO channels
of the system. On arrival at a process, the local computational state is at time t as defined by
the happened-before relationship of message arrival events. The process then captures its state
and propagates the marker to all outgoing links. A global snapshot is consistent with the states
of all processes gathered at time t. The algorithm is solely based on the marker concept and the
happened-before relationship of message arrival events at the processes. Further, it operates in a
purely non-blocking fashion as a natural part of data processing and allows us to specify a concrete
point in computation time for operators to capture their state, or in our case apply an update.

5.3.2 Marker-based Update Coordination

Our approach to decentralized update coordination is presented in Algorithm 2. The marker
propagation for mutual dependencies adheres to the principles of Lamport’s snapshot algorithm
to preserve consistency. We extend the algorithm to not only capture the state of an operator on
marker arrival, but also update it. An update is injected as an update marker in the dataflow graph
(see Section 5.4.2). The marker contains the unique identifier of the operator to be updated as well
as the functionality to update its state and the operator implementation. Operators propagate
the update marker from their input to their output ports through the flow graph (Lines 16–22).
Whenever the marker encounters the target operator, the update is performed inline with the
computation (Lines 2-6) at a time t in computation.

In order to coordinate a mutual dependency update, we piggyback in an update marker m as
many markers as there are mutually dependent downstream operators to be updated at the same
point in time. Once m has been applied, these markers are propagated downstream at time t in the
computation (Lines 8–11). Hence, in order to switch our HTTP server flow to NIO (see Figure 5.2),
we submit one marker for the load, which piggy backs another one for the reply operator. At
time t the marker arrives at the load operator. The update is performed and the marker targeted
for the reply is propagated downstream. On its way to its destination the remaining update
marker defines a clear point in time at which the update of the reply is safe to be performed. All
packets sent by the load operator at an earlier time s < t that require the old blocking API are
located downstream of the marker while all packets sent at a later time u > t that require the
new NIO API are upstream. Safety of the update process is guaranteed by the FIFO ordering of
packets inside the arcs and immediate propagation of arriving markers inside the operators (see
Lines 17–19). Finally, the last update marker reaches the reply operator at time t and performs
the update. Both updates were performed without blocking any of the operators.
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Algorithm 2: Marker-based Update Algorithm
Data: operator o := (I,O) consisting of input and output ports; marker m arriving on input port

i ∈ I at time s ≤ t; j the joined representation of all arrived markers m (with the same id)

1 if m arrived on all k ∈ I then
2 if m.target = o.id then // operator update (s = t)
3 oldState ← o.getState();
4 updatedState ← m.updateState(oldState);
5 updatedOp ← m.updateOperator(o);
6 updatedOp.setState(updatedState);
7 if j.dependents 6= ∅ then
8 for dependency marker c ∈ j.dependents do // coordination (enforce update

consistency: s = t)
9 c.setDependent(true);

10 o.broadcastInOrder(c);
11 end
12 else // initialize termination
13 j.setCleanup(true);
14 o.broadcastOutOfOrder(j);
15 end
16 else // marker propagation
17 if j.isDependent() then // consistency (s = t)
18 o.broadcastInOrder(j);
19 else // timeliness (s < t)
20 o.broadcastOutOfOrder(j);
21 end
22 end
23 foreach k ∈ I do k.unblock() ;
24 else
25 if m.isCleanup() then // termination
26 o.broadcastOutOfOrder(m);
27 foreach k ∈ I do k.unblock();
28 ;
29 j ← ∅; // drop all subsequently arriving markers m

30 else // marker join
31 j.dependents ← j.dependents ∪ m.dependents;
32 if m.isDependent() then
33 i.block();
34 j.setDependent(true);
35 else
36 // initial marker detected, no mutual dependency upstream
37 end
38 end
39 end

5.3.3 Marker Joins

Up to now, we assumed that operators only have one input port. Typically, operators with more
than one input port merge or join the data arriving from the different input ports. So does our
algorithm with respect to the piggy-backed markers and its type (Lines 29, 32). According to
Lamport’s algorithm, operators with more than one input port have to wait for the update marker
to arrive at all input ports before it can be propagated (Line 1). Until this point in time, packets
from input ports that have already received the marker must not be dequeued (Lines 30–35).
Note that the algorithm only blocks input ports that received a marker with a dependency to an
upstream update (Lines 9, 30–33).5 Although all input ports have to see a marker before the
propagation is safe, input ports without an upstream update are not blocked as packets arriving

5In our algorithm, blocking does not lead to idling threads but rather restricts the functionality available for
execution.
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Figure 5.7: An extended version of our HTTP server that additionally supports UPDATE re-
quests to the files it provides. An UPDATE of a file shares functionality with a GET whenever
possible and returns the previous version of the updated file.

on these ports are not influenced by the downstream update (Lines 34–36). This seems counter-
intuitive because arcs represent data dependencies and hence a downstream operator should always
depend on all operators upstream. We describe such a scenario in the context of the version of our
HTTP server in Figure 5.7 that was enhanced to handle updates to the provided resources. Similar
to the semantics of data structures in common languages, our server does not only update a file but
also returns the content of the previous version. As such, GET and UPDATE functionality share
operators of the flow graph, e.g., accept, read, load and reply. Both cond operators dispatch
data based on the type of the request. Since, parsing the new content for a resource update might
require more time, we execute this step in a two-way parallel fashion. A mutual dependency update
for the functionality of the parse-post and store operators is injected as an independent marker.
After updating the parse-post operators the adjacent downstream merge performs a marker join
of two dependent markers. In the second merge that funnels UPDATE and GET requests to the
load we encounter the situation where the initial marker from the GET branch does not define an
upstream dependency (Lines 33–35). In this case it is safe to allow further propagation of GET
requests because their further processing remains unaffected by the second part of the mutual
dependency update. Finally, after the dependent marker has arrived at the store and finished
the update, we send a marker to clean up existing markers in the graph (Lines 12–15). This is
required because our propagation algorithm has no knowledge of the structure of the data flow
graph. Therefore, propagation happens via broadcasting the markers. The cleanup marker resolves
the case in our HTTP flow graph where the dependent marker arrives from the GET branch at
the last merge. Here the merge must block this port as it has no knowledge of the location of
the searched target and might be required to coordinate the arriving markers towards a defined
time t. If no marker would arrive among the input ports, the algorithm would deadlock. To avoid
this, we propagate a cleanup marker out of band to penalize processing as little as possible. Once
the merge receives this marker it unblocks all ports and signals that no coordination towards an
update of marker m is required any more (Lines 25–28). It cleans all received update information
and drops all future markers of type m.

5.3.4 Deadlocks

The arrival of a packet on an input port is controlled by the operator algorithm, which requests
packets via its input ports. Therefore, a marker can only arrive at an input port if there are no more
packets in front of it, i.e., it is located at the head of the queue associated with the incoming arc.
The introduction of blocking into marker propagation is an invasive step that directly influences
the operator algorithm. The marker join algorithm is non-deterministic by nature: it allows
arbitrary dequeuing behaviour from all input ports that have not seen the marker yet and blocks
all dequeuing from the rest. As a result, the operator algorithm must adapt to this aspect, yet it
does not have the notion of a blocked port. To an operator, a blocked port looks like one with
no data currently available. It may therefore decide to back off and delay processing until data
becomes available instead of querying another input port. This deterministic behaviour can lead
to deadlocks when the operator algorithm decides to wait for data to arrive on a blocked port.
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Figure 5.8: Port handler extensions for FBP operators.

The classic example for this type of problematic join is a deterministic merge with packets
forwarded in a predefined order. In practice, however, non-deterministic merges are far more
common when combining packets from a parallel pipeline. For the rest of this paper we assume
that the execution semantics of the language avoid this type of deadlock.

5.3.5 State

Referential transparency and state transfer during an update are respectively solved by FBP and
our marker-based approach. The challenge of mutual dependency updates is to find all state in
the system that was derived from the program version before the update and either flush it before
applying the update, or update it. The marker makes sure that old state is flushed from the
(dependent) incoming arcs before the dependent operator is updated. Still, some old state may
hide in any of the operators in between the mutually dependent operators. The update manager
has therefore to decide whether the old state is considered harmful to the system. This might be
the case if the update fixes a bug where state of other operators was corrupted and needs to be
corrected. In such a case all these (downstream) operators need to be included into the update.
In our future work, we intend to provide more advanced solutions to remove this burden from the
user applying the update.

5.3.6 Timeliness

Finally, the moment in computation time t when an update is to be applied must not match the
time v when the initial update marker m is inserted into the flow graph. If m travels through the
graph in FIFO order with the data, it arrives at its target operator at time v. In Algorithm 2 the
operator is updated on arrival such that t = v. It is straightforward to extend the algorithm to
wait for a certain amount of time and apply the update at a later point t > v. Note, however,
that this is possible only if the marker is independent, i.e., the current update is not dependent on
an upstream update. The important insight is that FIFO marker propagation is only required to
coordinate mutual dependencies (Lines 17–21). When finding the update target, we do not need to
adhere to this rule and we can utilize out of order propagation possibilities among the arcs (Line
14), such as out-of-band processing among TCP connections if available. As a result, it is possible
to deliver timely updates even at t < v.

5.4 FBP EXTENSIONS

This section describes the extensions to incorporate our marker-based update algorithm into the
FBP model in a scalable and location transparent manner.

5.4.1 Structured Operators and Packet Dispatch

The FBP model consists of three major abstractions: arcs, operators, and a dataflow graph. A
scalable design must preserve low complexity in terms of operator implementation and algorithm
construction. Existing FBP systems focus primarily on the actual functionality. We reach beyond
by structuring an operator into operator functionality (the operator code), port handlers, and a
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1 class UpdateHandler extends PortHandler {
2 List<InputPort> blocked;
3 void arrived(InputPort i, UpdateMarker m) {
4 // implementation of the update algorithm
5 }}

Figure 5.9: Update port handler stub in Ohua.
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Figure 5.10: Pre-runtime rewriting of the HTTP flow graph.

packet dispatch mechanism, as depicted in Figure 5.8. While the operator functionality is provided
in the classical way, the port handlers and the packet dispatcher are features of the runtime system
that each operator instance inherits. Port handlers are meant to provide common functionality to
all operators and therefore treat them as black boxes with respect to the implemented functionality.
Still, the structure of an operator, i.e., its input and output ports, is known to a port handler.

We also refine the notion of packets by distinguishing between meta-data and data packets.
Markers are examples of the former class, while the latter correspond to information packets as
known from FBP. Each port handler registers for one or more types of meta-data packets. The
packet dispatcher extends packet retrieval and makes sure handlers take responsibility for meta-
data packets they have registered for. In contrast, data packets are always dispatched to the
operator functionality. Since port handlers are meant as an extension of the operator functional-
ity, they also consist of sequential context-free code blocks. The programming interface for port
handlers is illustrated in Listing 5.9.

One handler is allowed to register at to multiple input ports. We further require that all calls
in the realm of an operator are synchronous and the packet dispatcher is stateless, such that all
dequeue operations among input ports preserve the FIFO processing order of the packets in the
data flow graph.

This enhanced operator structure, together with the packet classification and automatic dis-
patch, provide a powerful extension framework to implement not only our coordinated update
algorithm but also runtime features such as checkpointing or logging in a scalable and distributed
manner.

5.4.2 Dataflow Graph Transformations

The major strength of FBP resides in the abstraction of the flow graph itself. In essence, the
arcs of the graph define the data dependencies between the operators at compile-time rather
than at runtime. FBP does not define the implementation (array, shared memory queue, TCP
connection, etc.) of the arcs but only their (FIFO) semantics. This provides independence from
the actual execution infrastructure. The clear structural decomposition of the algorithm into small
context-free operators allows the runtime system to exploit pipeline parallelism on any distributed
architecture, e.g., multi-core, cluster, WAN, etc. Since our algorithm and its extensions strictly
adhere to these principles, they inherit this location transparency property. Nevertheless, the
injection of the update marker into the flow graph still requires knowledge on the current location
of all source operators, i.e., operators without incoming arcs.

88 Chapter 5 A Framework for the Dynamic Evolution of Highly-Available Dataflow Programs



Cache 
Extension

accept read parse

load

cache

compose reply

merge

accept read parse load compose reply

hit

miss

Figure 5.11: Extension of the HTTP flow graph with a Cache.

Flow Graph Entrance and Exit

We address this problem via rewriting of the dataflow graph. Just like the above extensions
to the operator, this rewriting neither influences the construction of the dataflow graph nor the
functionality of operators or even the design of port handlers. It can be applied before runtime to
the entire dataflow graph and, as such, it is independent of the actual algorithm implemented by
the structure and operators of the graph and leaves both unchanged.

Our rewriting, as depicted in Figure 5.10, wraps the flow graph with an entrance operator and
an exit operator. The former has outgoing arcs to all source operators in the flow graph while
the latter is connected via incoming arcs to all operators that have no outgoing arcs, also referred
to as target operators. All arcs and operators added during rewriting are valid FBP components
and can be executed by the very same runtime system. Computation however only take place in
the original graph and all extension operators remain silent at runtime. There is consequently no
reason for the runtime system to move these operators, e.g., in order to balance the computation
across multiple processes or nodes in a cluster. Therefore, there is no need anymore for our update
marker injection to identify the source operators in the flow graph because we created a single
entry point: the entrance operator. Scalability to a large number of source or target operators
depends on the arc implementation. For example, in Ohua, a network arc maps to a ZeroMQ6

connection and a fast message broker network that seamlessly scales to thousands of concurrent
connections.

Finally, an additional control operator provides an API to submit update requests from the
external world. The operator translates these requests into markers and sends them downstream
the dataflow graph.

Advanced Transformations

Our rewriting is not limited to the three aforementioned operators. In Figure 5.10, we also added an
up-init operator that performs offline preparation of the updates. Furthermore, when the original
flow graph is split and deployed on multiple nodes, each of the subflows represents a valid dataflow
graph by itself and is eligible for rewriting. While the control operator remains on the initial
node, the up-init operator can be transposed within the subflows to achieve local initialization
of the updates. Since, no additional arcs from inside the original flow graph to the local up-init
exist, the update algorithm needs to be extended. When an update marker arrives at the target
operator it does not apply the update but sets a flag in the marker and sends it downstream. The
marker propagates through the rest of the flow graph until it reaches the exit operator. Upon
identifying the flag, the exit operator notifies the local up-init via a feedback arc. From that
point on the algorithm works as before: the up-init performs the initialization and forwards the
marker into the subflow where it hits the target operator (again) and applies the update.

6http://zeromq.org/
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5.5 STRUCTURAL UPDATES

Up to this point we have addressed updates spanning one or multiple operators, which are akin
updates of small functions in a program. The step from live updates to dynamic development
does however require the capability to update the program, i.e., the dataflow graph, itself. In this
section our focus extends to structural updates to the flow graph. It is important to stress that
no new FBP features are added, as restructuring is solely based on the FBP extensions and our
marker-based update algorithm. It follows that, when a port handler is executing, all input and
output ports of the associated operator are inactive and can thus be rewired. We further assume
that all structural changes are validated before submission by an algorithm that verifies that the
update does not lead to violations at any of the downstream operator interfaces.

For example, in Figure 5.11 we extend our simple HTTP server flow with a Cache operator to
remove disk I/O and improve request latency. The packets sent down the hit arc must adhere
to the same structure as packets coming from the Load operator. As validation of a flow graph
extension is a compile-time concern, it can be performed as a check before the actual structural
rewriting is applied. Hence, rewriting is valid if the resulting dataflow graph contains neither
unconnected arcs nor orphaned ports.

5.5.1 Coordinated Reconnections

Update markers for operator changes carry either a completely new functionality or a property of
the existing operator functionality to be changed. Structural updates are also marker-based and,
as such, they adhere to our notion of computation time and must not break the FBP abstractions.
Changes can only be applied to the local operator, i.e., a port handler may only disconnect incoming
arcs of the local input ports.

We classify three structural change operations that alter the flow graph structure: delete,
insert, and replace. Each of these operations is essentially composed of a series of disconnection
and reconnection steps that must be coordinated across the flow graph. For example, the deletion
of the subgraph oi → . . . → on, as depicted in Figure 5.12, involves a disconnection step for
detaching the incoming arc x from the input port of oi and a reconnection step to reconnect it to
the input port of on+1. To coordinate these steps, we define a reconnection marker that contains
a set of reconnections. A reconnection is a projection from one input port to another, and a set of
reconnections is always bijective.

The pseudo-code for the reconnection operations is shown in Algorithm 3. It focuses solely
on the update part, as we already covered marker propagation in Algorithm 2 (including offline
initialization of the flow graph extension). Each reconnection starts by disconnecting the target
input port from its incoming arc (Line 3). Disconnected arcs that are not part of the flow graph to
be replaced or deleted need to be reconnected either to the new flow graph (Line 6) or to an input
port in the existing flow graph (Line 13). In the latter case the arc is attached to a dependent
marker and propagated downstream the port (Lines 8–10). Dependent reconnections of arcs from
the new flow graph are also coordinated through the existing graph (Lines 16–19). Note finally
that reconnections inside the marker are order-sensitive, e.g., an operation that disconnects the
incoming arc from an input port and reconnects it to the new flow graph must be performed before
another operation that reconnects an arc to that same input port.

5.5.2 Distributed Rewriting

Figure 5.13 illustrates another coordinated insertion, but in a distributed context. It performs a two
phase process for enhancing our web server with proxy functionality located at a different cluster
node to load balance disk I/O. The first phase deploys the proxy flow. The actual structural
rewriting happens in the second phase, where we extend the existing flow graph to not only
dispatch existing requests to the proxy flow but also join proxied requests back into the pipeline.
The structural rewriting performs the first insertion at the Load operator with two reconnections.
Afterwards, a marker delivers the pending two reconnections to the Reply operator. All the original
operators in the existing flow are preserved and both parts of the rewriting happen at the same
time in computation.
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Figure 5.12: Algorithm steps for deleting the subgraph from operator oi to operator on.

Algorithm 3: Structural Update Algorithm
Data: operator o := (I,O) and a marker m containing reconnections R such that m.target = o.id;

1 for reconnection r ∈ R do // operator update
2 if r.in ∈ I then
3 arc ← r.in.disconnect();
4 if r.arc = 0 then
5 if r.new 6= 0 then // insert (arc to new subflow)
6 r.new.connect(arc);
7 else // deletion (pending reconnection in old flow)
8 r.dependent.reconnection.arc← arc;
9 r.dependent.setDependent(true);

10 o.broadcastInOrder(r.dependent);
11 end
12 else // finalize reconnection
13 r.in.connect(r.arc);
14 end
15 else // propagate dependent reconnections
16 for dependency marker c ∈ m.dependents do
17 c.setDependent(true);
18 o.broadcastInOrder(c);
19 end
20 end
21 end

The proxy rewrite also serves as a more concrete example of an extension that is deployed in
a distributed fashion. Our rewriting algorithms do not make any assumptions on the location and
deployment of the flow graph to be inserted. The deployment algorithm running underneath the
FBP abstraction must however be able to cope with resulting deployment changes. For example, in
Figure 5.12, if operators oi−1 and oi were deployed together in the same process, then arc x would
map to a simple queue. If operator on+1 were located on in different process or even on a different
node, then x would have to be converted to an IPC or TCP connection. Our algorithm does not
make any assumption on the deployment of the flow graph to be inserted. This is a problem in the
underlying implementation of the deployment algorithm, which is outside the scope of this paper.

We furthermore require that reconnections at a single operator are performed at the same time
in order to keep computation consistent throughout the rewriting process. Therefore, operators
with more than one incoming arc have to perform a marker join before reconnections on the local
input ports are performed. This ensures that there exists a time t at which rewriting logically took
place for this operator. Note that a new portion of the data flow graph starts to actively participate
in computation as soon as the first arc has been reconnected, i.e., even before rewriting is fully
complete. This allows us to perform structural changes to the flow graph in a purely non-blocking
manner.
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Figure 5.13: Proxy extension of the HTTP flow graph.

1 (update [com.server/reply com.server.update/reply (new ReplyStateTransfer)]
2 [com.server/load com.server.update/load])

Figure 5.14: The NIO-switch realized with Ohua.

5.6 PROGRAMMING MODEL

The key requirement in the definition of a programming model for live updates is certainly simplic-
ity. It must allow the developer to submit its updates in a context-free fashion without having to
reason about concurrency or locality. Ohua achieves this goal by defining a single update function.
We first describe the update model related to operator and mutual dependency and later focus on
the algorithm.

5.6.1 Operators and Mutual Dependencies

Listing 5.14 shows the code to submit the NIO-switch to the executing web server.

Note that the new code is defined in a different namespace than the old one. This is beneficial
because dynamically evolving a program does not implicitly mean that the replaced code is buggy
and needs to be discarded, e.g., some functions might be swapped with others for performance
reasons on specific architectures. Ohua detects whether the update references an operator or a
function. In the former case, Ohua takes care of finding all operators of the specified type in the
currently executing flow graph and creates the necessary update requests. Mutual dependency
updates are composed by submitting update pairs, as shown for the I/O switch in Listing 5.14.
Dependencies are detected automatically and therefore the order of operator updates can be arbi-
trary. Furthermore, if state needs to be adapted to the new version of an operator (as exemplified
for the reply operator in Listing 5.14), it is possible to specify a state transfer object that
implements a predefined interface to return an updated state on the basis of the old version.
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1 ; clojure namespace definition
2 (ns com.server)
3

4 ; web server defined in a function
5 (ohua
6 (defn web-server [port]
7 (-> port accept read parse load compose reply)))

Figure 5.15: The web server defined as a function in Ohua.

1 ; Ohua import to use the defined web server function
2 (ohua :import [com.server])
3

4 ; configure and launch the web server
5 (ohua (com.server/web-server "80"))

Figure 5.16: Web-server invocation in Ohua.

5.6.2 Algorithm Functions

Operators in Ohua represent functionality while the algorithm is written in Clojure. A program
can be composed of many smaller algorithms encapsulated within an algorithm function. In all
aspects related to the algorithm description, Ohua strictly follows the LISP programming model
and syntax of Clojure. Listing 5.15 shows the definition of the web server algorithm as a function.

Finally, the invocation in Listing 5.16 assigns a port for the server to listen on.

To illustrate the update process, consider the scenario from Figure 5.10 of incorporating a cache
to the web server. This process entails two steps. First, the developer writes an enhanced version
of the web server algorithm utilizing a cache (operator), as shown in Listing 5.17.

Thereafter, this updated function is for all invocations of the web server in the running program.
Listing 5.18 illustrates the submission of the update.

This simple model relieves the developer from the burden of specifying what exactly has changed
in the algorithm and what insertions or deletions need to be performed in order to incorporate the
update with the executing flow graph. Instead, Ohua replaces all subflows resembling to invocations
of the old function with the new version along the guidelines of Algorithm 3. This function-level
approach of updating the structure of a flow graph avoids the above identified deadlock problem for
functions without additional I/O channels. The marker join is coordinate at the non-deterministic
function entry that gathers the arguments. Additional marker joins inside the function are then
coordinate towards that entry join. Due to space limitations, we delay a detailed analysis and a
thorough discussion of more advanced updates of algorithm functions in Ohua to future work.

1 (ns com.server.update)
2

3 ; the web server algorithm utilizing the cache
4 (ohua
5 (defn web-server-with-cache [port]
6 (let [res-ref (-> port accept read parse)]
7 (let [res (cache res-ref)]
8 (-> (if (= res nil) (load res-ref) res)
9 compose reply)))

Figure 5.17: Cache-based Web Server.

5.6 Programming Model 93



1 (update [com.server/web-server com.server.update/web-server-with-cache])

Figure 5.18: Cache Insertion Update.

30

40

50

60

70

80

90

R
eq

ue
st

La
te

nc
y

(m
s)

1 2 3 4 5 6 7 8

# Parallel Pipelines

8000

9000

10000

11000

12000

13000

14000

15000

Th
ro

ug
hp

ut
(R

eq
ue

st
s/

s)

baseline

barrier

locks

Figure 5.19: Runtime overhead using locks and barriers to simulate update points.

5.6.3 Integration with Clojure Programs

The actual insertion of new code within a running program is already supported by existing tools.7
Clojure programs typically execute in a “read-evaluate-process-loop”
(REPL), which is similar to a command line interface that can launch programs in another thread or
even JVM process. Attaching to an executing REPL is also functionality that is readily available8,
therefore loading new operators and algorithm functions packaged in jars is straightforward.

5.7 EVALUATION

In order to evaluate our evolution framework, we implemented the algorithms presented in this
paper in Ohua and dynamically developed our flow graph with the NIO, cache, and proxy extensions
described above (see Figures 5.2, 5.11 and 5.13). We followed the same methodology as other
similar frameworks [164] to analyse web server performance. We deployed our Ohua web server
on one cluster node, and clients were evenly spread across 19 other machines. The nodes in the
cluster were equipped with 2 Intel Xeon E5405 CPUs with 4 cores each, 8GB of RAM, Gigabit
Ethernet, and SATA-2 hard disks. Note that the following experiments are not meant to evaluate
the scalability of the web server deployment but focus on the performance of the live updates.

5.7.1 Runtime Overhead Evaluation

We first investigate the naive approach of inserting update points within the operators in order to
perform an analysis of the runtime overhead. We used two flavours of update points: barriers and
locks. One should point out that neither approach can handle on their own the type of updates
that we addressed in this paper. Even for the simple mutual dependency update of switching the
web server to use NIO, barriers would deadlock and locks would fail due to the packet inconsistency
illustrated in Figure 5.2.

We do not explicitly consider the runtime overhead of Ohua as the introduced port handler
switch barely encompasses a simple conditional expression at each input port, which is a vital part

7https://github.com/pallet/alembic
8https://github.com/djpowell/liverepl
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Figure 5.20: Request latency impact during a coordinated switch of the Load and Reply to use
NIO’s sendfile primitive.
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Figure 5.21: Reconfiguration experiment for cache and proxy insertion into the HTTP server
flow graph.

of the runtime engine. In order to introduce more parallelism into the experiment, we parallelized
the whole web server pipeline and assigned each accept with a different server socket. 1,000 clients
evenly distribute their requests among sockets and ask for one out of 10,000 files of 512 bytes each.
Update points are shared across operators of the same type to simulate updates on the level of
functions.

Mean latency and request throughput, reported in Figure 5.19, indicate that the overhead for
introducing locks is not visible even with 8 threads competing for a single lock. In contrast, barrier
coordination exhibits overhead for a single and two parallel pipelines. Once the performance is
capped by the I/O operations in the system, barriers seem to indeed have a beneficial effect on I/O
coordination, which results in improved latency and throughput. The deadlock problem mentioned
earlier does however render the barriers approach infeasible. Even in our simple experiment,
which was designed to favour barriers, we were unable to execute a successful run above 5 parallel
pipelines, i.e., 5 different server sockets, without encountering deadlocks.

5.7.2 Coordinated NIO Switch

For the coordinated switch of our web server to support the NIO API, we concurrently executed
30 clients issuing requests with a delay of 1ms. As previously, requests were distributed evenly at
random across a set of 10,000 files of 50 kB stored on disk. Figure 5.20 shows request latency over
the runtime of the experiment, averaged every 100ms. At 40 s into the experiment, we performed
the coordinated update of the Load and Reply operators. The graph shows that request latency
drops immediately from an unstable average of 33ms to a stable average of 21ms with very few
outliers. Note that there is no spike when the switch is performed. The update does not block
ongoing messages and successive requests instantaneously benefit from the switch.

5.7.3 Dynamic HTTP Server Development

To support our claim that our update algorithms can sustain the evolution from simple live updates
to dynamic development of highly concurrent systems, we perform the cache insertion and proxy
extension in a single experiment, one after the other, on the initial version of the web server without
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Figure 5.22: Various strategies to fill the cache during update.

NIO. We consider 30 clients requesting files of size 100 kB and another 30 clients issuing requests
for files of size 2 kB. All clients pause 20ms between consecutive requests.

In this dynamic evolution scenario, updates aim at improving request latency as much as
possible. Therefore, we first insert a cache over all 20,000 files 65 s into the computation, which
removes disk I/O overheads and reduces latency of both request types by 16ms. Yet, due to the
pipelined execution model, requests for small files are penalized by requests for larger files. The
second rewriting operation after 145 s removes this penalty by inserting a proxy that dispatches
requests for small files to a proxy server located on a different cluster node. Thereafter, small
requests are processed in about 19ms while requests for larger files have an average latency of
42ms.

Note the small increase in request latency for large files by about 4ms after the proxy insertion.
This is due to the fact that we continue to use the same Reply operator for both request types and
small file now compete with larger files, which results in this penalty on both sides. Note that we
could easily remove this bottleneck by dynamically introducing separate Reply and Send operators
for small-files.

5.7.4 Cache Loading Strategies

Although the proxy insertion happens again without any noticeable impact on request latency,
this is not the case for the cache rewriting. The increase in latency for about 15 s corresponds to
the time where the new cache loads the files into memory. Although this happens in the up-init
operator, outside of the graph part performing the computation, it nevertheless competes for disk
I/O with the concurrent handling of requests. The developer needs to be aware of potential I/O
contention and plan its update accordingly.

In Figure 5.22 we investigate different strategies to fill the cache. For simplicity we used a single
set of 30 clients requesting a 50 kB file randomly out of 10,000 files every 20ms. The upper plot
shows that the naive approach, which does not use the up-init operator but inlines cache loading
with request handling, blocks the requests and results in a downtime of almost 9 s. In the lower
graph, we plot different strategies for loading the cache offline from request handling in the up-init
operator. We compare the naive strategy of loading directly from disk (offline-naive) to the two
alternatives of (1) loading the files from the Redis9 in-memory key value store, and (2) having all
files already preloaded into memory. While the former approach already greatly improves cache
loading time, the latter demonstrates that our rewriting algorithm does not degrade performance
when no contention exists. The slight latency overhead we can observe results from the heavily
loaded JVM process in the preloaded case, but we can avoid it by loading files on demand (iterative
approach shown in the graph).

9http://redis.io
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5.8 RELATED WORK

Research on DSU systems is often classified with respect to their target domain: programming
languages, distributed systems, and operating systems. The more important classification however
is based on the programming model, especially with respect to concurrency and parallelism.

Disruptive Updates. Procedural and object-oriented programming models such as C and Java
support parallel execution explicitly. Updates have to follow the very same programming model
in order to reason about the state of the program and enforce state quiescence. Therefore, recent
approaches introduce synchronization in the form of update points [107, 184]. They either use
barriers or define a more relaxed form of synchronization to remove runtime overhead during
normal execution and avoid deadlocks. Update points require the update author to reason about
the different states of the program. The state space increases with the degree of concurrency in
the program and becomes even more complicated when additional update points are introduced
to increase the timeliness of updates.

The alternative strategy of automatically inserting update points involves heavy static analysis
and code restructuring, which again makes them scale poorly [106]. Early evaluation of Rubah,
a DSU system for Java, reports 8 % overhead during normal processing and requires updates in
the range of seconds. This is because Rubah does not support fine-grained online updates and
must perform a full heap traversal to find the objects to be updated. Hence the larger the heap,
the longer the traversal. This is a major concern because programs that rely on DSU instead of
classical replication approaches typically have a large amount of state. Recent work [90] showed
that update points are often limited to only the original version of the program and therefore the
update process does not scale with the program evolution.

Our FBP-based algorithms do not suffer from any of these problems and every newly inserted
operator or subflow can again be updated on-the-fly.

Cooperative Updates. The event-driven programming model [89] is better suited to reason
about state and provide cooperative rather than disruptive updates [90]. This model essentially
facilitates the development of a distributed system with independent processes communicating via
a common message-passing substrate. Updates of one or multiple processes are coordinated by
an update manager. The benefit is that single process updates are performed without blocking
the other processes. In contrast, updates spanning multiple processes reach state quiescence by
blocking all affected processes. Event-driven programming uses a processing loop similar to the
operators in FBP. The model does not address, however, the nature of the IPC and the consistency
problem of packets in transit during a coordinated update. The only work we are aware of that
addresses this issue delays processing to drain packets between the two components until the whole
update can be applied atomically [217].

Although less relevant to our work, one can finally mention, in the area of data streaming,
the so-called teleport messages used to coordinate reconfiguration of parallel operators [213]. In
software defined networks, consistent updates of switch configurations are coordinated based on
tagged packets to achieve consistency [191].

We enhance the work on live updates by defining the concept of marker joins, which is vital for
the definition of a solid notion of time in the program execution, and introduce a scalable language-
based approach that applies mutual dependency updates in a non-blocking and infrastructure
independent algorithm.

5.9 CONCLUSION AND FUTURE WORK

In this paper, we extended the dataflow-based programming model [163] to support live updates
as well as the dynamic evolution of highly concurrent programs during runtime. We rely on a well-
defined notion of time to reason about update consistency in the live update process and to perform
structural modifications to the flow graph in a non-blocking fashion, even with mutual dependencies
across many program parts. Since we based our extensions solely on the abstractions of the flow-
based programming model, our algorithms work independently of the underlying architectures, e.g.,
multi-core systems or clusters. We conclude that FBP is appealing as a programming abstraction
not only because it helps develop scalable programs for modern multi-core systems, but also because
it is instrumental in solving many of the problems encountered with explicit parallelism at the
language level.
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Postscript This paper shows that a dataflow-based runtime enables non-blocking dy-
namic software updates. However, it does not provide a thorough programming model
for updates. Such a model is subject of future work. Note that the update algorithms
from this paper apply broadly to every runtime system that adheres to dataflow princi-
ples. This includes the runtime system for our stateful functional programming model
with dataflow nodes for conditionals and smap.
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6 CONCLUSION

In this thesis, we proposed stateful functional programming (SFP), an implicit parallel program-
ming model that incorporates state. A stateful function call owns its private state for the entire
time of the program’s execution. An algorithm composes stateful functions. This distinction be-
tween algorithms and stateful functions allows us to remove all other concurrency aspects from the
programming model. We do not require the abstraction of a task or an IStructure to synchronize
data access. Parallelism is truly implicit in our programming model. SFP programs may very well
be compiled into a purely sequential program; they only provide the opportunity for the compiler
to turn them into concurrent ones. As a matter of fact, we have shown in this thesis that our
notion of algorithms already exists in many programs. So, writing SFP algorithms is nothing new
to programmers in mainstream languages such as Java and C++. Our case study on internal
parallelism of big data systems identified two design patterns: the iterator and observer design
pattern. In combination with a loop construct, stacked iterators or observers implement a pipeline
but most of the compilers do not parallelize it. Compilers that try to do so, often do not take state
into account or require it to have special properties such as commutativity [220, 153]. In fact, the
abstraction of loops as streams requires that the stages in the pipeline are essentially stateless to
run them in a data parallel fashion [39]. All of these approaches do not support the construction of
full-blown graphs that incorporate control flow and state. SFP algorithms do without requiring the
programmer to learn a new concurrency abstraction or new declarative language. The loops (our
smap), variable bindings and (stateful) function calls in our algorithms are fundamental language
concepts. They are part of all mainstream imperative languages and even of the main functional
ones.

Conceptually, a stateful function is present in many programming languages. For example, a
stateful function maps to a class with a public function in object-oriented languages such as Java
and C++. A struct with an associated function in a procedural language such as C and Rust is
also a stateful function. Even the well-known state threads from Haskell fit our definition of a
stateful function [141]. On a more abstract level, actors may also be seen as stateful functions.
Actors have been studied recently as a stateful programming model for multi-cores due to their
encapsulation of state [49]. But they are missing a composition language. This loose coupling was
essential for the highly distributed settings they were designed for to tolerate node failures and
frequently joining and leaving nodes. These aspects are not so important on a multi-core machine
where several actors often implement an algorithm. Our SFP programming model can provide this
composition and even further hide several aspects from the Actors programming model, such as for
example mailboxes, from the programmer. Even microservices fit our model of a stateful function.
Algorithms could compose microservices in backend server infrastructures of internet companies
or in adaptive AutoSAR applications for embedded devices.

To foster this broad applicability, our programming model is best integrated into existing
languages as an EDSL (embedded domain specific language) with a standalone compiler for algo-
rithms. The compiler presented in this thesis is based on the call-by-need lambda calculus and
translates algorithms into dataflow graphs. It uses the administrative-normal form known from
compilers for functional languages as its intermediate representation to perform optimizations and
to lower the code to dataflow [79]. The current compiler for Ohua, our implementation of the
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Figure 6.1: The data management ecosystem.

SFP programming model, is written in Haskell and features a full Rust integration1. It gener-
ates Rust code for algorithms such that Rust’s borrow checker verifies data-race freedom across
stateful functions. Since our compiler derives the dataflow graph at compile-time, we can perform
optimizations across the whole program. This is not possible for task-based programming models
that build the dataflow graph at runtime. As an example, we looked at optimizing I/O in the
particular context of a microservice-based architecture. In this domain, the need for concurrent
I/O spawned a whole new area of new programming models for event-driven programming. The
associated asynchronous events require a heavy restructure of the code and introduce new problems
such as stack ripping. Even more new concepts such as fibers were proposed to bring back the
simple semantics of synchronous (blocking) I/O calls. No new concepts are necessary in our SFP
programming model. Concurrent I/O perfectly aligns with the concurrent execution in the rest of
the dataflow graph. On top of that, we show that our compile-time I/O optimizations are superior
to runtime-based approaches.

Runtime optimizations included the mapping of dataflow graph nodes to threads and especially
non-blocking live updates in high-throughput, low latency server architectures. A primary concern
to move from monolithic single server-based architectures to microservices is the need to update
the system or parts thereof often without a noticeable impact on latency. This was also a main
design principle behind actor-based languages such as Erlang. A single actor or microservice
can easily be updated without impacting the rest of the system. In fact, the update appears
as an atomic operation to the rest of the system. But often algorithms stretch many actors or
microservices. Expanding this atomic update operation is much more complicated. Concurrent
stateful programs running on multi-core hardware face the very same problem just on a different
level. We have shown that that there exists a live update algorithm on the foundation of the
dataflow graph which is non-blocking and guarantees consistency. That is, without halting the
system our update algorithm moves the system from one consistent state to another for node
updates and even structural updates of the dataflow graph.

6.1 OPPORTUNITIES FOR SFP IN THE DOMAIN OF
DATA MANAGEMENT SYSTEMS

We see this work as the foundation for many interesting aspects to research in the future. In this
final section, we look at application domains where our programming model could provide benefits
over state-of-the-art. For applications where our programming model is not yet sufficient, we derive
the necessary additions in terms of the language, the compiler and the runtime system.

In this thesis, we studied stateful functional programming in the context of server and big
data systems, i.e., data processing systems. As such, it is only natural to ask what benefits our
programming model can provide in the overall context of data management systems. The ecosystem
for data management encompasses systems for loading data into a data warehouse, so called ETL
(extract, transform, load) systems, data streaming systems, a query execution engine and database
applications (see Figure 6.1). All of these systems are tightly associated with a dataflow execution
model.

1https://ohua-dev.github.io/ohua/
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Reductions and Shared State The dataflow graph of an ETL job is often developed in a
GUI which becomes problematic for bigger graphs [26]. The concise algorithm abstraction of our
programming model can be a solution to this problem. Note that this also accounts for dataflow
applications on embedded devices which follow the very same development style. Data streaming
systems are once more an incarnation of the dataflow model. Current state-of-the-art, such as
Flink, uses the abstraction of a stream with support for higher-order functions rather than an
implementation of the continuous query language (CQL) [11]. Our algorithms can produce a much
more fine-grained dataflow graph for data streaming systems that incorporates state. Furthermore,
the programming model for Flink data streams does not incorporate a notion of time. Time is
important in these systems to implement so called windowed aggregations, i.e., aggregations over
a time window. The code of the current state-of-the-art benchmark for streaming computation en-
gines mixes threads and locks with dataflow in order to implement this functionality [48]. In order
to address these short-comings, the stateful functional programming model needs to evolve beyond
smap. Consider for example the dataflow graph for the current state-of-the-art data streaming
benchmark depicted in Figure 6.2a. In order to support this data processing pipeline, our pro-
gramming model needs to support reductions and shared state. The Filter node is essentially
a reduction which we did not define yet. Our model can also provide a clean implementation
without the need for threads and locks if it accommodates the notion of shared state depicted in
Figure 6.2b. One function can aggregate the newly arriving data into the state and another one
emits the current state upon a time request. The time signal is then nothing but another input
source to the program. Due to the shared data access, the program is non-deterministic which is
represented by the non-deterministic merge that the compiler needs to insert (Figure 6.2c).

Data Parallelism and Explicit State Once reductions and shared state are supported, the
pipeline from the benchmark can be implemented concisely. But the produced dataflow graph will
scale poorly because it only exploits pipeline parallelism. Most of the speed in data streaming comes
straight from data parallelism. In order to transform a node towards a data parallel execution, the
compiler needs to know whether its function is stateless or contains state that can be partitioned.
Currently, state is implicit and the compiler would have to query the host language in order to
understand such properties. It would be better if the programming model supports a more explicit
notion of state. This would enable the compiler to directly differentiate between stateful and
stateless functions, the latter of which are applicable to a data parallel execution. Identifying
state that can be partitioned is likely to involve a type system with types for state that can be
partitioned.

Data parallelism over partitioned state is also the key concept for scalability in database engines.
Our smap function can already be used to implement simple operations such as scanning the records
of a table and projecting onto some columns. Reductions, that can execute in parallel, would be
the foundation to implement filtering or summation. Shared state allows to implement one of the
most important but probably also one the most challenging operators: the join. At this point, the
(research) question arises: Is it possible to use our model as a foundation to implement a database
engine with only a fraction of the code of state-of-the-art systems?

Higher-Level Compilation Optimizations play an important role in the scalability of database
and data streaming engines. Since they are at the dataflow graph level, the more general ones apply
to our execution model as well. Fusion is one such optimization that evaluates the performance
of two consecutive operators2 and decides whether these should be merged into a single operator.
This turns costly inter-operator communication into a cheap function call. The compiler of the
operator code (,i.e., the C++ or Java compiler) can then further optimize the code across these
two operators. In the database literature, this is known as (operator) fusion [117]. In the (func-
tional) programming language literature exists a compiler optimization called stream fusion also
known as deforestation [88, 132]. Compilers for imperative languages such as Java and C/C++
refer to this optimization as loop fusion. The goal is to remove materializations in between con-
secutive calls to higher-order functions such as map, filter, etc. The simplest example turns the
composition (map g) . (map f) into map (f . g). This optimization also directly applies to our
programming model and the presented compiler. Connecting these two notions of fusion is novel
work. Only recently, researchers discovered this connection but only evaluated different implemen-
tation styles [195]. They did not address the inherent trade-off between (pipeline) parallelism and
materialization.

Our proposed programming model can also help to automatically parallelize user-defined func-
tions (UDFs) in a database system. A database engine executes queries very fast because the SQL

2Nodes in a database dataflow graph are called operators.
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Figure 6.2: Making time, shared data and synchronization explicit in the current state-of-the-art
benchmark for streaming computation engines [48].
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Figure 6.3: Inherent data flow between the database calls in the NewOrder query of the TPC-C
benchmark.

constructs (SELECT, FROM, WHERE, etc.) translate into a standard set of operators (Scan, Join,
etc.). Parallel implementations of these operators exist for decades now and allow the execution
to scale across cores or even nodes in a cluster. But a call to a user-defined function in a query
refers to an opaque piece of code to the database system and as such the query optimizer can not
derive any parallelism. But user-defined functions are gaining importance because of two reasons.
Data extracted from the internet is often semi-structured, i.e., JSON, XML, etc., and needs to be
prepared before it can be used in a query [53, 96]. User-defined functions are now often written
in languages such as JavaScript which have a much richer library system than SQL. To guarantee
fast query execution, database vendors have to tell their clients that they better not use these
libraries and perform analytics in SQL instead. On the other hand, the programming languages
and libraries of UDFs enable whole new analytical applications [225]. One can even argue that the
big success of Map/Reduce was in part because of the programming model which incorporated two
types of user-defined functions, map and reduce. Our presented compiler translates algorithms into
dataflow graphs, i.e., into the very same representation that an SQL compiler translates queries.
We can exploit this fact to make user-defined functions scale. An SQL compiler could hook the
dataflow graph of the user-defined function into the dataflow graph of the query that calls it. The
SQL compiler knows how to parallelize the operators of the query while our compiler knows how to
parallelize the stateful functions of the UDF. When combined, this leads to a compiler that allows
even queries with large user-defined functions to scale.

SFP also has the potential to speedup database applications. Such applications are similar in
spirit as the microservices that we studied for our I/O optimizations. Existing approaches leverage
program analysis on (Java) source code to introduce laziness into the execution that allows to
batch and prevents unnecessary database interactions at runtime [44, 46, 45]. A recent approach
introduces an EDSL in Scala based on higher-order functions. The associated compiler moves
parts of the application into stored procedures in the database system and enforces the automatic
construction of index structures to speed up query execution. None of these approaches addresses
the inherent concurrency that is present in these applications. Figure 6.3 shows the dataflow graph
for the database calls in the NewOrder transaction of TPC-C, a benchmark for OLTP (online
transaction processing) systems [43]. The graph contains ample opportunities for concurrency.
It is presumably better to exploit the concurrency inside a single transaction rather than across
transactions because it shortens the duration of a single transaction. Shorter transactions decrease
the probability for lock contention inside the database system and in turn lead to higher transaction
throughput.

Recursion In order to also address applications that were implemented using memory trans-
actions, our programming model has to support recursion. Transactional memory is often used
to exploit parallelism in irregular applications, i.e., applications that deliver non-deterministic re-
sults by design [134]. An example of such an application is the labyrinth benchmark contained in
STAMP, a well-established benchmark suite for transactional memory [161]. It uses Lee’s routine
algorithm to find the shortest-distance path between a start and an end point in a grid such that
paths do not share fields with other paths [226]. Many solutions are possible for a set of start and
end points. The algorithm finds one of them using a transactional approach. When a transaction
aborts, the changes are rolled back and the transactions re-executes with new data. This is where
the recursion is. It is essentially a work-queue algorithm that adds aborted transactions to the
queue and finishes when the queue is empty. When our programming model supports shared state
and recursion then it is reasonable to ask whether it can even replace transactional memory.
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6.2 OTHER DIRECTIONS

There are of course more applications that are worthwhile exploring using the idea of SFP. For
example, functional reactive programming builds on top of a dataflow graph abstraction and may
also be covered by our model. With respect to the aspect of providing safety in terms of data
race freedom, interesting directions are the recent advances in linear type systems [25] and safe
languages such as Rust [128]. Finally, we did not yet get to look into efficient scheduling algorithms
for the dataflow graph. We think there is a lot of potential in leveraging the rich body of work
on scheduling from the embedded computing community, e.g., for static dataflow graphs [146],
for more dynamic models like KPN [37, 38], and for energy-efficient adaptive execution [92]. The
applications, in the above studied and mentioned domains do not fall into this category for various
reasons but parts of the dataflow graph may do. For such parts, a pre-computed schedule might
be more efficient than work-stealing.

SFP is a foundation that is worthwhile and fun to explore. For every researcher who will take
on this journey: I hope it will be as educative for you as it was for me.
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