
IMPROV ING MODEL -BASED SOFTWARE SYNTHES I S
A Focus on Mathematical Structures

Dissertation
zur Erlangung des akademischen GradesDoktor rerum naturalium (Dr.rer.nat.).

vorgelegt an derTechnischen Universität DresdenFakultät Informatik
eingereicht von

Andrés Wilhelm Goens Jokischgeboren am 23.09.1989 in San Salvador
Gutachter:Prof. Dr.-Ing. Jeronimo CastrillonTechnische Universität Dresden

Dhr. prof. dr. Andy PimentelUniversiteit van Amsterdam
Tag der Vertiedigung:30.04.2021

IMPROV ING MODEL -BASED SOFTWARE SYNTHES I S
A Focus on Mathematical Structures

Andrés Wilhelm Goens JokischMay 2021 – 1.1

Dedicated to all who are unjustly opressed only for being born with a specific
sex, race or species.

PREAMBLE

All models are wrong, but someare useful
George Box (Attributed)

Abstract
Computer hardware keeps increasing in complexity. Software designneeds to keep up with this. The right models and abstractions empowerdevelopers to leverage the novelties of modern hardware. This thesisdeals primarily with Models of Computation, as a basis for software de-sign, in a family of methods called software synthesis.We focus on Kahn Process Networks and dataflow applications as ab-stractions, both for programming and for deriving an efficient executionon heterogeneous multicores. The latter we accomplish by exploring thedesign space of possible mappings of computation and data to hardwareresources. Mapping algorithms are not at the center of this thesis, how-ever. Instead, we examine the mathematical structure of the mappingspace, leveraging its inherent symmetries or geometric properties to im-prove mapping methods in general.This thesis thoroughly explores the process of model-based design,aiming to go beyond themore established software synthesis on dataflowapplications. We starting with the problem of assessing these methodsthrough benchmarking, and go on to formally examine the general goalsof benchmarks. In this context, we also consider the rolemodernmachinelearning methods play in benchmarking.We explore different established semantics, stretching the limits ofKahn Process Networks. We also discuss novel models, like Reactors,which are designed to be a deterministic, adaptive model with time asa first-class citizen. By investigating abstractions and transformations inthe Ohua language for implicit dataflow programming, we also focus onprogrammability.The focus of the thesis is in the models and methods, but we evaluatethem in diverse use-cases, generally centered around Cyber-Physical Sys-tems. These include the 5G telecommunication standard, automotive andsignal processing domains. We even go beyond embedded systems anddiscuss use-cases in GPU programming and microservice-based architec-tures.

vii

Publications
Some contents of this thesis have been published previously, includingideas and some figures. The following are the publications cited in thisthesis that I co-authored:

[Ode+14] Maximilian Odendahl, Andrés Goens, Rainer Leupers, GerdAscheid, Benjamin Ries, and Berthold Vöckingand TomasHenriksson. “Optimized buffer allocation in multicore plat-forms.” In: Proceedings of the conference on Design, Automa-
tion & Test in Europe. European Design and Automation As-sociation. 2014, p. 324.

[GC15] Andrés Goens and Jeronimo Castrillon. “Analysis of ProcessTraces for Mapping Dynamic KPN Applications to MPSoCs.”In: System Level Design from HW/SW to Memory for Embed-
ded Systems. IESS 2015. IFIP Advances in Information and Com-
munication Technology, vol 523. Ed. by Marcelo Götz, GunarSchirner, Marco Aurélio Wehrmeister, Mohammad Abdul-lah Al Faruque, and Achim Rettberg. Foz do Iguaçu, Brazil:Springer International Publishing, Nov. 2015, pp. 116–127.ISBN: 978-3-319-90023-0. DOI: 10.1007/978-3-319-90023-
0_10. URL: https://link.springer.com/chapter/10.1007%
5C%2F978-3-319-90023-0_10.

[Ode+15] Maximilian Odendahl, Andrés Goens, Rainer Leupers, GerdAscheid, and Tomas Henriksson. “Buffer allocation based on-chipmemory optimization formany-core platforms.” In: 2015
IEEE International Parallel and Distributed Processing Sympo-
sium Workshop. IEEE. 2015, pp. 1119–1124.

[GCL16] Andrés Goens, Jeronimo Castrillon, and Maximilian Oden-dahland Rainer Leupers. “An Optimal Allocation of MemoryBuffers for Complex Multicore Platforms.” In: Journal of Sys-
tems Architecture 66-67 (May 2016), pp. 69–83. DOI: 10.1016/
j.sysarc.2016.05.002.

[Goe+16] Andrés Goens, Robert Khasanov, Jeronimo Castrillon, Si-mon Polstra, and Andy Pimentel. “Why Comparing System-level MPSoC Mapping Approaches is Difficult: a Case Study.”In: Proceedings of the IEEE 10th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC-16).Ecole Centrale de Lyon, Lyon, France, Sept. 2016, pp. 281–288.DOI: 10.1109/MCSoC.2016.48. URL: https://cfaed.tu-
dresden.de/files/user/jcastrillon/publications/1609_

Goens_MCSoC.pdf.
[MGC16] Christian Menard, Andrés Goens, and Jeronimo Castrillon.“High-Level NoC Model for MPSoC Compilers.” In: Proceed-

ings of the IEEE Nordic Circuits and Systems Conference (NOR-
CAS’16). NORCAS. Copenhagen, Denmark, Nov. 2016, pp. 1–6.DOI: 10.1109/NORCHIP.2016.7792876. URL: https://cfaed.
tu- dresden.de/files/user/jcastrillon/publications/

1611_Menard_NORCAS.pdf.

ix

https://doi.org/10.1007/978-3-319-90023-0_10
https://doi.org/10.1007/978-3-319-90023-0_10
https://link.springer.com/chapter/10.1007%5C%2F978-3-319-90023-0_10
https://link.springer.com/chapter/10.1007%5C%2F978-3-319-90023-0_10
https://doi.org/10.1016/j.sysarc.2016.05.002
https://doi.org/10.1016/j.sysarc.2016.05.002
https://doi.org/10.1109/MCSoC.2016.48
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1609_Goens_MCSoC.pdf
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1609_Goens_MCSoC.pdf
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1609_Goens_MCSoC.pdf
https://doi.org/10.1109/NORCHIP.2016.7792876
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1611_Menard_NORCAS.pdf
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1611_Menard_NORCAS.pdf
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1611_Menard_NORCAS.pdf

[Völ+16] Marcus Völp, Sascha Klüppelholz, Jeronimo Castrillon, Her-mann Härtig, Nils Asmussen, Uwe Assmann, Franz Baader,Christel Baier, Gerhard Fettweis, Jochen Fröhlich, AndrésGoens, Sebastian Haas, Dirk Habich, Mattis Hasler, ImmoHuismann, Tomas Karnagel, Sven Karol, Wolfgang Lehner,Linda Leuschner, Matthias Lieber, Siqi Ling, Steffen Märcker,Johannes Mey, Wolfgang Nagel, Benedikt Nöthen, RafaelPeñaloza, Michael Raitza, Jörg Stiller, Annett Ungethüm, andAxel Voigt. “The Orchestration Stack: The Impossible Task ofDesigning Software for Unknown Future Post-CMOS Hard-ware.” In: Proceedings of the 1st International Workshop on
Post-Moore’s Era Supercomputing (PMES), Co-located with The
International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC16). Salt Lake City, USA, Nov.2016. URL: https://cfaed.tu- dresden.de/files/user/
jcastrillon/publications/1611_Voelp_PMES.pdf.

[Goe+17] Andrés Goens, Robert Khasanov, Marcus Hähnel, Till Sme-jkal, Hermann Härtig, and Jeronimo Castrillon. “TETRiS: aMulti-Application Run-Time System for Predictable Execu-tion of Static Mappings.” In: Proceedings of the 20th Inter-
national Workshop on Software and Compilers for Embedded
Systems (SCOPES’17). SCOPES ’17. Sankt Goar, Germany: ACM,June 2017, pp. 11–20. ISBN: 978-1-4503-5039-6. DOI: 10.1145/
3078659 . 3078663. URL: http : / / doi . acm . org / 10 . 1145 /
3078659.3078663.

[GSC17] Andrés Goens, Sergio Siccha, and Jeronimo Castrillon. “Sym-metry in Software Synthesis.” In: ACM Transactions on Archi-
tecture and Code Optimization (TACO), 14.2 (July 2017), 20:1–20:26. ISSN: 1544-3566. DOI: 10.1145/3095747. eprint: arXiv:
1704.06623. URL: http://doi.acm.org/10.1145/3095747.

[Hem+17] Gerald Hempel, Andrés Goens, Josefine Asmus, JeronimoCastrillon, and Ivo F. Sbalzarini. “Robust Mapping of ProcessNetworks to Many-Core Systems Using Bio-Inspired DesignCentering.” In: Proceedings of the 20th International Workshop
on Software and Compilers for Embedded Systems (SCOPES ’17).SCOPES ’17. Sankt Goar, Germany: ACM, June 2017, pp. 21–30.ISBN: 978-1-4503-5039-6. DOI: 10 . 1145 / 3078659 . 3078667.URL: http://doi.acm.org/10.1145/3078659.3078667.

[Cas+18] Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz,Marcus Völp, Nils Asmussen, Uwe Assmann, Franz Baader,Christel Baier, Gerhard Fettweis, Jochen Fröhlich, AndrésGoens, Sebastian Haas, Dirk Habich, Hermann Härtig, Mat-tis Hasler, Immo Huismann, Tomas Karnagel, Sven Karol,Akash Kumar, Wolfgang Lehner, Linda Leuschner, Siqi Ling,SteffenMärcker, ChristianMenard, JohannesMey, WolfgangNagel, Benedikt Nöthen, Rafael Peñaloza, Michael Raitza,Jörg Stiller, Annett Ungethüm, Axel Voigt, and Sascha Wun-derlich. “A Hardware/Software Stack for Heterogeneous Sys-tems.” In: IEEE Transactions on Multi-Scale Computing Systems4.3 (July 2018), pp. 243–259. ISSN: 2332-7766. DOI: 10.1109/
TMSCS.2017.2771750. URL: http://ieeexplore.ieee.org/
document/8103042/.

x

https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1611_Voelp_PMES.pdf
https://cfaed.tu-dresden.de/files/user/jcastrillon/publications/1611_Voelp_PMES.pdf
https://doi.org/10.1145/3078659.3078663
https://doi.org/10.1145/3078659.3078663
http://doi.acm.org/10.1145/3078659.3078663
http://doi.acm.org/10.1145/3078659.3078663
https://doi.org/10.1145/3095747
arXiv:1704.06623
arXiv:1704.06623
http://doi.acm.org/10.1145/3095747
https://doi.org/10.1145/3078659.3078667
http://doi.acm.org/10.1145/3078659.3078667
https://doi.org/10.1109/TMSCS.2017.2771750
https://doi.org/10.1109/TMSCS.2017.2771750
http://ieeexplore.ieee.org/document/8103042/
http://ieeexplore.ieee.org/document/8103042/

[Ert+18] Sebastian Ertel, Andrés Goens, Justus Adam, and JeronimoCastrillon. “Compiling for Concise Code and Efficient I/O.”In: Proceedings of the 27th International Conference on Com-
piler Construction (CC 2018). CC 2018. Vienna, Austria: ACM,Feb. 2018, pp. 104–115. DOI: 10.1145/3178372.3179505. URL:
https://dl.acm.org/citation.cfm?id=3179505.

[Goe+18] Andrés Goens, Sebastian Ertel, Justus Adam, and Jeron-imo Castrillon. “Level Graphs: Generating Benchmarksfor Concurrency Optimizations in Compilers.” In: Proceed-
ings of the 11th International Workshop on Programmabil-
ity and Architectures for Heterogeneous Multicores (MULTI-
PROG’2018), co-located with 13th International Conference on
High-Performance and Embedded Architectures and Compilers
(HiPEAC). Manchester, United Kingdom, Jan. 2018. URL: http:
/ / research . ac . upc . edu / multiprog / multiprog2018 /

papers/MULTIPROG-2018_Goens.pdf.
[GMC18] Andrés Goens, Christian Menard, and Jeronimo Castrillon.“On the Representation of Mappings to Multicores.” In: Pro-

ceedings of the IEEE 12th International Symposiumon Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-18). VietnamNa-tional University, Hanoi, Vietnam, Sept. 2018, pp. 184–191. DOI:
10.1109/MCSoC2018.2018.00039. URL: https://ieeexplore.
ieee.org/document/8540232.

[KGC18] Robert Khasanov, Andrés Goens, and Jeronimo Castrillon.“Implicit Data-Parallelism in Kahn Process Networks: Bridg-ing the MacQueen Gap.” In: Proceedings of the 9th Work-
shop and 7th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and De-
sign Tools and Architectures for Multicore Embedded Comput-
ing Platforms (PARMA-DITAM’18), co-located with 13th Interna-
tional Conference on High-Performance and Embedded Archi-
tectures and Compilers (HiPEAC). PARMA-DITAM ’18. Manch-ester, United Kingdom: ACM, Jan. 2018, pp. 20–25. ISBN: 978-1-4503-6444-7. DOI: 10.1145/3183767.3183790. URL: http:
//doi.acm.org/10.1145/3183767.3183790.

[Ert+19a] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens,and Jeronimo Castrillon. “Category-Theoretic Foundationsof “STCLang: State Thread Composition as a Foundationfor Monadic Dataflow Parallelism”.” In: CoRR abs/1906.12098(June 2019). arXiv: 1906.12098. URL: http://arxiv.org/abs/
1906.12098.

[Ert+19b] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens,and Jeronimo Castrillon. “STCLang: State Thread Composi-tion as a Foundation for Monadic Dataflow Parallelism.” In:
Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell. Haskell 2019. Berlin, Germany: ACM, Aug. 2019,pp. 146–161. ISBN: 978-1-4503-6813-1. DOI: 10.1145/3331545.
3342600. URL: http : / / doi . acm . org / 10 . 1145 / 3331545 .
3342600.

[Goe+19] Andrés Goens, Alexander Brauckmann, Sebastian Ertel,Chris Cummins, Hugh Leather, and Jeronimo Castrillon. “A

xi

https://doi.org/10.1145/3178372.3179505
https://dl.acm.org/citation.cfm?id=3179505
http://research.ac.upc.edu/multiprog/multiprog2018/papers/MULTIPROG-2018_Goens.pdf
http://research.ac.upc.edu/multiprog/multiprog2018/papers/MULTIPROG-2018_Goens.pdf
http://research.ac.upc.edu/multiprog/multiprog2018/papers/MULTIPROG-2018_Goens.pdf
https://doi.org/10.1109/MCSoC2018.2018.00039
https://ieeexplore.ieee.org/document/8540232
https://ieeexplore.ieee.org/document/8540232
https://doi.org/10.1145/3183767.3183790
http://doi.acm.org/10.1145/3183767.3183790
http://doi.acm.org/10.1145/3183767.3183790
https://arxiv.org/abs/1906.12098
http://arxiv.org/abs/1906.12098
http://arxiv.org/abs/1906.12098
https://doi.org/10.1145/3331545.3342600
https://doi.org/10.1145/3331545.3342600
http://doi.acm.org/10.1145/3331545.3342600
http://doi.acm.org/10.1145/3331545.3342600

Case Study on Machine Learning for Synthesizing Bench-marks.” In: Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages
(MAPL). MAPL 2019. Phoenix, AZ, USA: ACM, June 2019, pp. 38–46. DOI: 10.1145/3315508.3329976. URL: http://doi.acm.
org/10.1145/3315508.3329976.

[GMC19] Andrés Goens, Christian Menard, and Jeronimo Castril-lon. “On Compact Mappings for Multicore Systems.” In:
Proceedings of the IEEE International Conference on Embed-
ded Computer Systems Architectures Modeling and Simulation
(SAMOS). Ed. by D. Pnevmatikatos, M. Pelcat, and M. Jung.Vol. 11733. IEEE. Pythagorion, Greece: Springer, Cham, July2019, pp. 325–335. ISBN: 978-3-030-27561-7. DOI: 10.1007/
978-3-030-27562-4_23. URL: https://link.springer.com/
chapter/10.1007/978-3-030-27562-4_23.

[Loh+19] Marten Lohstroh, Martin Schoeberl, Andrés Goens, ArminWasicek, Christopher Gill, Marjan Sirjani, and Edward A. Lee.“Actors Revisited for Time-Critical Systems.” In: Proceedings of
the 56th annual Design Automation Conference. DAC 2019. LasVegas, NV, USA: ACM, June 2019, 4pp. DOI: 10.1145/3316781.
3323469. URL: http : / / doi . acm . org / 10 . 1145 / 3316781 .
3323469.

[BGC20] Alexander Brauckmann, AndrésGoens, and JeronimoCastril-lon. “ComPy-Learn: A Toolbox for Exploring Machine Learn-ing Representations for Compilers.” In: 2020 Forum for Specifi-
cation and Design Languages (FDL). Kiel, Germany, Sept. 2020.

[Bra+20] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, andJeronimo Castrillon. “Compiler-Based Graph Representa-tions for Deep Learning Models of Code.” In: Proceedings of
the 29th ACM SIGPLAN International Conference on Compiler
Construction (CC 2020). CC 2020. San Diego, CA, USA: Associa-tion for Computing Machinery, Feb. 2020, pp. 201–211. ISBN:9781450371209. DOI: 10.1145/3377555.3377894. URL: https:
//doi.org/10.1145/3377555.3377894.

[Kha+20] Asif Ali Khan, Andrés Goens, Fazal Hameed, and JeronimoCastrillon. “Generalized Data Placement Strategies for Race-track Memories.” In: Proceedings of the 2020 Design, Automa-
tion and Test in Europe Conference (DATE). DATE ’20. Grenoble,France: IEEE, Mar. 2020, pp. 1502–1507. ISBN: 978-3-9819263-4-7. DOI: 10.23919/DATE48585.2020.9116245. URL: https:
//ieeexplore.ieee.org/document/9116245.

[Loh+20c] Marten Lohstroh, Íñigo Íncer Romero, Andrés Goens, Patri-cia Derler, Jeronimo Castrillon, Edward A. Lee, and AlbertoSangiovanni-Vincentelli. “Reactors: A Deterministic Modelfor Composable Reactive Systems.” In: Cyber Physical Systems.
Model-Based Design – Proceedings of the 9th Workshop on De-
sign, Modeling and Evaluation of Cyber Physical Systems (CyPhy
2019) and the Workshop on Embedded and Cyber-Physical Sys-
tems Education (WESE 2019). Ed. by Roger Chamberlain, Mar-tin Edin Grimheden, andWalid Taha. New York City, NY, USA:Springer International Publishing, Feb. 2020, pp. 59–85. ISBN:978-3-030-41131-2. DOI: 10.1007/978-3-030-41131-2_4. URL:

xii

https://doi.org/10.1145/3315508.3329976
http://doi.acm.org/10.1145/3315508.3329976
http://doi.acm.org/10.1145/3315508.3329976
https://doi.org/10.1007/978-3-030-27562-4_23
https://doi.org/10.1007/978-3-030-27562-4_23
https://link.springer.com/chapter/10.1007/978-3-030-27562-4_23
https://link.springer.com/chapter/10.1007/978-3-030-27562-4_23
https://doi.org/10.1145/3316781.3323469
https://doi.org/10.1145/3316781.3323469
http://doi.acm.org/10.1145/3316781.3323469
http://doi.acm.org/10.1145/3316781.3323469
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.1145/3377555.3377894
https://doi.org/10.23919/DATE48585.2020.9116245
https://ieeexplore.ieee.org/document/9116245
https://ieeexplore.ieee.org/document/9116245
https://doi.org/10.1007/978-3-030-41131-2_4

https://link.springer.com/chapter/10.1007/978-3-030-

41131-2_4.
[Men+20] Christian Menard, Andrés Goens, Marten Lohstroh, andJeronimo Castrillon. “Achieving Determinism in Adaptive AU-TOSAR.” In: Proceedings of the 2020 Design, Automation and

Test in Europe Conference (DATE). DATE ’20. Grenoble, France:IEEE, Mar. 2020, pp. 822–827. ISBN: 978-3-9819263-4-7. DOI:
10 . 23919 / DATE48585 . 2020 . 9116430. URL: https : / /

ieeexplore.ieee.org/abstract/document/9116430.
[Wit+20] Robert Wittig, Andrés Goens, Christian Menard, Emil Matus,Gerhard P. Fettweis, and Jeronimo Castrillon. “Modem De-sign in the Era of 5G and Beyond: The Need for a Formal Ap-proach.” In: Proceedings of the 27th International Conference

on Telecomunications (ICT). Bali, Indonesia, Oct. 2020.
[Men+21] Christian Menard, Andrés Goens, Gerald Hempel, RobertKhasanov, Julian Robledo, Felix Teweleitt, and Jeronimo Cas-trillon. “Mocasin – Rapid Prototyping of Rapid PrototypingTools: A Framework for Exploring New Approaches in Map-ping Software to Heterogeneous Multi-cores.” In: Proceed-

ings of the 13th RAPIDO Workshop on Rapid Simulation and Per-
formance Evaluation: Methods and Tools, co-located with 16th
International Conference on High-Performance and Embedded
Architectures and Compilers (HiPEAC). RAPIDO ’21. Budapest,Hungary: ACM, Jan. 2021.

[GNC] Andrés Goens, Timo Nicolai, and Jeronimo Castrillon. “mp-sym: Improving Design-Space Exploration of ClusteredManycores with Arbitrary Topologies.” Manuscript submit-ted for publication.

xiii

https://link.springer.com/chapter/10.1007/978-3-030-41131-2_4
https://link.springer.com/chapter/10.1007/978-3-030-41131-2_4
https://doi.org/10.23919/DATE48585.2020.9116430
https://ieeexplore.ieee.org/abstract/document/9116430
https://ieeexplore.ieee.org/abstract/document/9116430

Acknowledgments
First and foremost, I thank my advisor Jeronimo Castrillon. I consider himto have been both a mentor and a friend during the time I’ve spent work-ing on this thesis. His advice shaped my research and this thesis wouldnot exist without his guidance and help.I also want to thank my current and former colleagues and co-authorsat the chair for compiler construction: Justus Adam, Hasna Bouraoui,Alexander Brauckmann, Sebastian Ertel, Fazal Hameed, Gerald Hempel,Sven Karol, Asif Khan, Robert Khasanov, Nesrine Khouzami, ChristianMenard, Norman Rink, Julian Robledo, Lars Schütze and Felix Wittwer.Thank you for creating a great environment to learn and work together,for countless discussions and insights, for your patience with my insis-tance on going to Zeltmensa and the great discussions that arose there,and for offering my comradery and friendship.I want to thank everyone who worked with me as a student, help-ing me realize my research vision, from whom I’ve also learned a greatdeal, and some of whom have become colleagues in the meantime. Con-cretely, thank you, Alexander Brauckmann, Sebastian Krammer, Chris-tian Menard, Timo Nicolai, Marcus Rossel, Alexander Thierfelder, FelixTeweleitt and Markus Walter.Thanks to Silexica for letting me work with their product, which startedas a spinoff of Multi-Processor System-on-Chip (MPSoC) Application Pro-gramming Studio (MAPS). Special thanks go to Luis Murillo for the patienceof reading through all my papers related to Silexica and also being asource of inspiration in this collaboration.Mostly however, I want to thankMaxOdendahl, for trusting inmy abilities while knowingme only on a per-sonal level, and introducing me to the field. Without him and AufwärtsAachen, I would not be where I am today, thank you!During my Ph.D I had the opportunity to visit Andy Pimentel at the Uni-versity of Amsterdam, where I was warmly received by him, Simon Polstraand the rest of the group. Thank you for welcoming me and for a fruitfulcollaboration. I’d also like to thank the HiPEAC project for funding thisvisit through a collaboration grant. I also had the opportunity to visit Ed-ward Lee at the University of Califonria at Berkeley. There, Matt Weberand Gil Lederman received me in their office, where I felt very welcome,like any other colleague. I want to thank both, as well as Marten Lohstroh,all of whom I had great discussions with, and whomademy visit at Berke-ley extremely fruitful. A special thank you also goes to Mary Stewart forhelping sort out everything there, even to the point of making sure I hadsomething to eat at the group lunches. Most of all, I would like to thankEdward Lee for accepting me to visit his group and taking the time to talkwith me regularly. This visit was a pivotal point in my Ph.D. and I really ap-preciated everything and everyone. Outside the academic realm, I want tothank Giulia Leggett for making this visit extremely enriching also from apersonal point of view. I also want to thank the German foreign exchangeservice DAAD and specifically the FIT Weltweit project, as well, the Centerfor Advancing Electronics Dresden (cfaed) cluster of excellence, for helpingme finance this visit.I alsowant to thank the rest ofmy co-authors. Colloaborationwith themmade this thesis possible. Thanks to Chris Cummins andHugh Leather forbeing so open in our collaboration and for their hospitality in Edingburgh.To everyone in the cfead Orchestration path, for sharing a vision with me

xv

and constructive retreats. I also thank Marcus Hähnel and Till Smejkal fora very successful collaboration what started the TETRiS project. Thanks toJosefine Asmus and Ivo Sbalzarini for collaboration on the work on designcentering, which was very insightful. I also thank Sergio Siccha, for takingour friendly discussions so seriously that we ended up collaborating inthe mapping symmetries work. Thanks also to Robert Wittig for a beach-side discussion at Samos that led to a collaboration on the model-basedapproaches to 5G. I thank Arka Maity, Nishant Budhev and Tulika Mitrafor sharing their LTE traces with us.I started this Ph.D. at the cfaed cluster of excellence, which providedfunding and a great academic environment. I want to thank everyone atthe program office for helpingme throughout this time, as well as my the-sis advisory committee, Jeronimo Castrillon, Christel Baier and HermannHärtig. I also want to thank Conny Okuma for her patience throughoutthe years with my incomplete formularies and late handing over of docu-ments. Thanks as well to the German Research Foundation DFG for fund-ing me after cfaed.The final phase of my Ph.D. was mainly funded by the Studienstiftungdes deutschen Volkes. Besides financial support also provided me withan excellent offer of intellectual complementary opportunities. Thank youfor this opportunity, and thanks to Maike Lieser for helping me apply tothis scholarship, I am sure I would not have received it without her help. Ialsowant to thank her for everything else, as shewas probably the biggestpositive influence in my life during the time of my Ph.D.I want to thank everyone at TEDxDresden and everyone from animalrights activism for giving me meaningful projects to do with my life be-sides my research. Also to everyone at Bodyworks and Basketball ClubDresden for giving me a constant outlet to find a healthy balance withsports.Finally, and most importantly, I want to thank my friends and family forbeing there for me and reminding constantly of all the important and en-joyable aspects of life, besides academics. To all my friends in and aroundDresden, who accompanied me through life these past six years, thankyou for making this one of the best times of my life. To my friends backin Aachen, San Salvador and spread throughout the rest of the world,thanks for being a constant source of love and friendship that has keptme grounded. I won’t list everyonewho hasmademy life better these lastsix years and whom I consider a friend, I’m sure they know who they are,and I thank each and every one.I would certainly not be who I am, and this thesis would not be possi-ble, without the tremendous support frommy family. My cousins, unclesand (great) aunts, my two big sisters, thank you everyone for always beingthere forme. Especiallymy little sister Ute, who’s accompaniedme a largepart of my time here in Dresden, being a constant source of support andinspiration. My father made me be curious and think critically since I wasa kid, and coupled this inspiration with unconditional love, which I am cer-tain was an indispensable forme towrite this thesis. Mymothermademebe social and empathic, and made sure I became a well-rounded person.Her constant support and openness made me always do what interestedme, and I am certain this thesis would never have happened without her.Thank all of you for everything! Andrés Goens, January 2021

xvi

CONTENTS

Preamble vii
1 Introduction 11.1 The Multicore Era . 11.2 Programming Multicores . 31.3 Software Synthesis . 51.3.1 Problems . 71.4 Contribution . 91.4.1 A Note on Originality 11
2 Mapping KPNs to Heterogenous MPSoCs 132.1 Kahn Process Networks . 132.2 Execution Traces . 152.3 Architecture Models . 172.4 The Mapping Problem . 222.5 Simulating Mappings . 252.5.1 Simulating the Execution of Kahn Process Networks 262.6 Software Synthesis Flows . 272.6.1 The MAPS flow . 282.7 The mocasin tool . 29
3 Benchmarking 333.1 Representative Benchmarks 333.1.1 Sample use cases . 353.2 KPN Benchmarks . 363.2.1 CPN Benchmarks . 363.2.2 The E3S Benchmarks 373.3 Random Benchmarks and Level Graphs 383.4 Machine Learning for Benchmarking 403.4.1 Generative models . 403.4.2 Potential Problems . 413.4.3 Models of Code . 44
4 Mathematical Structures in Mappings 474.1 Symmetries . 474.1.1 Architectures and Applications 474.1.2 Mappings . 504.1.3 Calculating Symmetries 524.1.4 Partial Symmetries . 564.2 Metric Spaces . 624.2.1 Architectures . 634.2.2 Mappings . 664.2.3 Low-distortion Embeddings 664.3 Representations . 71
5 Applications of Mathematical Structures in Mappings 755.1 Compact Mappings . 755.2 Robust Mappings . 795.3 Design Space Exploration . 82

xvii

5.3.1 Heuristics and Metaheuristics 835.3.2 Leveraging Symmetries 855.3.3 Leveraging Metric Spaces 885.4 A Vision of IoT Mappings . 925.5 Run-time applications: TETRiS 95
6 Beyond KPN: Models of Computation 996.1 An overview of Models of Computation 1006.1.1 Partial Computation: Scott Domains 1006.1.2 Concurrent Computation 1016.1.3 Dataflow Models of Computation 1026.2 The MacQueen Gap . 1046.2.1 The MacQueen Gap 1056.2.2 Exploiting the Gap . 1086.3 Reactors . 1096.3.1 Applications in 5G . 117
7 Programming Languages 1237.1 Freedom from Choice . 1237.1.1 Dataflow, Actors and Discrete Events 1247.1.2 Implicit Dataflow . 1267.1.3 Stateful Functions . 1277.2 Stateful Parallelism . 1277.3 Concise code and Efficient I/O 130
8 Related Work 1378.1 Dataflow-based Software Synthesis 1378.2 Mapping Space Structures . 1388.2.1 Symmetries . 1388.2.2 Distances . 1388.3 Run-time and hybrid approaches 1398.4 Other model-based design tools 1398.5 Random Benchmark Generation and Machine Learning . . 140
9 Conclusions 1419.1 Future Work . 142
a Mathematical Supplement 145a.1 Groups . 145a.2 Metric Spaces and Low-Distortion Embeddings 149

xviii

1I NTRODUCT ION

Programming computers is notoriously difficult. Indeed, people learningto program usually struggle, paradoxically, with the fact that the com-puter does precisely what they tell it to do. This is confusing, not becausea computer program is executed faithfully, but rather, because humansthink at a very different level of abstraction.It is certainly true that instructions in computer architectures are at acompletely different level of abstraction than the instructions we giveeach other. However, most programs are also not written at the levelof the architecture. Programming languages are designed with increas-ingly improving abstractions, making it easier for programmers to ex-press themselves. Complementary to these efforts are compilers, whichserve as bridge between the levels of abstraction. Ideally, a compiler trans-lates the abstract human-level expressions into efficient machine-level in-structions. While we have made significant progress, this task has provento be dauntingly difficult.Traditionally, we have put the research and effort into optimizing theexecution of a single core. Most of the progress of decades of research inprogramming language and compilers revolves around this single-coremodel. In the last decade or two, however, with the multicore era, thischallenge has increased dramatically. Nowwehave to use and coordinatemultiple cores, commonly with different capabilities. The widespread pro-gramming language abstractions and compiler analyses of today are ill-suited to tackle this challenge.There is probably no universal solution to these emerging problems, asdifferent domains have different requirements. This thesis thus focusesmostly a particular domain, that of Cyber-Physical Systems (CPSs) or gen-erally, embedded systems. In this domain, a family ofmethods called soft-ware synthesis seeks to enable efficient programming of complex multi-core systems. Central to thesemethods is a focus on usingmodels for de-scribing computation. We follow the idea of letting theory inform practice,in striving to improvemethods of software synthesis. We do this by identi-fying and exploiting mathematical structures in the problems in softwaresynthesis.
1.1 The Multicore Era
On the hardware side, the last two decades have firmly established whatwe call the multicore era. Modern computing systems are almost univer-sally composed of multiple logical cores, and there is a clear trend of in-creasing both the number and the degree of heterogeneity of these cores.This increasing complexity brings about an increasing challenge in tamingit.Both the execution frequency and the closely intertwined single-coreprocessing speed of computing systems increased exponentially up un-til the early 2000s (cf. Figure 1.1), an empirical fact observed by GordonMoore in 1965 [Moo+65]. Since the early 2000s, however, while transis-tor sizes continue to decrease, the exponential frequency scaling has

1

NumberofTransistors
Single-coreperformance

(SpecINT
ˆ

10
3)

1990 2000 2010 2020

1e+03

1e+05

1e+07

1e+02
1e+03
1e+04
1e+05

Year produced

Numberof cores
1
4
16
64

64
256
1024

Frequency(MHz)

Figure 1.1: Chip trends as obtained from [Rup20]. The lines present the exponen-tial growth prediction if considering data up until the year 2000.

stopped (cf. Figure 1.1). Individual and clever designs have continued toimprove single-core performance, albeit at a significantly slower rate. In-stead, most improvements in microchips in raw processing power havecome from a paradigm switch. Hardware designers resorted to developmulticores, microchips composed of multiple cores that can execute inparallel. Additionally, since different use-cases benefit fromdifferent com-puting core architectures, the inclusion of multiple chips has paved theway for heterogeneity. This has resulted in a multicore era of computing.A programmer writing a piece of C code in the early 1970s would auto-matically benefit from the increasing processing speeds. By recompilingher code for a processor 10ˆ faster, she could very roughly expect hercode also to run about 10ˆ as fast. This has changed. A programmer writ-ing a piece of (sequential) C code in the early 2000s cannot expect any-where near a 100-fold increase in performance today when she uses amicrochip with 100ˆ the number of transistors. At least not without fun-damentally restructuring her code to exploit parallelism. Contemporarysystems aimed at performance almost ubiquitously consist of multicorechips, in many cases heterogeneous, which tremendously increases thesystem complexity. It is a clear trend that the complexity and heterogene-ity will continue to increase [Völ+16; Cas+18].As the number of cores in a chip keeps increasing, the importance of co-ordination and communication between the cores raises as well. Memorylatency and bandwidth has been a bottleneck for many classes of appli-cations for a while. In the case of manycores, which are multicores wherethe number of cores goes over several dozens, even to hundreds or thou-sands, the on-chip memory subsystem becomes a central design pointof the chip. Systems based on Network on Chip (NoC) technology becomenecessary, lest a single bus interconnect becomes the bottleneck of thesystem when thousands of cores want to communicate simultaneouslythrough it.In fact, for a multitude of reasons, manycores are commonly designedin a hierarchical fashion. Smaller clusters of cores locally interconnectedcommunicate between each other and off-chip via a larger NoC. Theseclusters and systems are usually heterogeneous as well, like the KarlayMPPA3 Coolidge [inc20], with includes accelerators for cryptography and

2

R
R
R
R

R
R
R
R

R
R
R
R

R
R
R
RR

R
R
R

R
R
R
R

R
R
R
R

R
R
R
R R

R
R
R

R
R
R
R

R
R
R
R

R
R
R
RR

R
R
R

R
R
R
R

R
R
R
R

R
R
R
R

Wirelessinter-boardlinks
Manycore
OpticalInterconnect

Figure 1.2: The HAEC architecture [Fet+19] has multiple levels of hierarchy: on-chip,intra-board (optical links) and inter-board (wireless).

secure cores, alongside general purpose cores. Some systems even pro-posemultiple layers of hierarchy, like theHighly-Adaptive Energy-EfficientComputing (HAEC) topology [Fet+19], depicted in Figure 1.2. This is a pro-posed 3D-stacked system with multiple printed circuit boards (PCBs) eachwith multiple manycore chips, not a single chip with this complex inter-connect. However, this design could allow for very low latencies, suchthat challenges of programming it are comparable to those of program-ming such a topology as part of an on-chip memory subsystem. Whathappens if the mulicores in this system are similar to the Karlay MPPA3Coolidge? This would yield more than 5000 heterogeneous cores con-nected at five levels of hierarchy in different topologies. More generally,complex topologies, with possibly multi-level hierarchies, add a layer ofcomplexity to modernmanycore systems besides heterogeneity and con-currency. The techniques used for programming a system with two orfour identical cores are mostly not suited at all to program these daunt-ingly complex topologies. We need to re-think our design process to ac-comodate for these changes in complexity.
1.2 Programming Multicores
As already mentioned, programming is notoriously difficult since it trans-lates from the level of abstraction of human interactions to the instruc-tions of a computing system. The multicore era greatly aggravates thisalready difficult problem. Reasoning about concurrency, parallelism andheterogeneity on top of the correct functionality of software is signifi-cantly more difficult for a programmer. In general, the productivity of de-velopers cannot keep up with the pace of developments in hardware. Wespeak of a “software productivity gap” [EMD09; CL14].When programming multicore systems, abstractions that proved veryuseful for programming single-cores become inadequate. This is exacer-bated by a problem with the legacy of ISAs. They are usually based on ma-chine models which are also sequential at the instruction level [Chi18]. Auniversal concept in programming is that of repeating an action multipletimes, or looping. For example, consider the task of iterating through abunch of pictures and determining which of them contain cats. For in-

3

structing a human, we can probably say something like “look throughthose pictures and sort out the ones that have cats”. A modern x86 chip,on the other hand, would understand something closer to this:
LBB0_1:

cmp dword ptr [rbp - 56], 10

jge LBB0_4

mov edi, dword ptr [rbp - 56]

call _read_picture

mov qword ptr [rbp - 64], rax

mov rdi, qword ptr [rbp - 64]

call _contains_cats

movsxd rcx, dword ptr [rbp - 56]

mov dword ptr [rbp + 4*rcx - 48], eax

mov eax, dword ptr [rbp - 56]

add eax, 1

mov dword ptr [rbp - 56], eax

jmp LBB0_1

LBB0_4:

mov eax, dword ptr [rbp - 52]

mov rcx, qword ptr [rip + ___stack_chk_guard@GOTPCREL]

mov rcx, qword ptr [rcx]

mov rdx, qword ptr [rbp - 8]

cmp rcx, rdx

mov dword ptr [rbp - 68], eax

jne LBB0_6

This snippet is a very oversimplified version of the task, but it serves tomake the point. Where we abstractly tell a human to look through the pic-tures, and they understand them as a whole set, interpreting themselveshow to go through the set. On the other hand, we instruct the machineto iterate through them by a series of very fine-grained commands. Weneed to set certain registers to contain the right memory addresses, be-fore calling an instruction to operate on them. We then call external func-tions that do the reading and cat identification. To then loop through thepictures here, simplified, we repeat this reading and identifying by jump-ing to a previous point in the sequence of instructions. Even this x86 as-sembly snippet is already an abstraction, not only because it uses human-readable mnemonics for the instructions, but more so because it also ab-stracts away the concrete memory addresses and the microarchitecture.In practice, however, almost no one would write this assembly code. In-stead, they could write something closer to this (equivalent) C snippet:
for(i = 0; i < N; i++){

char *f;

f = read_picture(i);

results[i] = contains_cats(f);

}

Notice how the register management and several other low-level de-tails are abstracted away. The end of the loop is very clear to read, as weknow when we have reached the final picture. We can certainly say thisis at a level of abstraction between the human and machine instructionslisted above. However, the very widespread for instruction we used herealso has the inherently sequential semantics, as exhibited by the assem-bly code it translates to. The semantics of the for loop are that the loop

4

body will execute completely. After each iteration of the body, the incre-ment expression is executed (usually incrementing the iteration variable),and the condition is evaluated, deciding wether to continue iterating. In-deed, in the two (equivalent) snippets above, we do not know how thefunctions read_picture and contains_cats work. Do they have an innerstate, or side effects? We do not know if we can call read_picture in a dif-ferent order, or multiple times in parallel. Perhaps it is internally keepinga single reference to the iterator of the image files and doing so wouldbreak the logic. The for instruction is very useful to abstract away thelogic of registers and instruction jumps, but not a useful abstraction forexpressing concurrency. A similar construct exists in functional program-ming, map, which generally does not have this implicit sequential seman-tics. The map instruction is what is called a higher-order function, takinga function as an argument and applying it to a list or any iterable object,in general. The same cat-identifying snippet, in Haskell, can be written asfollows:
result = map (contains_cats . read_picture) pictures

While the language separates statefull and stateless computation, al-lowing a great analysis of concurrency, there are reasons why Haskell isnot the most widespread language for embedded systems. For example,garbage collection makes execution times very unpredictable. Similarly,the lazyness of the language adds a performance penalty to large com-plex computations. Compiling Haskell code to an efficient single-core ex-ecution is significantly more challenging than equivalent C code. The lazy-ness also makes it difficult to reason about time in the computation. Thisis crucial in application domains like CPS, where the systems interact withtheir environment. The map abstraction, as implemented in Haskell, is notwell-suited for many tasks in the domain of CPS. In general, we are facedwith trade-offs between abstract expressivity and translatability to an ef-ficient execution. At its core, the challenge is about choosing the rightmodels and corresponding abstractions for a particular domain.
1.3 Software Synthesis
Models play different roles in science and engineering. E.A. Lee explainsthis well in [Lee17]. He argues that scientists adapt their models to fit ex-periments in the world, while engineers adapt designs in the world to fittheir models. Indeed, some fundamental principles of computation, like
λ-calculus, are arguably discovered instead of invented, as Wadler con-tends [Wad15]. Those might fit in the first paradigm, giving computer sci-ence a justification for its name. In the case of programming multicoresystems, however, the problem is clearly in the second realm: we need toengineer goodmodels [Lee06]. No serious argument can bemade for lan-guages like C or Haskell, nor the x86 instruction-set; They were invented,not discovered.There are different ways of finding and exploiting the right models forprogrammingmulticores. It is unlikely that there is a single rightmodel forthis. Different models are differently suitable for different use-cases. Forexample, applicative functors in functional programming [Mar+14] seemto be a great model for expressing I/O concurrency in microservice-basedsystems. Asmentionedbefore, however, Haskell and its underlyingmodelare not a great fit for CPS.

5

For CPS and, embedded systems in general, there is a family of methodscalled software synthesis [RPM92; Abb+93; Lin98; BLM00; Pin+95; CSL11;BML12]. It is a family of methods devised precisely to help with the bur-den of fully exploiting the capabilities of modern multicores. Inspired byhardware design flows, it aims to bridge the ensuing (software) productiv-ity gap by integrating knowledge of the application and target multicorearchitecture into the compilation process. At the core of these methodslies a shift in the programming model. Instead of the de facto sequential,shared-memorymodel, programmers express the code in diverseModelsof Computation (MoCs). This makes the underlying model explicit, not im-plicit as is the case in most programming languages.These models expose the structure of the computation in ways thatpermit a compiler to reason about its parallel execution, even in the pres-ence of heterogeneous hardware. Aided by abstract models of the targetarchitecture, we can design compilers for multicore systems that deviseexecution strategies specialized to the target architecture and applica-tions. Depending on the flow, the target architecture can be implicit inthe methodology [RPM92] or be an explicit input to the flow [CLA11]. Thiscan be realized for example by finding efficient mappings, i.e. allocationsof computational and communication resources to the different parts ofan application.As mentioned above, the central principle behind software synthesisis the underlying model of computation. Some approaches [Lin98] usegeneral models, like Petri Nets [Pet62], while others [RPM92] more con-strainedmodels like SynchronousData Flows (SDFs) [LM87].Most allow formultiplemodels [BLM00; Pin+95; BML12], generally dataflowmodels.Mak-ing themodel explicit just makes it easier to see the trade-off between ex-pressivity and translatability to an efficient execution. The advantage ofmodels like Petri nets is that they can express virtually any computation.On the other hand, very constrained models, like SDF provide behavioralguarantees that permit several optimizations, like static schedules andchannel bounds [Par95].Several more modern flows [Thi+07; CLA11; PEP06; Kan+06] have set-tled at the Kahn Process Network (KPN) model. Originally meant as deno-tational semantics for parallelism [Kah74], the model has been shown tobe compatible with dataflow [LP95]. Kahn Process Networks are provablydeterministic [Kah74], which is not the case for other models, e.g. PetriNets. In a canonical sense, KPNs are more general than most dataflowmodels, and represent the most general deterministic dataflowmodel ofcomputation [LM09]. In this thesis we will focus on a software synthesisflow [CLA11; CL14] based on KPN.
application(MoC) e.g. KPN

architecturemodel

execution(e.g. traces)

DSE (mapping/scheduling)

perf. estimation(simulation)

mapping(& schedule)

performancemetrics

codegeneration targetcode

Figure 1.3: A flow for MoC-based Software Synthesis. The main abstractions col-ored in green are the ones we deal with in this thesis.

6

Figure 1.3 shows the general structure of many such MoC-based flows.Application, architecture and executionmodels are used for performanceestimation and Design-Space Exploration (DSE), commonly intertwiningthese two processes, to produce performance metrics and a mapping(and schedule) for the application on the target architecture. A final, codegeneration step generates code for the target architecture. This code isusually software for an existing architecture, but can also be hardware(e.g. in [Hau+08]), in flows that are closer to High-Level Synthesis (HLS),which is the inspiration for the name software synthesis in the first place.This thesis is limited in its scope, and it does not deal with the whole flowas depicted in Figure 1.3. It deals mostly with the abstractions on the leftside of the figure, colored in green. Chapter 2 will review these abstrac-tions, including some of the models of computation above, and their re-lationships. MoCs are reviewed more generally in Chapter 6.
1.3.1 Problems

The methods of software synthesis are a promising avenue for program-ming multicores, but they still have multiple problems that make themimpractical.Consider a concrete KPN-based instance of the flow depicted in Fig-ure 1.3, like [CLA11; PEP06; Thi+07]. KPN is a well-definedMoC, used for spec-ifying and reasoning about applications in the flow. However, the architec-ture or the execution, which are comparably important, are commonlymodeled in an ad hoc fashion. With a specific architecture or topologyin mind, the flows encode the architecture model with a series of per-formance metrics or similar numbers characterizing a specific hardware,while the structural properties are implicit in the problem formulationsand algorithms.

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 t1t2

t1 t2

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8T1 mapping (PE)

T 2m
app

ing
(PE

)

time

Figure 1.4: An example of the mapping space for a simple two-task application.
Consider the very simple example of mapping two processes t1, t2where t2 depends on t1 onto an off-the-shelf multicore like Odroid XU4,which features a Samsung™Exynos 5 chip with an octacore (4+4) ARMbig.LITTLE™, as depicted in Figure 1.4. The mappings are plotted by en-coding the mapping of each of the two tasks as the x and y coordinatesof the grid, and the color of the squares in the grid encodes the executiontime of the applicationwith thatmapping. The example is very simple andwe deliberately chose it such that it can be easily visualized. In particular,the actual values of the execution time are irrelevant for this discussionand have been omitted. Still, many of the problems are clear with thissimple example already.

7

There are exactly 28 “ 64 mappings in the mapping space, yet only 6distinct execution times (colors). This is because, at least a priori, map-ping both tasks to PE6, as shown in the figure, or mapping them both to
PE7, will obviously result in the same execution time, since the two coresare identical (Cortex-A15™). This can be generally understood as a prop-erty of the symmetries of the architecture, and should be exploited whenexploring this mapping space.Similarly, researchers often use heuristics based on geometric proper-ties of the design space to explore it. Yet they often disregard the encod-ing they use for the design space. If we consider the point p4, 4q on Fig-ure 2.9, there are four points adjacent to it, yet they are vastly different interms of their execution time.We can compare the geometry of the spacewith the geometry of the architecture itself, and see why this is the case:the distances in this space do not reflect the architecture with its hetero-geneity and itsmemory subsystem. In general, the geometry of this spacedoes not reflect the geometry of the problem.Mappings encode the resource allocation for the application to an ar-chitecture. As such, they inherit structural properties of both the applica-tion and its semantics, as well as of the underlying architecture. Yet map-pings are commonly treated as simple lists of assignment, disregardingthis structure, like which tasks depend on which, or if they are mapped tocores with a large communication latency between them. Mapping algo-rithms commonly encode a heterogeneous architecture as a list of num-bers of cores of different types, or perhaps use a grid system to encodeprocessing elements (PEs) as they assume a NoCwith a regular-mesh topol-ogy. Thesemodels break downas soon as the complexities of the architec-ture transcend the fixed model, for example by having multiple clustersor levels of hierarchy, or star-mesh topologies instead of regular meshes.The problems mentioned here permeate the design of the internal al-gorithms in software synthesis flows, which effectively constraints themto a small class ofmodels or disregards opportunities for reasoning aboutthe structure of the problem. While memory has been identified as a first-class citizen for achieving efficient implementations, many methods alsoconsider it just as an afterthought. For example, when discussing hetero-geneity in architectures, the heterogeneity implied by the memory sub-system is seldom considered, nor are emergingmemory technologies likenon-volatile memories (NVMs).The issues raised above are not inherent issueswith the flow, but ratherwith the state of practice. However, the flow itself does has some inher-ent limitations as well. The KPN model of computation falls short on cer-tain use-cases. For example, the blocking-read semantics common in KPNimplementations are ill-suited for certain cases of data-level parallelism.Also, perhaps more importantly, KPNs do not model time in the physicalworld, which plays a central role for the execution of CPSs. In general, amodel-based design approach needs to evolve its models according tothe use-cases.Another inherent problem with the flow as formulated is the structureof the flow itself. An application is described using a concrete MoC andthen this is used to reason about an implementation. However, the flowas depicted in Figure 1.3 (and implemented in practice in many instances)disregards transformations at the level of the application. This couldmean a feedback loop back to the application, or perhaps semantics-

8

preserving code transformations at the model level, as part of the explo-ration.If methods like software synthesis are to be used in practice, we shouldalso make sure they also work in practice. Strong results on a variedbenchmark suite from real-world applications are usually a much betterindicator for practical applications than, say, a good asymptotic worst-case behavior. In order to get such results, however, we need such a var-ied realistic, up-to-date benchmark suite. In reality, however, increasinglybranching subdomains and concerns of intellectual property mostly yielda scarce landscape of outdated benchmarks instead.Finally, there are multiple issues with these flows that dependmore onthe industry itself than the methods directly. Tool support and maturity,degree of adoption and knowledge of themodels are all beyond the realmof the academic contribution of this thesis.
1.4 Contribution
In this thesis we seek to improve the tools we use for understanding andtackling the problems discussed with software synthesis. We work in amodel-based perspective and consider the trade-off we have introduced,between abstract expressivity and translatability to an efficient execution.To consider this we tackle the problem from both sides: the models andthe compilers, in a very general sense, that translate to an efficient ex-ecution. The main idea behind this thesis is that the underlying modelsendow the problem with structure. We can then identify this structure(mathematically) and leverage it to improve our solutions. Again thereare two ways of doing this:

1. by taking a concrete flow and improving it leveraging its own struc-ture, or
2. by changing the underlying models in a way that improves the bal-ance in some way in the trade-off above.

This thesis discusses both. We first focus on software synthesis for (high-performance) embedded systems running on Multi-Processor Systems-on-Chip (MPSoCs). In particular, we focus on a concrete software synthesisflow [CLA11; CL14] based on KPNs. Chapter 2 introduces this flow, as de-picted in Figure 1.3, and the corresponding background on the mappingproblem.To evaluate methods in software synthesis in particular and compilersin general, we need to test them on benchmarks. Chapter 3 discussesbenchmarking in compilers, and introduces some benchmarks we use inthe thesis. It also discusses benchmark generation, with its advantagesand pitfalls, both using random processes and machine learning.As motivated in Figure 1.4, the mapping problem in software synthesishas a rich structure, like its symmetries or geometry. We identify and de-scribe this structure in Chapter 4. Describing the structure is only as usefulas the applications we find from it. In Chapter 5 we discuss multiple ap-plications, e.g. at compile time in DSE or at run-time in hybrid mappings.We also show how this structure can be used to formulate other proper-ties ofmappings, like robustness or compactness, which can be useful forresilient computation even in real-time scenarios in CPS.After exploring how to improve concrete flows with its structure, weturn our attention to the underlying models. Chapter 6 reviewsModels of

9

Computation (MoCs) in general, and shows how to improve the methodshere.We first show how to improve existingmethods, discussing what wecall the MacQueen gap in the KPN semantics. We discuss a novel model,Reactors, where time is a first-class citizen, and discuss applications in thetelecommunications and automotive domains.
MoCs are abstract mathematical models, they need to be exposed toprogrammers using a language or an API. In Chapter 7 we discuss the pro-gramming languages used to develop MoC-based applications. We reviewdifferent existing languages, including the Ohua paradigm, which can beused for implicitly defining dataflow applications. We discuss language-level transformations and abstractions in the context of Ohua and how

MoC-based design can be used for optimizing I/O in microservice-based ar-chitectures, i.e. in a collection of loosely-coupled services in a networkedsetting.The topic of this thesis is broad, and much related work exists for allaspects covered here. While different chapters cover related work perti-nent to the topic discussed, we review and discuss it concisely again inChapter 8. Finally, some conclusions from this work are summarized inChapter 9.While all topics covered in this thesis are related bymodel-based designof software, not every chapter depends on everything previous. Figure 1.5shows the logical dependencies of the chapters, and in some cases, thesections of the chapters in this thesis. Any path in this graph should yielda consistent exposition of the topics discussed. A reader only interestedin some topics can readily skip chapters and sections that are not in thepath to the sections that interest them.
Mapping KPNsto MPSoCs2

Benchmarking3

KPNBenchmarks3.2
RandomBenchmarks3.3

MachineLearning3.4

Structuresin Mappings4

MetricSpaces4.2
Symmetries4.1

MappingRepresentations4.3

CompactMappings5.1
RobustMappings5.2

IoTMappings5.4HybridMappings5.5

DSE5.3 MoCs6.1

The MacQueenGap6.2
Reactors6.3

ProgrammingLanguages7

Figure 1.5: Dependencies of chapters and sections of this thesis.

10

1.4.1 A Note on Originality

This thesis presents the fruits of over half a decade of research on thesubjects presented. Research, especially in an interdisciplinary approachlike presented here, is muchmore fruitful when collaborative. In the caseof joint work, I have made an effort to focus only on my own contribu-tions in this thesis, whenever possible. I have also taken care to describethe work of my colleagues as theirs, when I have included it as an indis-pensable requirement to understand my own work. However, some ofthe ideas in this thesis are the result of joint work and cannot be creditedto a single person. In those cases I have also taken care to describe thework as joint and mention other coauthors. If in doubt, any idea or resultthat I have included here which has already been published elsewhere isalso due to my coauthors.

11

2MAPP ING KPNS TO HETEROGENOUS MPSOCS

Software synthesis refers to a family of methods, rather than a concreteone, which share common properties about the abstract flow for generat-ing code for an efficient execution in (heterogeneous)multicores. It canbeseen as embedded in a spectrum of design approaches going from hard-ware design (and classical Electronic Design Automation (EDA)) throughhardware-software co-design up to software synthesis on the other end.While some principles apply more generally than others, to actually pro-duce and optimize code, we need to focus on a concrete flow. In this chap-ter we will introduce the concepts behind software synthesis and map-pings in a concrete flow, mapping KPN applications onto heterogeneoushardware. The flow is an instance of the general flow from Figure 1.3, andis presented in detail in [CL14].As is general in Software Synthesis, the applications to be executed arerepresented abstractly, linkedwith amodel of computation, KahnProcessNetworks (KPNs). Similarly, the target architecture is assumed to be knownat compile-time, and is modeled via an abstract architecture model. The
KPN model has a property that allows to capture the abstract executionbehavior in a trace that is independent of the execution target. Combin-ing these application and architecture models, and using an executiontrace, a simulation can be used to estimate the performance of a map-ping - an assignment of physical execution and communication resourceson the target architecture to the logical (abstract) components of the KPNapplication. In an iterative process, these estimations can be leveragedto determine a near-optimal mapping subject to objective goals (e.g. exe-cution time, energy consumption). Finally, a compiler can lower the KPNapplication to an executable that uses the selected mapping.The rest of this chapter will explore the various models referred to inthis flow, with precise mathematical definitions and a discussion of com-mon design choices and goals.
2.1 Kahn Process Networks
The main flow we investigate in this thesis is based on the MoC of KahnProcessNetworks (KPNs). In this sectionwe introduce thismodel, or rather,its most common implementation with blocking-read semantics [KM76] .In Chapter 6 we will discuss the original (denotational) semantics [Kah74]andhow they differ to those introducedhere. There, we also discuss other
MoCs and how they relate to each other.We can think of a KPN as computation distributed among different pro-
cesses (originally derived from coroutines). Each of these processes exe-cutes sequentially and is Turing complete. However, the processes shareno memory, they have local memories accessible only to themselves.They communicate between each other using channels. These channelswork as unbounded FIFO buffers. Processes have sets of outgoing and in-coming channels. As an instruction, any process can write to one of itsoutgoing channels or read from one of its incoming channels. They do soin discrete tokens of data.

13

1 __PNkpn fft_process

2 __PNin(int cnt, short src_data[N])

3 __PNout(complex freq[N]){

4 int i, loop_cnt;

5 __PNin(cnt)

6 loop_cnt = cnt;

7 for(i = 0; i < cnt; ++i)

8 __PNin(src_data) __PNout(freq)

9 fft(src_data, freq);

10 }

Listing 1: An Fast Fourier Transform (FFT) implemented as a KPN process in CPN,based on Appendix A.1.3 of [CL14]

The original language [KM76] was proposed as an extension of POP-2, which is pretty dated and has fallen out of use today. Instead of thislanguage, we will consider a more modern incarnation, C for Process Net-works (CPN), which extends the C programming language [She+14]. We doso by looking at the example from Listing 1. Processes in CPN are instan-tiated from process templates, similar to classes and objects in object-oriented languages. The listing shows a very simplified process templatefor an FFT process. Lines 2 and 3 declare the incoming and outgoing chan-nels for the process. In Line 5, the cnt channel is read and its value isstored in the local variable loop_cnt in Line 6. Then in Lines 7-10 the pro-cess applies an FFT to the data in its incoming channel src_data and out-puts it to an outgoing channel, freq. Similar to the read operation in Lines5-6, the values of the input channel data are available in the identifier
src_data in the scope of the __PNin. In an analogous fashion, the valueswritten to the freq variable in the scope of the __PNout are written to thecorresponding output channel.In general, the communication in KPNs is asynchronous:When a processwrites to an outgoing channel, the data is buffered in the channel until itis read, and the process continues to execute. If a process reads from achannel, it receives the oldest token buffered in the channel. If there areno tokens, execution blocks until such a token is written to a channel -hence the denomination of blocking-read semantics. A channel can bethe outgoing channel of at most one process (this should also be so for atleast one process, otherwise the channel is useless). On the other hand,if a channel is an incoming channel to multiple processes, all tokens arecopied for each of those processes. Hence, all processes will see the ex-act same incoming stream of tokens from a shared channel, instead ofsplitting them up.Let us consider the FFT process from Listing 1 and combine it with otherprocesses into a full application. Listing 2 describes a simplified algorithmfor a low-pass filter on a stereo sound file, using this FFT process. We alsoomit the templates and channel declarations in this simplified listing. The
src process reads the stereo file, splits it into two channels and sends thesound in blocks of a determined length as tokens. These files are thentransformed from the time domain to the frequency domain using an FFT,filtered and transformed back to the time domain. A sink channel gathersthe filtered blocks from both channels, left and right, and combines themagain into a stereo sound file that it can store.

14

__PNprocess src = src_process

__PNout(cnt, src_l_out, src_r_out);

__PNprocess fft_l = fft_process

__PNin(count, src_l_out) __PNout(fft_l_out);

__PNprocess fft_r = fft_process

__PNin(count, src_r_out) __PNout(fft_r_out);

__PNprocess filter_l = filter_process

__PNin(count, fft_l_out) __PNout(filter_l_out);

__PNprocess filter_r = filter_process

__PNin(count, fft_r_out) __PNout(filter_r_out);

__PNprocess ifft_l = ifft_process

__PNin(count, filter_l_out) __PNout(ifft_l_out);

__PNprocess ifft_r = ifft_process

__PNin(count, filter_r_out) __PNout(ifft_r_out);

__PNprocess sink = sink_process

__PNin(count, ifft_l_out, ifft_r_out);

Listing 2: An audio filter KPN application in CPN, based on Figure 7a in [She+14]

The data flow in the example of Listing 2 is very structured: it goes fromthe source, splits into two channels, through the filter, back to the sink.This structure can easily be visualized in a graph, like in Figure 2.1. Moregenerally, we can think of any KPN application as a directed graph K “

pVK, EKq, where the nodes VK represent the processes, and the edges EK,the channels. This works even when a channel is an incoming channel formultiple processes. In that case, we can split it into multiple edges fromthe process it is going from, to each of the target channels. We can do sowithout loss of generality since these are the semantics of such channels.We call this graph the KPN graph.

src

fft_l

fft_r

filter_l

filter_r

ifft_l

ifft_r

sink

Figure 2.1: The audio filter application as a KPN graph

2.2 Execution Traces
Kahn Process Networks have a more abstract definition with mathemati-cal semantics [Kah74], in the sense of Scott [Sco70]. These abstract awaythe concrete implementation of individual steps in a computation. Evenso, the execution of a computation can be thought of as a series of stepsor partial computations that eventually yield the final result. These series,which is commonly referred to as execution trace, can be captured as a se-quence of steps, e.g. as the element of a Scott Domain1. Abstract compu-tations, modeled as Scott-continuous functions, can can make computa-

1 This will be discussed more in-depth in Chapter 6

15

tions of arbitrary length. For an alphabet Σ, this is modeled by (countably)infinite sequences in Σω :“ tpanqnPN | an P Σ for all n P Nu. A concrete ex-ecution, on the other hand, always has a finite length. It always residesin Σ˚, the Kleene closure of Σ. For a (Scott-continuous) function, this se-quence can be modeled as a finite string in the computation domain.In a concurrent execution, multiple entities concurrently execute steps.As modeled by Kahn, these entities all implement individual functions. Assuch, there is not a unique series of steps that can be said to be the execu-tion trace of the computation. To see this, consider the example depictedin Figure 2.2: It shows multiple execution orders for the audio filter KPNapplication. If we were to consider the values in the channels, each ofthese orders would yield a different sequence of values. In this case, theactions in the alphabetΣ should alsomodel the actual values of the arraysof floating-point values that can be stored in the channels, which is whywe show the processes in the figure instead. The traces corresponding tothe executions shown in Figure 2.2 are all equivalent.
src fft_l fft_r filter_l filter_r ifft_l ifft_r sink
src fft_l filter_l ifft_l fft_r filter_r ifft_r sink
src fft_l filter_l fft_r ifft_l filter_r ifft_r sink
src fft_r filter_r fft_l filter_l ifft_l ifft_r sink
src fft_l filter_l fft_r filter_r ifft_l ifft_r sink

Figure 2.2: Different possible sequential executions of the audio filter KPN.
In the case of a concurrent execution thus, traces are in fact equiva-lence classes of strings. We define this more formally, following [Maz95],the first chapter of [DR95]. Let ∆ be a symmetric, reflexive relation on Σ,whichwe call a dependency. Thismeans that if pa, bq P ∆, we have pb, aq P ∆and also pa, aq P ∆ for all a P Σ. With∆wedefine an additional relation over

Σ, namely I :“ pΣˆΣqz∆. We call I the induced independency. We definean equivalence relation „I on the monoid Σ˚ (with respect to concatena-tion) as follows: We require that if a, b P I, then ab „I ba. The relation „I isdefined as the least congruence that satisfies this requirement. Note thata congruence is an equivalence relation that respects the algebraic struc-ture, in this case the monoid structure of the concatenation operation.We call the equivalence classes of Σ˚{„I traces. By definition, the con-catenation operation on Σ˚ factors over the equivalence relation „I , andthus Σ˚{„I defines a monoid (with identity element rεs„i , where ε P Σ˚is the empty string). We call this the Trace Monoid, TpΣq. We care aboutthe algebraic structure of a monoid since it is central to the definition ofScott-continuity.There are two additional equivalent definitions of this monoid as his-tories and dependence graphs. We present histories here, as they arebetter for the intuition. Instead of a single alphabet Σ, we have a finite setof alphabets Σ :“ pΣiq, i P I , where I is a finite index set. We can think ofthe indices as corresponding to the entities in the system (e.g. processes)and the alphabets Σi to the alphabets of actions of these individual en-tities. If we think of the individual entities as computing some function,their execution trace will be a unique string ai P Σ˚i (recall that concreteexecutions are finite). Since, in general, these entities do not compute in-dependently, they have common synchronization points. These synchro-nization points are abstractly modeled in the computation alphabet by

16

mutual elements in Σi X Σj for two entities i, j P I . In the case of syn-chronous dataflow[LM87] application, for example, we could model thealphabet as being tuples of a channel and a value, and the common syn-chronization points would be reading to or writing from a value. In KPN,since the communication is asynchronous, we would need to model boththe channels and the processes as entities.We can define amonoid, the productmonoid PpΣq, by component-wiseconcatenation of the strings: paiqipbiqi “ paibiqi for all i P I . However, notevery such a string product can be the history of a system. The synchro-nization points of different subsystems should be consistent with eachother. To avoid this, we want to ensure histories are consistent. For this,we define elementary histories as follows: For any a P
Ť

iPI Σi, the elemen-tary history of a is the tuple paiqiPI , with
ai “

#

a, if a P Σi,

ε, otherwise.
Here, ε represents the empty string. Themonoid generated by all elemen-tary histories for elements in Ť

iPI Σi is called the history monoid HpΣq,and is a submonoid of PpΣq. If we examine the definition, it is not difficultto convince ourselves that these are precisely the histories which avoidinconsistencies.We can go from a trace to a history by the morphism π : Tp
Ť

iPI q Ñ
HpΣq, a ÞÑ pπipaqqi, i P I , where πi is the projection Ť

iPI Σi Ñ Σi. Here,for the trace monoid TpΣq we define the dependencies to beŤiPI Σi ˆΣi.This is not just a morphism, but in fact an isomorphism: See Theorem1.5.4 of [Maz95]. Thus, the two concepts are equivalent. For the rest ofthis thesis we will use the terms traces and histories interchangeably.Traces, and equivalently histories, can be used to describe the concretecomputations in concurrent systems like those described by a KPN. Theyare also well-suited to model these systems in the context of process cal-culi, like Communicating Sequential Process (CSP). However, an importantobservation is the converse: a concrete execution of a KPN is determineduniquely by its history. Moreover, any concrete implementation of the
KPN realizing the same execution will have the same history: the history isan invariant of the abstract execution model. It captures the concurrentessence of the concrete computation.
2.3 Architecture Models
Hardware architectures are in contrast to applications from the point ofview of modeling. Abstraction boundaries are arguably more clearly de-fined in the hardware world: semiconductor components like transistorsimplementing digital switches are used to form logic gates (like a NANDgate). Logic gates are used in increasingly complex logic diagrams forbuilding components like an Arithmetic Logic Unit (ALU). These compo-nents are combined into digital machines in a microarchitecture to ex-pose a well-defined Instruction-Set Architecture (ISA) in a PE [Lee17]. PEscan then be connected via on-chip interconnects to on-chip memory andother peripherials to make an MPSoC. There are mostly clear boundariesbetween these platforms, as A. Sangiovanni-Vincentelli calls them [San07](which are levels of abstraction). Designers at each level expose a smallamount of complexity through these established abstractions, in what iscommonly referred to an hourglass design [Bec19].

17

Materials, Atoms, Sub-Atomic Particles . . .

Semiconductors
Digital Switches
Logic Gates

Logic Diagrams
Instruction-Set Architectures

Multi-Processor Systems on Chip

Figure 2.3: Different levels of abstraction in architectures

Figure 2.3 summarizes different models used at different levels in ar-chitectures. The “bottleneck” design shown on the left implies how thereare well-defined abstraction layers at the different levels. The layer be-tween hardware and software is, in a sense, also just such a layer of ab-straction. Since these layers are clearer in the hardware world, so are thecorresponding models at those levels of abstraction. If we want to rea-son about the execution of complex applications on MPSoCs, we certainlyshould not focus on modeling individual logic gates in the architecture.The challenge is to model architectures at the right level of abstraction.In the modeling of the computation in applications, we care about thesemantics of the model. It should be expressive enough to capture theapplication while being rigid enough to allow a compiler and system toreason about its execution and optimize it asmuch as possible. Hardware,on the other hand, is fixed: in software synthesis (and in this thesis) we’renot concerned with hardware design. As such, we take a more scientificrole2 to modeling hardware, as opposed to the engineering role we takefor applications: We fit the model to the hardware, not the hardware tothe model.Architectures models for software synthesis have two main require-ments: specification and simulation. In order to derive an efficient im-plementation of an application to an architecture, the model of that ar-chitecture needs to at least include the possible decisions required forthat software implementation. Different PEs and their types in the archi-tecture, scratchpad memories or Direct Memory Access (DMA) controllers,when present, are certainly necessary parts of the models. If actual phys-ical memory addresses or concrete instructions in the ISA should also beincluded depends on the flow: an end-to-end compiler that produces bi-nariesmight benefit frommodeling these, whereas a higher-level, source-to-source compiler might do without them if it only makes abstract deci-sions about resource allocation and leaves code generation to a separatecompiler.Similarly, in many cases a simulation is part of the software synthe-sis flow. In this case, a model of the architecture needs to allow such asimulation. Obviously, a simple analytic model requires a different levelof abstraction for the architecture model than a cycle-accurate simula-tor. A very concrete way of considering this is the Y-chart approach pro-posed in [Kie+01], as depicted in Figure 2.4, which is based on Figure 6from [Kie+01].The Y-charts approach is closer to a co-design methodology: architec-tures are part of the design space, albeit only as parametrized families.As such, they model an architecture as an abstract set of parameters (e.g.
2 In the sense of Lee [Lee17], as described in the introduction.

18

Mapping

EstimationModels Applications

High-levelModel(e.g. Matlab/Mathematica)

PerformanceNumbers

Mapping

AccurateModels Applications

Low-levelSimulator(e.g. VHDL/Cycle-Accurate)

PerformanceNumbers

(moving down in theAbstraction Pyramid)

architecture model
other models

Figure 2.4: Multiple Levels of Abstraction in the Y-Chart Approach (Inspired by Fig-ure 6 in [Kie+01]).

number of cores of specified core types) for specification (mapping), withan ad-hoc model for simulation (in matlab/mathematica) or well-definedmodels from a lower level of abstraction (cycle-accuratemodels or VHDL).Thus, the approach described in Figure 2.3 shows well how different mod-els of architectures at different levels of abstraction can co-exist and beused. While accurate simulation is pivotal for effective software synthesis,simulationmethods and accuracy are beyond the scope of this thesis. Wewill thus focus only on models of architecture for the sake of DSE and thespecification of decisions (concretely, here, mappings).The general situation described in the Y-charts approach is very com-mon in practice: A parametrized family of hardware architectures is as-sumed as part of the flow, and architectures are described in terms ofthis family. With newer developments in hardware, like the proliferationof NoC-based architectures, many modern approaches apply the sameprinciple to these modern architectures. For example, the models usedby [Wei+14; Sin+10; RG18] all assume a regular mesh (N ˆ M) NoC-basedtopology and parametrize the architecture by the size of the mesh, N, Mas well as the core types and communication and memory parameterslike worst-case latency values. In the Sesame framework [PEP06], an ad-ditional abstraction layer called themapping layer works as an intermedi-ate virtual platform, in correspondence with the KPN, application, which isthen mapped to the target platform. In the DOL approach [Thi+07], archi-tectures are modeled in an XML specification that implicitly models thearchitectures as graphs with specific annotations e.g. for memory sizesor resource sharing methods like first in - first out (FIFO). While this is anad-hoc model, its graph-based nature is general enough to describe ar-bitrary architectures. This is common of the most general models at thislevel of abstraction: they are graph-based models. In [ECP06], architec-tures are modeled as bi-partite graphs with cores and memories. Thisis bi-partite structure is actually similar to the constraint graphs definedin [Wei+14; RG18], which basically describe the subset of the architectureused by amapping. InMAPS [CLA11], on the other hand, for the purposes ofmapping, architectures are described by labeled graphs where only thecores are nodes and the edges represent communication. This is similar

19

to the model described in [PEP06]. Some of these models 3 have beenan influence in the SHIM standard [The15] and the IEEE 2804-2019 Stan-dard [CDA20]. There are subtle differences between all these models,which makes comparing approaches difficult [Goe+16].In practice, however, the different graph-based architecture modelsare mostly equivalent. For this thesis we use a model based on the
MAPS model for defining architecture graphs. An architecture graph A “

pVA, EA, lAq is a labeled directed multigraph where the nodes VA repre-sent PEs in the architecture. These PEs are labeledwith core types. Commu-nication in the achitecture graph is represented by the edges EA. Since Ais amultigraph, EA is amultiset: there can bemultiple edges e1, . . . , en P EAbetween two cores PE,PE1 P VA. These edges are different by their la-bel lApeiq, i “ 1, . . . , n. The labels of edges identify them as communica-
tion primitives. Communication primitives are an abstraction that encom-passes communication via multiple methods: shared memories, DMA oreven specialized hardware like hardware FIFO buffers. Communicationprimitives can also be used to model different software libraries/APIs forcommunication that can use the same hardware [Ode+13].

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

Figure 2.5: The Odroid-XU4 Architecture.
Consider the architecture depicted in Figure 2.5,the Exynos Odroid-XU4with a Samsung Exynos 5422 chip, which has an octocore ARM big.LITTLE(4+4) architecture. This architecture has two types of cores, the ARM Cor-tex A7/A15 , little and big, respectively. Similarly, there are three types ofcommunication primitives in the architecture: communication via the L1and L2 caches, or over the shared DRAM memory. This architecture canbemodeled in an architecture graph by having 8 nodes, one for each core(4 of each of the two core types), and connecting the nodes by with all theprimitives that can be used to communicate between them. Figure 2.6shows the architecture graph for this example.In NoC-based architectures, the communication depends on the rout-ing over the on-chip network. In particular, the communication latencychanges depending on the number of hops required to communicate be-tween two PEs. Our model of architecture graphs (among others, like theDOL architecture model) has the advantage of having a different commu-nication primitive for each of these connectionswith different numbers ofhops, thus being able to model NoC-topologies as well as others (e.g. BUS-based). However, for simplicity of reasoning, we can sometimes benefitof a related graph, which we call the topology graph [GMC18]. A topologygraph T “ pVT , ET , lTq is also a directed multigraph with the same vertexset VT “ VA as that of the architecture graph A, namely the set of cores.Thus, the labels are also identical l

A
ˇ

ˇVA
“ l

T
ˇ

ˇVT
. The edges are different:

3 Specifically, iterations on the MAPSmodel by Silexica

20

PE1

PE2PE3

PE4

PE5

PE6PE7

PE8

ARM Cortex A7
ARM Cortex A15
L1$
L2$
DRAM

Figure 2.6: An Example of an Architecture Graph for the Odroid-XU4 Architecture.

we only add an edge for a communication primitive e P EA if it allows di-
rect communication between two cores. Thus, ET Ď EA. For a BUS-basedarchitecture like theODROID-XU4, this topology graph corresponds to thearchitecture graph. However, for a NoC-based architecture, the topologygraph captures the network topology. Figure 2.7 shows the difference ofthe architecture graph A and the topology graph T for a 2 ˆ 2 regularmesh NoC topology. The difference between the two graphs in this caseis that the topology graph has no nodes formultiple hops, whereas the ar-chitecture graph has them. As such, the topology graph reflects the topol-ogy of the on-chip network better, as can be seen by comparing them inthe figure.

PE1 PE2

PE3 PE4

R

R

R

R

2ˆ 2 NoC Architecture

PE1 PE2

PE3 PE4

Architecture Graph A

PE1 PE2

PE3 PE4

PE Type 1
localmemory

1 hop
2 hops

Topology Graph T

Figure 2.7: Comparison of the Architecture and Topology Graphs for a 4ˆ 4-MeshNoC-based Architecture.
As mentioned above, the subtle differences in different models makecomparison between themdifficult [Goe+16]. Themain reason for this arethe two distinct roles that architecture models play in software synthesis,as we have discussed in this section. Having a common model for specifi-cation is beneficial for defining software synthesis approaches, and thus,desirable. Having common models of architecture, while beneficial forcomparison, is not necessarily desirable: there are good reasons for hav-ing simulations at different levels of accuracy. Nevertheless, Pelcat andothers have [Pel+15] made an attempt to define such common modelsof architecture. Their definition is abstract: they require a unique, repro-ducible cost of computation. This solves the problem of comparability, atthe cost of the simulation. In a sense, their definition of a model of ar-chitecture is tantamount to defining a specification for a simulation. Webelieve this is a great idea, but unfortunately not yet mature enough interms of themodels that exist and their integration to simulators. The Lin-ear System-Level Architecture model they propose is also a graph-based

21

model and is similar to the graph-based models discussed above. How-ever, we believe that it is better to separate both concerns conceptually,namely simulation and the specification of mappings. As such, we will fo-cus only on the graphs defined in this section for mapping specificationand leave the simulation level open to the multiple levels of accuracy, asrequired by the use-case.
2.4 The Mapping Problem
The main problem we address in the first part of this thesis is the map-
ping problem [Mar+11]. The mapping problem is the decision problem ofassigning physical resources (hardware) to the logical tasks and data (soft-ware) of an application. As can be seen from Figure 1.3 in the introduction,this is a central problem in software synthesis.We commonly think of assigning the tasks and communication chan-nels (or data) to the physical resources, and not the other way around.The reason we do not choose to do so again has a mathematical back-ground, as we will explain here. Such an assignment is a correspondenceand can be interpreted as a relation R Ď Aˆ K that relates the architec-ture A and the application K. By abuse of notation we refer to the graphs
A, K here to mean both one relation on their nodes VA, VK and one ontheir edges EA, EK.A relation is the most general description of such a correspondence.However, in this thesis we do not consider mappings where a single taskcanbe assigned tomultiple hardware resources. The thread affinitymech-anism in the POSIX standard, for example, assigns a POSIX process tomul-tiple (hardware) threads. Then, the operating system scheduler decidesin which of the specified threads to actually execute the process, possiblymigrating it multiple times during its execution. We do not consider thiskind of behavior. If we want tomodel it with themathematical frameworkproposed here, however, we can. For this, we describe the final mappingas decided by the scheduler at run-time, and consider migrations as mul-tiple spatial mappings at different time instances.We define a mapping to have exactly one physical resource for eachlogical one (i.e. for each task or data/communication channel). This kindof mathematical relation is precisely the definition of a function, which iswhywemodelmappings as functionsm : K Ñ A, i.e. assigning physical re-sources to the logical ones. Amapping also needs to be consistent. If it as-signs two tasks t1, t2 P VK to different PEs, when these tasks exchange data(i.e., pt1, t2q P EK), the data communication channel needs to be mappedto a physical channel that respects the task assignment: we require that
mppt1, t2qq “ pmpt1q, mpt2qq P EA. This condition, mathematically, meansprecisely that amapping respects the graph structure of K and A. In otherwords, a mapping is amorphism of graphs m : K Ñ A.Consider the example of the mapping depicted in Figure 2.8. It showsthe mapping

m : t1 ÞÑ PE1, t2 ÞÑ PE2, pt1, t2q ÞÑ L2$.

This mapping can be considered as the morphism of graphs depicted onthe right, where the image mpKq ď A is a subgraph of the architecturegraph A (cf. Figure 2.6). We could notmap the communication edge pt1, t2qto, say, the L1 cache of PE3, L1$, since this cannot be used to communicatebetween PE1 and PE2. This is equivalent to saying that L1$ is not an edge

22

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2
t1
t2

PE1

PE2

m

Figure 2.8: An example of a mapping as a diagram (left) and as a morphism ofgraphs (right).

ofmpt1q, mpt2q, or any L1 cache for thatmatter, since (more precisely) thereis no edge pmpt1q, mpt2qq P VA with the label lAppmpt1q, mpt2qqq “ L1$.We define a set M Ď tm : K Ñ A, m is a morphismu “: MorpK, Aq as theset of (valid) mappings. Amorphism of graphs m : K Ñ A that is not in theset M is an invalid mapping. This might be because different reasons, e.g.if a PE p P VA is not general purpose and cannot execute some tasks, orwhen modeling the sizes of data (channels), if a communication channeldoes not fit a physical resource. We model this by letting M be a propersubset of MorpK, Aq, the set of morphisms K Ñ A.Having formally defined a mapping, we can also define the mappingproblem. Let Θ : M Ñ Rk
ě0 be a function on the set of mappings. Wecall Θ an objective function. For example, Θ : M Ñ Rě0 (for k “ 1) canbe the execution time of the application K when mapped via m to the ar-chitecture A. This could similarly be another measure of the quality ofa mapping, like throughput or total energy consumption. It can also bea combination of multiple metrics for k ą 1. Additionally, depending onthe use-case, the results of the software synthesis process might need torespect some constraints. For example, we might want to minimize theenergy consumption while maintaining the execution time under somereal-time threshold. Let C : M Ñ B be the (boolean) function that de-cides if a mapping satisfies the required constraints. Thus, in the exam-ple, Θ would be the energy consumption and Cpmq would be true if andonly if the mapping’s execution respects the real-time constraint. We cangenerally define the mapping problem as the following multi-objectiveoptimization problem:

min
mPM,Cpmq“True

Θpmq (2.1)
Here, the minimum of the vector Θpmq P Rk

ě0 for k ą 1 can be under-stood as an element-wiseminimum. In particular, some points are incom-parable: if Θpm1q1 ą Θpm2q1 and Θpm1q2 ă Θpm2q2, then Θpm1q, Θpm2q areincomparable. This element-wise comparison of vectors gives us a par-tial order on Rk
ě0. Equation 2.1 can be then understood as finding Pareto-minimal points, i.e. points that are not dominated by any other point inthe set. Concretely, we say that m̂ is not dominated by any point (is Paretominimal), if m ć m̂ for all m P M. A variant of this same problem can beencoded as an integer optimization problem, e.g. as is done in [ECP06].As a problem formulation, however, we believe the treatment given heredefining the conditions as a morphism of graphs is much simpler to readand understand and just as expressive.

23

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 t1t2

t1 t2

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8T1 mapping (PE)

T 2m
app

ing
(PE

)

time

Figure 2.9: An example of the mapping space for a simple two-task application.

Figure 2.9 is a reproduction of Figure 1.4. It depicts the optimizationproblem of Equation 2.1 on a very simple example. The example is basedon a telecom application of the E3S benchmark suite, chosen specificallybecause it consists of exactly two tasks, which allows the mapping spaceto be visualized in a two-dimensional plot. The mappings are plotted byencoding themapping of each of the two tasks as the x and y coordinatesof the grid, and the color of the squares in the grid encodes the (simulated)execution time on the Odroid-XU4 architecture. The actual values of theexecution time are irrelevant here and have been deliberately omitted.In the figure it is clear that the minimal execution time is obtained bymapping the two tasks two distinct Cortex-A15 (big) cores, i.e. the set of
m with t1 ÞÑ p1, t2 ÞÑ p2 where p1, p2 P tPE5, PE6, PE7, PE8u and p1 ‰ p2 areprecisely the minimizers of Equation 2.1.The example in Figure 2.9 is chosen deliberately to be so simple thatit can be depicted in a figure. There are exactly 28 “ 64 mappings in themapping space. For the audio filter application from Section 2.1 (cf. Fig-ure 2.1), this space has already 88 “ 16777216 mappings and finding theminimal execution time is much less tractable. In general, the mappingspace has cardinality |VA|

|VK|, and thus grows exponentially with the num-ber of tasks |VK|. For the 1024-core Epiphany-V-based Parallella architec-ture [Olo16], the mapping space of a moderately-large application with
28 tasks has more than 1084 possible mappings, considerably more thanthere are atoms in the observable universe.The 28-task example is by no means unrealistically large. The map-ping problem is already intractable for problem sizes in practice. As such,multiple clever algorithms and heuristics have been designed with differ-ent settings, objectives, and assumptions. A survey of these mapping ap-proaches can be found in [Sin+13]. The focus of this thesis are not map-ping heuristics, but rather the mapping problem itself and general struc-tural properties that can be exploited in these heuristics. As such, we willnot dive deeply into the literature of heuristics. At this point, we will onlydistinguish between general classes of mappings: static, dynamic and hy-brid, as well as between heuristics and meta-heuristics.Static mappings are mappings defined prior to run-time (commonly, atdesign-time or at compile-time). Traditionally,mapping decisionsmade atdesign-time are part of a co-design approach and are hard-coded into theapplication itself. By abstracting over the target architecture and themap-ping problem, software synthesis methods allow to defer these static de-cisions to compile-time, and make this kind of mappings more portable.

24

Dynamic mappings, on the other hand, are chosen at run-time. The dy-namic mapping problem is in essence the same as task scheduling. Thetrade-offs between time available to make a (scheduling) decision andthe available information at run-time are certainly not unique to themap-ping problem. However, dynamic mappings present an additional hurdlein heterogeneous systems, since code has to be compiled for the differentpossible targets.Hybrid mapping approaches sit between static and dynamic ones. Anahead-of-time decision process or mapping space pruning analyzes themapping space and pre-defines a set of mappings or partial mappings.From these pre-definedmappings, a run-time system chooses amappingor constructs a mapping from the partial mappings, based on the avail-able information at run-time.Finally, we distinguish between heuristics and meta-heuristics. Map-ping heuristics, like load-balancing, are domain-specific algorithms thatexploit the specific domain-knowledge to find a solution based on a pre-definedmodel of the problem.On the other hand,meta-heuristics, like ge-netic algorithms, rely on an iterative evaluation of the points. In the caseof mappings, this usually means a simulation or profiling of a mapping’sexecution. Again, this distinction is not unique to the mapping problem.
2.5 Simulating Mappings
Simulations are extremely important for analyzing an application’s perfor-mance, or more generally, its behavior. As described in Section 2.3, therearemultiple levels of detail inwhich tomodel and, consequently, simulate,an architecture and its execution. For investigating the mapping problemin software synthesis, higher-level simulations are preferable for multi-ple reasons. First and foremost, higher-level simulations are faster. If ameta-heuristic iteratively evaluates dozens, hundreds or even thousandsof mappings to find a near-optimal one, it greatly benefits from the fastevaluation time associated with a higher-level simulation.Higher levels of abstraction come with a trade-off. The accuracy of thesimulation suffers in exchange for the simpler models and faster simula-tion times. Let Θ̃ be the approximation of Θ from the simulation. A loss inaccuracymeans that |Θpmq´ Θ̃pmq| becomes larger. However, dependingon the use-case andmapping objective Θ, this loss in simulation accuracymight not necessarily affect the quality software synthesis results. Sup-pose that the objective Θ represents execution time or energy consump-tion, and the goal of the software synthesis is just a best-effort minimiza-tion of Θ (with no additional constraints, i.e. C ” True). Then the accuracyof the simulation is not important, only its fidelity. If Θpm1q ă Θpm2q wewant the result of the simulation to reflect this, Θ̃pm1q ă Θ̃pm2q. As longas this is the case, we don’t care about the actual value of |Θpmiq ´ Θ̃pmiq|,since in this case the exploration will still find theminimum. The fidelity ofthe simulation is a measure of how often this is true. On the other hand,if the application is a real-time application, then the truth value of C willdepend on the accuracy of the simulation. Here, the accuracy of the sim-ulation is much more important.This chapter describes the simulation aspects which pertain themodelsof computation and the practical tooling we will use. Nuanced simulationdetails and advanced techniques are beyond the scope of this thesis.

25

2.5.1 Simulating the Execution of Kahn Process Networks

The behavior of a system plays a central role in simulation. A determinis-tic model should yield deterministic simulation results. Non-determinism,whenpresent, should also be captured by themodels and reflected by thesimulations.The behavior of systems is commonly captured in execution traces,which simply record the behavior of different entities (e.g. processes oractors) at different timepoints. This can be formally captured in a monoidstructure of (Mazurkiewicz) traces or, equivalently, histories [DR95], as de-scribed in Section 2.2. Traces are common in many domains, as they use-ful to understand the behavior of systems [Nag+96]. However, for sys-tems that are non-deterministic, (by definition) the behavior of the sys-tem does not only depend on the input. This can make designing [Lee06]and debugging [Mur+14] particularly difficult. In cyber-physical-sytems or,more generally, reactive systems in the sense of Harel and Pnueli [HP85],input from the physical world might come in a non-deterministic fashion.The problem of capturing the behavior of such a system is even morecomplex when the system is distributed [Sha16].Kahn Process Networks are deterministic, as are all the dataflow mod-els that can be embedded as KPNs. This means that the behavior of aKPN application depends only on the input to the network. In particular,it does not on the mapping and scheduling or related execution details.Thus, their behavior can be captured by a (Mazurkiewicz) trace. This per-mits to re-create their behavior in a fashion that is independent of themapping. By “replaying” the trace, i.e. simulating the execution of a pro-cess for every input in the trace, a discrete-event simulator can success-fully simulate the execution of a KPN, since the token sequence is guar-anteed to be identical given identical inputs. In particular, this allows usto do Design-Space Exploration (DSE).A discrete-event simulation of a KPN application thus requires behav-ior traces. It also needs tomodel the execution and communication times.Modeling execution times from a trace is simple, with a crucial assump-tion: if the execution times for a trace event only depend on the PE type.This assumption will not always hold, e.g. when the instruction cache isflushed due to scheduling decisions, or due to unpredictability from theoperating system (OS). Note that data caches are modeled as part of thecommunication between processes. In most cases this assumption is agood approximation, as it is normal to expect that the same code exe-cuting on the same data and the same ISA will usually require the sameamount of time.Modeling communication is more complicated, as it depends on thememory subsystem. In general, the communication costs of sending aKPN token depend on multiple factors, like the size of the token, con-tention in the memory subsystem (and correspondingly methods of ar-bitration, routing in the case of a NoC, etc), or the API and protocol beingused. For the simulations in this thesis, we use a model based on anno-tations of the architecture graph A. These annotations are functions thatcalculate the time cost of communicating data, as a function of its size.In this way, we model both the latency and bandwidth of the communi-cation. We use a split-cost communication model to assign costs to send-ing and receiving data [Ode+13]. This separation can be used to simulate

26

based on traces, as described above, since we can then compute the costof communication for both the sending and receiving processes.When dealing with NoC-based architectures, this model is not as accu-rate. Communication over a NoC depends also on the routers and linksalong the path, including the routing algorithms. We extended the split-cost communication model to account for these issues in [MGC16]. Theidea is to add a third term to account for the network, in addition to theconsumer and producer costs. This third term can account for the rout-ing and the topology of the network while maintaining an analytic modelwhich is cheap to evaluate in a high-level simulation.Simulation is essential for software synthesis, yet it is not the focus ofthis thesis. The main contribution of [MGC16], with a concrete model forthe Tomahawk 2 architecture [Noe+14] and the corresponding evaluationcomparing to the SystemC-based simulator Noxim [Cat+15] are due tomycoauthors and beyond the scope of this thesis.
2.6 Software Synthesis Flows
Many flows exist that enable model-based design in a software synthesisflow. In the introduction we discussed some of the original software syn-thesismethods, the approach of [Lin98] uses Petri Nets, or [RPM92] whichuses SDFs and other flows which use multiple models [BLM00; Pin+95;BML12], generally dataflow.SystemCoDesigner [Hau+08] is based on SystemC and aimed at FPGAs,as is the casewith CAPH [SBA13], which is based on dataflow and the actormodel. Although the flows are based on MoCs, their goal is not softwarebut rather an FPGAs implementation, and as such these flows are closer to
HLS than the rest. Coincidentally, the term software synthesis is an allusionto the much better-known HLS.Also based on a more general dataflow model is the Turnus [Cas+13]flow. It builds on top of RVC-CAL, which is in turn based on the CAL actorlanguage [EJ03].More specific is the SDF For Free (SDF3) [SGB06] framework, whichdoes much more than generating random SDF graphs. As a softwaresynthesis tool [SGB10], it focuses on the more restricted SDF MoC, al-lowing much more sophisticated analysis of the applications. Similarly,PREESM [Pel+14] works with parametrized extensions of SDF [Des+13] thatprovide a greater trade-off between expressiveness and analyzability.On the other side of theMoC spectrum, many related flows use KPN. Thestatic-mapping-based flows of Distributed Operation Layer (DOL)[Thi+07],Sesame [Erb+07] or MAPS [CLA11] use different levels of abstraction to de-rive an efficient execution form a KPN-based application description.Going beyond static mapping, the DAARM [Wei+14] flowmaps dataflowapplications using a hybrid approach. Similarly, the work of [QP15] ex-tends the Sesame approach to hybrid mappings, and Spider [Heu+14] ex-tends the work of PREESM to hybrid mappings.This thesis and the contributions included in it are not aimed at propos-ing (yet another) software synthesis design flow. Instead, we proposemethods to improve existing flows, with the ambitious goal of being gen-eral enough that the improvements would benefit most of the flows dis-cussed. Perhaps a good way to think of this is: Just as these flows helpusers write more efficient applications, we aim to help the flow design-ers improve their flows. For chapters 4 and 5, and partially Chapter 3, we

27

focus on one flow to do this. We choose the MAPS flow [CLA11], which wedescribe next. Some contributions, on the other hand, go beyond theseflows. This is particularly the case in chapters 6 and 7, and in part Chap-ter 3
2.6.1 The MAPS flow

The MPSoC Application Programming Studio (MAPS) is a software synthesisflow developed at RWTH Aachen University and spun-off into a company,Silexica4, which kindly allowed us to use the KPN mapping flow of MAPSfor our research. MAPS is very comprehensive, it does much more than
KPN-based software synthesis. It has analysis algorithms to suggest par-allelization of sequential code, both as OpenMP annotations as well as
CPN annotations. We will not discuss these here. It also has detailed plat-form models which are used in simulation and performance estimationflows, wewill very briefly outline these, only as they pertain the KPN-basedsoftware synthesis flow.

application
KPN

architecturemodel

executiontraces

DSE (mapping/scheduling)

perf. estimation(simulation)

mapping(& schedule)

performancemetrics

codegeneration targetcode

Figure 2.10: The Software Synthesis Flow from Figure 1.3. MAPS implements allsteps in the flow, which are therefore all depicted in green.
Figure 2.10 describes the MAPS flow, as an instance of the general soft-ware synthesis flow in Figure 1.3 from the introduction. Applications arewritten as KPN applications in the CPN language. While CPN supports SDFannotations as well, these are embedded into the KPN MoC for analysisand code generation, there is no separate DSE and code generation forpurely-SDF applications. The architecture model is an XML-based descrip-tion which has detailed models of the communication subsystem and itstopology, including different possible communication APIs [Ode+13], dif-ferent frequency and voltage domains and even models of the ISA for theprocessing elements. This model influenced the definition of the SHIMstandard [The15] which then resulted in an IEEE standard [CDA20].Performance estimation in MAPS follows in multiple steps. In a first step,using a POSIX threads (pthreads) backend, the application is emulated onthe host machine to gather functional KPN traces. Since the KPN model isdeterministic, these traces are independent of the actual performancevalues of the application. Then, the processes are instrumented and ex-ecuted in isolation, dividing them into what in MAPS are called segments.These segments are defined as the execution between any two readsor writes to or from channels5. Using the data from the functional KPNtrace, MAPS obtains a detailed trace of the instructions executed duringeach segment in the process. These detailed instruction traces are com-binedwith an abstract processormodel from the architecture description

4 https://www.silexica.com/5 A special annotation can be used additionally to divide segments manually.

28

https://www.silexica.com/

to estimate the performance on the target platform [Eus+14]. This yieldstraces with performance annotations for every process and every PE type.Finally, these performance-annotated traces are used in conjuction withthe mapping and communication model in a discrete-event simulatorto estimate the overall performance of the mapping. If performance-annotated traces are available from a profiling execution on the actualhardware, these can be used instead.The DSE step in MAPS is similar to that of all the flows described at thebeginning of this section, as well as the flow of the mocasin tool, which wewill describe shortly. In this DSE step, MAPS generates a mapping. On someplatforms, when processes share a PE, MAPS can also generate a sched-ule for the processes. These mappings are then used by the Clang-based
CPN compiler to generate target-specific C code, which can be further com-piled by a C compiler for the target platform. This way, the flow generatestarget-specific code from an abstract KPN description of the application(and the appropriate platform models).As explained in the introduction, this thesis does not focus on the per-formance estimation and code generation steps of this flow (cf. Figure 1.3).We use MAPS for performance estimation and code generation. For evalu-ating our methods in DSE and application, architecture andmappingmod-els, we primarily use the mocasin tool, which we describe in the next sec-tion.
2.7 The mocasin tool
In this thesis we will use mocasin, an open-source 6 tool for the MoC-based analysis and simulation of applications [Men+21]. This tool, for-merly known as pykpn [MGC16; GMC18], has been developed as part ofa collaborative effort between multiple researchers at the Chair for Com-piler Construction at TU Dresden. While the tool itself is a joint contribu-tion with the coauthors of [Men+21], many concepts introduced in thisthesis have been implemented and tested using mocasin. As such, thissection will explain the tool in-depth, to enable the description of the dif-ferent implementations of contributions from this thesis implemented in
mocasin.Figure 2.11 depicts the basic flow of mocasin, which can be understoodas a tool for rapid prototyping of prototyping tools.Multiple dataflowMoCsare supported by mocasin, like SDF or task graphs. These models, amongothers, can be seen as specializations of KPN [LP95] and will be discussedmore in-depth in Chapter 6. The mocasin architecture is composed ofmul-tiple modules that can be combined to create a specific tool (e.g. for map-ping or simulation). In the figure we show the modules that are relevantfor this thesis.In general, simulating a KPN requires four inputs, as explained in Sec-tion 2.5: the KPN graph, a platform description, execution traces and amapping. The mocasin tool has data internal structures for these fourinputs that reflect the models as explained insection 2.1-2.4. The toolboasts multiple readers to generate the internal data structures from es-tablished formats like tgff [DRW98], sdf3 [SGB06] or the MAPS formats.Instead of a concrete trace, mocasin expects a trace generator, whichcan generate the trace on the fly: this is useful e.g. for non-deterministicmodels computation, but for KPNs the two are equivalent. The KPN trace

6 https://github.com/tud-ccc/mocasin

29

https://github.com/tud-ccc/mocasin

tgff readers

sdf3 readers

SLX readers

traces

application(e.g. KPN)

mapping

platformmodel
platformdesigner

mappers

simulate

runtimemanagers(Section 5.5)

logic languagemanager(Section 5.4)

representations(Chapter 4)

designcentering(Section 5.2)

data structure
module
module with contributions from this thesis
optional input data
internal data depencency
interaction between modules

Figure 2.11: Mapping and simulating KPN Applications in mocasin.

generator, for example, simply reads the trace from a file. A mapping,while required for simulation, does not need to be provided: it can be cal-culated in a Design-Space Exploration. This is not surprising, since a sig-nificant part of this thesis concerns itself with improving such mappingalgorithms.A central part of mocasin is a discrete-event simulator [MGC16] that usesthe principles outlined above to simulate KPN applications based on theirtraces (as well as other models of computation). We will not dwell on thedesign of the simulatemodule since it goes beyond the contribution andscope of this thesis. Many contributions of this thesis are implementedin mocasin. This is done as modules, using the mocasin toolbox infrastruc-ture. Different contributions of this thesis and the corresponding refer-ences are described in the figure and marked as such (with light-greencoloring). In the following, we will describe some other central modulesof mocasin.
platform designer

Many concepts developed in this thesis are aimed at emerging technolo-gies and future hardware architectures. Tomodel these increasingly com-plex architectures, we aim at an abstract description of their topologies(cf. Section 2.3). As part of mocasin, with the help of Felix Teweleitt, we de-signed a modeling infrastructure, in essence a small embedded domain-specific language, to describe hardware topologies. This infrastructure isthe platform_designermodule of mocasin.Listing 3 shows an example of our platform_designer. The code in thislisting describes the topology of the Odroid XU4 (see Figure 2.5). Themain

30

pd = PlatformDesigner(self)

pd.setSchedulingPolicy('FIFO', 1000)

pd.newElement("Odroid-XU4")

cluster 0 with l2 cache

pd.addPeClusterForProcessor("cluster_a7", processor_0,

num_little)

Add L1/L2 caches

pd.addCacheForPEs("cluster_a7", 1, 0, 8.0, float('inf'),

frequencyDomain=1400000000.0, name='L1_A7')

pd.addCommunicationResource("L2_A7", ["cluster_a7"], 250, 250,

float('inf'), float('inf'),

frequencyDomain=1400000000.0)

cluster 1, with l2 cache

pd.addPeClusterForProcessor("cluster_a15", processor_1, num_big)

Add L1/L2 caches

pd.addCacheForPEs("cluster_a15", 1, 4, 8.0, 8.0,

frequencyDomain=2000000000.0, name='L1_A15')

pd.addCommunicationResource("L2_A15", ["cluster_a15"], 250, 250,

float('inf'), float('inf'),

frequencyDomain=2000000000.0)

RAM connecting all clusters

pd.addCommunicationResource("DRAM",

["cluster_a7", "cluster_a15"], 120,

120, 8.0, 8.0,

frequencyDomain=933000000.0)

pd.finishElement()

Listing 3: The Odroid-XU4 Platform with the Platform Designer

31

principal innovation behind the platform_designer is that it works with astack of clusters. The functions newElement() and finishElement() canbe nested to describe the topology in a hierarchical fashion. Betweenthese functions, the API allows us to describe heterogeneous cores anddifferent levels of interconnects with different properties, like their fre-quency.
mappers

The mapping problem (cf. Section 2.4) plays an important role in this the-sis. While we do propose some mapping heuristics for special contexts,many methods in this thesis are orthogonal to the mapping heuristics.As part of this thesis we have implemented multiple mapping algorithmsfrom literature in mocasin. These can be found in the mappermodule. Theheursitics included are the Group BasedMapping (GBM) heuristic [Cas+12]and a static variant of the Linux Completely Fair Scheduler (CFS). We alsohave some meta-heuristics, which include a random walk, simulated an-nealing [Ors+07], tabu search [MEP08] and genetic algorithms [ECP06].
configuration

mocasin is designed to be a tool for tool development. As such, one ofits main goals is to enable building different scenarios for different con-texts, like static mapping of KPN applications or hybrid execution of dy-namic Long TermEvolution (LTE) loads [Men+21].We use theHydra [Yad19]framework to configure mocasin and construct different scenarios as dif-ferent tools. This configuration philosophy allows us to work in amodularfashion, which in turn allows us to implement different contributions ofthis thesis as mocasinmodules.

32

3BENCHMARK ING

The methods we will discuss in this thesis are ultimately about improvingthe performance of software. We need benchmarks to assess the perfor-mance of software, and consequently to assess if the performance im-proves. Benchmarks are essential for the research and development ofcompilers and programming languages [HPP09], as well as hardware ar-chitectures or runtime systems. In this context, benchmarks are gener-ally understood to be collections of programs with particular properties.Mostly, they cover a range of behaviors that are typical of, and importantfor programs in a particular domain. This description, however, canmeanseveral different things. In this chapter, we formally define different typesof benchmarks and use them to classify different use cases. We then pro-ceed to discuss concrete KPN and task-graph benchmarks for softwaresynthesis, as well as benchmark generation strategies both with randomgraph models and machine learning.
3.1 Representative Benchmarks

Possible code fragments (Ω)

Syntactically correct

Semantically correct

Correct code
actually written

Probability
to be
written

Code fragment

Figure 3.1: An illustration of probabilities in code space
To formalize our argumentation, we take a statistical view of programcode. Consider a formal language that describes the set of all possibleprograms. For a program of fixed bounded size, this is a finite set Ω. Forexample, the set of syntactically correct C source files smaller than 1 TiB in

size is certainly bounded by |Ω| ď 2240 . Out of the syntactically-correct pro-grams, only a fraction successfully compiles, and an even smaller fractionexecutes something that makes sense semantically. Ideally, code writtenby developers falls into the subset of executable programs, as an evensmaller subset. However, in this subset of correctly written code, not ev-ery code fragment is going to be equally common. A fragment like for(int

33

i = 0; i < n; i++) is probably going to be seen much more frequentlythan something like (*(&main+0x134))(x). It is worth noting that thereis a more nuanced discussion behind what constitutes a unit of code. Atthis point, however, we can omit this discussion and consider the wholeprogram as a unit, for simplicity of the argumentation. Thus, there is animplicit probability density function (pdf) p on the discrete set of possiblecode units Ω which models the way programmers write code. This is de-picted in Figure 3.1. In reality, this is a highly dimensional space, andmanychallenges would arise in defining a proper geometry in such a space. Wedepict the code space Ω as one-dimensional for illustrative purposes, justlike the continuity of the pdf, which we have no reason to assume.In this statistical view of code, we can consider some precise questions:What does it mean for a collection of programs to be a benchmark? Moreprecisely, what does it mean for it to be representative, or what proper-ties would be desirable of such a collection of programs? Consider theexamples depicted in Figure 3.2. This figure depicts histograms for threekinds of collections of programs along the (implicit) pdf described in Fig-ure 3.1. We think of an idealized abscissa dimension, with a propermetric,such that programs that are semantically close are close on this dimen-sion. Obviously, a multi-dimensional formalization would be better forthis, but we stick to a single dimension for the intuition provided by thefigures. Thus, a bin in the histogram might contain a single program butrepresent a large category of mostly very closely related programs.

Code fragment

 Fuzzing
Benchmark

Representative
coverage

benchmark

Representative
Benchmark

Probability
to be written

Figure 3.2: An illustration of different types of benchmarks
The first kind of collection depicted, labeled as a “representative cover-age benchmark”, has a handful of programs, each of which correspondto a different category in the space of probable programs. Programs thatcould be written by a human, but where it is unlikely that this will hap-pen, are not covered by this type of benchmark. Furthermore, for everytype or category of code fragments, there is only one representative ex-ample in the set. In particular, programs that are moderately likely willbe represented just as much as programs that are extremely likely to bewritten. This, in a sense, overrepresents the former and underrepresentsthe latter.The second kind depicted, labeled as “representative benchmark”, re-moves this imbalance. It is similar to the “representative coverage bench-

34

mark”, but the difference is that in this kind of collection, programs ap-pear with a relative frequency that is roughly in line with their probabilityto be written. A benchmark of this kind would probably have more pro-grams than a “representative coverage benchmark”, without including sig-nificantly more types of programs or behaviors.Finally, a “fuzzing benchmark” is a collection that does the opposite ofa “representative coverage benchmark”. It has programs covering thoseprograms that are unlikely to be written by a human, but possible: Thecorner cases.
3.1.1 Sample use cases

We argue that what kind of benchmark is most appropriate depends onthe use case. To illustrate this, we will explain two large classes of use-cases that require benchmarks. This certainly does not constitute an ex-haustive classification, but will hopefully help clarify how the benchmarkchoice is nuanced.
Testing

A very common use case for benchmarking is testing. Assume we havedeveloped a compiler optimization1 and want to see how good it works.For this, we want to find out, in case someone writes a program and triesour optimization on it, how we can expect it to behave. More formally,we have a property P of code, like the speedup obtained by applying ourcompiler optimization. Wewant to calculate the expected value ErPs overthe implicit pdf of writing the code we use our compiler on2.For testing, we argue that we want a representative benchmark. Ideally,we would get a set of programs x1, . . . , xl „ p i.i.d., where p is the implicit
pdf of code been written3. The expected value ErPs can thus be approx-imated arbitrarily well with growing sample size l. We do this because,in our example, we assume that the users of our compiler will also drawfrom this distribution p, and thus Erspeedups tells us what speedup theusers can expect to get out of our optimization.If we use a “representative coverage benchmark”, we can get a skewedresult, because of the over- and underrepresentation of program typesin this kind of benchmark. Thus, if our optimization works extremely wellfor a small class of programs with a moderate chance of occurring, andnot so well with the most common types of programs, our testing wouldreturn wrong results. It would tell us that our optimization is likeley to im-prove our program, by overshooting the weight given to the moderatelycommon class where it serves well. In practice, however, our optimizationwould be unlikeley to bring much improvement in this case, if we expectour compiler to be used by everyone.

1 A good mapping heuristic in software synthesis can be considered a compiler optimizationin this context.2 Technically, using the compiler is a conditional clause on the probability of a piece of codeto be written by a human.3 A compelling case can be made that in some cases it’s the “dynamic” property of the prob-ability that a piece of code will be executed, not necessarily written, that is most interestinghere.

35

Tuning a Heuristic

Another common use case is tuning a heuristic. Consider again a com-piler optimization as an example. In this case, however, instead of havinga finished optimization that we want to test, we are designing the opti-mization by tuning a heuristic that is part of it. We want the heuristic tobe tuned such that the optimization works best (which we would assese.g. by testing, the other use-case). Trainingmachine learningmodels alsofalls under this category, and is thus likely that this use case will continueto increase in its importance in the feature.For tuning the heuristic, an argument can bemade for all three kinds ofbenchmarks from Figure 3.2. It depends on the heuristic. Assume we’redealing with a code transformation (e.g. converting Python 2 code auto-matically into Python 3), which either it works or it doesn’t. We want tooptimize the parameters of our heuristic so that it works on the mostcases possible. In this case we probably want a “fuzzing benchmark”, tobe sure we cover the corner cases, or better yet, a combination of a“fuzzing benchmark” and a “representative coverage benchmark”. On theother hand, if the heuristic is something like a transformation expected tospeed up the execution, then the argument for a “representative bench-mark” is basically the same as for testing. We want it maximize the ex-pected value of this speedup. An important distinction between heuris-tics pertains the way the parameters are set. Depending on how theyare updated, repeatedly seeing similar code examples might be uselessor even counter-productive, such that a “representative coverage bench-mark” might be best suited.More importantly yet is the process of designing the heuristic, before itis tuned. Usually this process is iterative. In it, having to look at the cornercases is common, too. Arguments for all the discussed kinds of bench-marks can thus be made in similar fashion for the process of designinga heuristic, depending on specific goals. For our methods improving soft-ware synthesis, we mostly want “representative coverage benchmarks”.In [Goe+19] we systematically classified all benchmarks and their usagein papers in the CGO and PACT conferences between 2013 and 2016. Ta-ble 3 in that work shows the analysis of 20 research papers from the con-ferences and years mentioned and the benchmarks used, metrics eval-uated and classification for benchmark type. In particular, the analysisshows that most papers aim to characterize some improvement and re-quire what we here call a “representative coverage benchmark”. A fewpapers also used benchmarks as input for training or tuning a heuristic.
3.2 KPN Benchmarks
The mocasin framework supports three input formats at the time of thiswriting: tgff, MAPS and sdf3. We will discuss the first two for benchmark-ing here, while the sdf3 format will be discussed in Section 3.3.
3.2.1 CPN Benchmarks

The first input format for mocasin is the MAPS format, which uses bench-marks written in the CPN language (cf. Section 2.1). A CPN application iscompiled using the MAPS flow, which evolved into the commercial tool

36

suite from SLX. SLX generously provided access to their tool suite for thisbenchmarking, as well as some CPN benchmarks.The tool flow compiles an application using a pthreads back-end with in-strumentation to record all tokens read and written in a trace. Since thistraces are deterministic and depend only on the inputs, not on the exe-cution order, they can be used to replay and simulate the execution (cf.Section 2.5). In an instrumented run, theMAPS flow also executes each pro-cess in isolation (with the stored tokens), gathering information about theprecise instructions executed. This is used for performance estimationusing an abstract processor model[Eus+14]. The performance estimationfor each process, together with the execution traces can then be used tosimulate a mapping with mocasin, as explained in Section 2.5.We use three CPN benchmarks for evaluation. The first benchmark isthe audio filter example as seen in Chapter 2, which takes a stereo fileand implements a low-pass filter after transforming to the frequency,and transforming it back afterwards. This benchmark has 8 processesand 15 channels (some channels, used to send parameters, are not de-picted in Figure 2.1). The second benchmark we consider is an embed-ded pedestrian-recognition application using an algorithm based on theHistogram of Oriented Gradients (HOG) technique. This benchmark waskindly provided by SLX and consists of 10 processes with 33 channels. Fi-nally, we use a speaker recognition application, as described in [BCJ19;BJC21]. Figure 3.3 shows the graph of the speaker recognition application.The speaker recognition application has 12 processes and 33 channels.
source

readwave

hamming

FFT

melFreqWrap

DCT ShifterDLP

Worker_0Worker_1Worker_2Worker_3

sink

Figure 3.3: The KPN graph of the speaker recognition application.

3.2.2 The E3S Benchmarks

A second input of mocasin we use for benchmarking is tgff. The tgffformat comes from task graph for free (TGFF), a random task graph gen-erator [DRW98]. The same author also published a benchmark suite, theEmbedded System Synthesis Benchmarks Suite (E3S) [Dic08]. Based ondata from the Embedded Microprocessor Benchmark Consortium, thesuite provides task graphs and processor execution times for applicationsfrommultiple embedded domains. In total, the E3S boasts 20 benchmarksfrom 5different domains, with up to 9 tasks per benchmark. Table 3.1 sum-marizes the applications.

37

Table 3.1: Summary of applications in the E3S

Domain No. of task graphs tasks per graph
auto-indust. 4 4-9
networking 4 1-4
telecom 9 2-6
consumer 2 5-7
office-automation 1 5

The benchmark suite is pretty dated, being over 20 years old at the timeof thiswriting. Unfortunately, benchmarks are generally scarce. Themeth-ods investigated in this thesis here have more to do with the trends thanthe actual numbers, which is why using such a dated benchmark suite isstill adequate.We expect the relative performance ofmapping algorithmson the E3S benchmarks to be similar to that on present and future applica-tions, since the importance is the interplay between communication andcomputation costs, not the absolute values thereof.A significant focus of the methods we will evaluate with these bench-marks is on themulticore architectures. For this, we use the samemethodas in [Wei+14; Sch+17]. We use the architecture topology of amodernmul-ticore, including the frequencies, as well as the memory subsystem withits latency and bandwidth, and scale the numbers from the E3S for eachof the cores of themodernmulticore. This gives a realistic scenario, albeitnot simulating a concrete instance of the architecture. In [Sch+17] the au-thors do this to create architectures with a regular mesh structure, withless realistic topologies like heterogeneousmesheswith randomly placedcores. Instead, we use the topologies from concretely proposed or exist-ing systems like the HAEC [Fet+19] or the Kalray MPPA3 Coolidge [inc20]andmap the processors in these architectures to those in the benchmarksuite.
3.3 Random Benchmarks and Level Graphs
The third category of inputs for mocasin is sdf3, which uses the SDF3 frame-work [SGB06]. This framework is based on TGFF, adapted to the SDFmodelof computation. We will discuss SDFmore in detail in Chapter 6. However,for the purposes of benchmarking as discussed here, both SDF and taskgraphs can be considered as special cases of KPN. The random graph gen-eration of the SDF3 framework allowsmultiple configurations on the typesof graphs it generates, controlling the number of actors (processes) aswell as the degree of connectivity in the graph, firing rates and executiontimes of the actors, or if the graph is acycilic.Random benchmark generation has two main advantages over usingfixed benchmarks. The first advantage is the amount of benchmarks,which is virtually unlimited with a random generation approach. The sec-ond advantage is the control over the properties of the benchmarks. Us-ing SDF3 we can consider precisely what effect the properties of the graphhave on the algorithms (e.g. its size, or connectivity), by generating bench-marks which have the desired parameters for the independent variablewe are investigating. The main disadvantage is obvious: random bench-

38

marks are not as realistic as actual benchmarks. It is not clear if we willfind a graph like the one generated by SDF3 in a real-life application.Since we have both the CPN and the E3S benchmarks, we will focus ourevaluation on those. Instead of discussing the graph generation in SDF3,we will discuss random benchmark generation from a different type ofgraph, level graphs[Goe+18]. The main difference is that for the use-casefor level graphs in [Goe+18] we do not have better, realistic benchmarkswe can use instead.The context for benchmark generation we will discuss here are micro-service-oriented architectures. Large internet companies like Facebook orTwitter have an infrastructure that consists ofmultiplemicro-services thatdepend on each other [Mar+14]. A crucial factor for optimal performanceis the amount of I/O calls these micro-services make. We will discuss theuse case more in-depth in Chapter 7. In this section we will only focus onthe benchmark generation.The micro-service-based infrastructures from large companies likeFacebook or Twitter are the intellectual property (IP) of these companiesand not in the public domain. If, for example, we want to improve amethod for optimizing I/O in Facebook’s spam-fighting service [Mar+14],we cannot use a large representative benchmark sample from Facebookto test against their method. Instead, we observe the general structureof the programs in their work and device a methodology for generatingrandom benchmarks, with a method we call level graphs [Goe+18].

x1 x2

x3

x4 x5 x7x6

subfunction

req->io

compute

level 1

level 0

level 3

level 2

Figure 3.4: An example of a Level Graph. Adapted from Figure 1 of [Goe+18].
Figure 3.4 shows an example of a level graph. The graph depicted is atreewhich is organized by levels, which are indexedwith integer numbers.The nodes in the graph are labeled as different kinds of node, namely

reqÑio,subfunction and compute. The graph depicted in Figure 3.4 is de-signed to benchmark I/O optimization, which is why the node labels aredesigned accordingly, reflecting I/O calls and other computation, as wellas an additional subfunction node that creates nested benchmarks withadditional function calls. This is also by design, to test the use-case.The idea behind level graphs is to reflect the intuition of locality in code.This intuition is based on the observation that long-range dependenciesin code are less common than short-ranged ones. While programmers dosometimes refer back to identifiers defined far behind, it is far more com-mon to define values before using them. We interpret this as a statisticalfeature of the distribution of code as commonly written by humans (cf.Section 3.1). Levels in level graphs are thus designed to define the proba-bility distribution of dependencies in graphs.There are generally two accepted models of random graphs, the Erdős-Réyni approach [ER59] and the Gilbert approach [Gil59]. The former de-fines a uniform distribution over all graphs for a given number of nodes,while the latter defines the probabilities of the edges independently. Our

39

definition of Level Graphs is based on the Gilbert approach, but insteadof having uniform probabilities, the probabilities are defined through thelevels. Concretely, a level graph L “ ppV, Eq, lq is a directed graph pV, Eqwith a level function l : V Ñ N to the natural numbers, with the propertythat for all nodes v, w P V there can only be an edge pv, wq P E if the levelof v is smaller than that of w, i.e. pv, wq P E ñ lpvq ă lpwq. To generatea probability distribution in level graphs we define the probability of theedge pv, wq P E to be as follows:
pppv, wqq “

#

0, if lpvq ě lpwq,

2lpvq´lpwq, otherwise.
The method can be generalized by choosing a different probability forthe case where lpvq ă lpwq. The chosen value 2lpvq´lpwq is, to an extent,arbitrary. This probability definition ensures that dependencies are morecommon locally, between levels that are close by, discouraging but notprohibiting long-range dependencies.A level graph can be used to generate code in different languagesor back-ends, expressing the same computation. In [Goe+18] we im-plemented three back-ends for I/O optimizing frameworks, one forŸauhau [Ert+18] (see Section 7.3), one for Twitter’s Muse [Kac15] and onefor Facebook’s Haxl [Mar+14]. These back-ends are also based on differ-ent languages, namely Clojure and Haskell. The abstract nature of levelgraphs allows us to generate code in different languages.
3.4 Machine Learning for Benchmarking
In the previous two sections we have discussed multiple benchmarks intwo different classes: hand-written benchmarks and randomly generatedbenchmarks. We have discussed the advantages and disadvantages ofboth. Hand-written benchmarks cost many person-hours to write andmaintain, and are usually very limited due to IP. Random benchmarks canovercome the scarcity of hand-written ones at the cost of accuracy, sincethey are less realistic and, accordingly, not as useful for assessing howwell a method will perform on real use-cases. There is a third approachthat sits in-between the two above, which is to use machine learning togenerate benchmarks with realistic properties. This section discusses thisapproach and its limitations.
3.4.1 Generative models

Machine learning models that could generate benchmarks fall under thegeneral term “generative models”. There are different classes of genera-tive models, however:
1. A model in the Fischer-Wald setting is a machine learning modelsolving the problem of density estimation [Vap13]. This means find-ing a pdf p1pt, α0q in a set of pdfs tp1pt, αq | α P Λu parametrized byelements of the parameter set Λ, such that for the risk functional

Rpαq “
ş

´ logpp1pt, αqqdpptq, the value of Rpα0q is minimal over all
α P Λ.

2. A conditional estimation model can again mean a solution to afew different problems in different settings [Vap13]. For a random

40

variable Y over code, it estimates either the joint distribution XˆYor one of the conditional probabilities ppy | X “ xq or ppx | Y “ yq,where X is the random variable representing a piece of code (i.e.
Xpωq “ ω, the identity on Ω).

Conditional-estimation generative models have plenty of applications.For example, they can be used for code completion tasks, which couldeven be leveraged to create code that is close to a specified feature vector.With well-chosen features, this would allow for tools to create other kindsof benchmarks out of, e.g. a representative data set (see Section 3.3). Evenmore so, this could be used to create domain-specific benchmarks withmore samples out of a small domain-specific dataset, by producing codewith feature vectors as extracted from the small dataset. Tuning heuristicsand even auto-completion tasks could all be based on conditional estima-tion models. The focus of this section is the discussion of using solutionsto (1) for benchmark generation. This problem is the basis for generativemodels of code, and solutions to (2) are based on or related to it as well.
3.4.2 Potential Problems

Generative models learn to produce samples similar to those they haveseen in the training data. They could then be leveraged to create arbitrar-ily large benchmark sets. The problem with this is that, in the ideal casefor the Fischer-Wald setting, the code produced by the generative modelshould be indistinguishable from the training data. Concretely, it shouldbe code that is also i.i.d. with respect to the (implicit) pdf of code. If thistraining set is available, then it can be used instead of the synthesizedbenchmarks. Figure 3.5 illustrates this further.
probability
to be written

actual pdf of code

training set

(virtually)
impossible generated set possible generated set

code fragment

actual pdf

estimated pdf

Figure 3.5: An illustration of generative models in the Fischer-Wald setting.
In the figure, the theoretical pdf depicted represents, again, the proba-bility for a particular program to be written. Below it, the illustration rep-resents a plausible histogram of the code actually present in a trainingset. Underneath it, two additional histograms are depicted. To the right,in green, a histogram that is plausibly synthesized by a good generativemodel trained with the training set. While it need not be identical to thetraining set, it should be similar to it, provided the generative model hasbeen trained well. To the left, a histogram is depicted that illustrates avery implausible generated set. How should the generative model knowof the unlikely cases it has not seen, and produce no synthetic code that

41

would never be written by a human? By the definition in (1), the closer thehistograms are to the depicted pdf, the better are the generative modeland training set.In case we want a “representative benchmark”, it is thus not clear thata generative model like this is useful. The programs created by the gener-ative model are i.i.d. with respect to some p1ptq “ p1pt, α0q that is differentfrom p. For estimating the expected value ErPs of some pertinent prop-erty P , we get additional accuracy by increasing the number of samples
l we use to estimate it. This additional accuracy, however, could be can-celed out by the error in p1 (as quantified by, e.g. the risk functional Rpα0q).Whether this is the case, of course, depends on the concrete problem anderrors, and cannot be concluded generally. We believe, however, that it isprobably the case for most instances of the state-of-the-art in generativemodels of code. It is likely that with the current state of generative mod-els, where enough training data is present to train such a model, the rawdata should be at least good enough, if not even better than syntheticdata from the model.For the other kinds of benchmark, the situation is less problematic. Ifwe have a filter to distinguish the types of programs, e.g. one based onvectors of features interesting for the use case, then we can use gener-ative models with these filters to produce benchmark sets of the kinds“representative coverage benchmark” and perhaps in some cases even“fuzzing benchmark”, if the generativemodels generalize well and are runlong enough to produce enough data.

Generative
model

Grewe et al.
Heuristic

Github
(mined)

Synthetic
(generated)

Benchmark
Suites

CLgen setup
Our setup Random

selection

Kernel
driver

discard

Figure 3.6: The flow of CLGen and our re-evaluation. Adapted from Figure 1in [Goe+19].
We investigated these problems in [Goe+19], wherewe re-evaluated thebenchmark generation of CLGen [Cum+17a]. Figure 3.6 summarizes theflow of CLGen and our re-evaluation. In the original CLGen setup, the au-thors of [Cum+17a] mine kernels from Github to train a generative modelof code. The model in CLGen is a character-based model using a LongShort-Term Memory (LSTM) [HS97] architecture to learn a character distri-bution from (normalized) code. The generativemodel is then used to gen-erate synthetic benchmarks. A driver ensures they compile and providesinput values for the generated benchmarks, which are used together witha set of established benchmark suites to train a heuristic. The Grewe etal. heuristic [OWG13] trained from these benchmarks is a machine learn-

42

ing model that decides based on a set of hand-designed code featureswhether to execute an OpenCL kernel in a CPU or the GPU. Our setup takesthe alternative route of foregoing the generative model, and using themined github kernels instead of the synthetic benchmarks.

0%
25%
50%
75%
100%

Acc
ura

cy[
%] BenchmarksGithubCLgenBench. + GithubBench. + CLGen

Figure 3.7: Accuracy obtained by the heuristic for the different datasets in thesetup. Adapted from Figure 2 of [Goe+19].
We examined the code space and the pdfs from the different datasets.Figure 3.7 shows box plots comparing the accuracy obtained by theheuristic using the different datasets in both scenarios. In all cases, oneof the benchmarks was excluded from the training dataset and used astest set. We repeated the experiment for all benchmark suites as test set.For the Github dataset we select a subset of the same size (1000) as theCLGen dataset used, which is part of the artifact of [Cum+17a]. We re-peat a random selection of a subset of the Github data 100 times andreport the median accuracy obtained this way, to control for the size ofthe dataset. We also consider both the enhanced datasets as in the orig-inal work [Cum+17a], namely the benchmarks enhanced with the CLGenkernels and alternatively enhanced by the original mined Github kernels.Finally we also consider using each dataset on its own for training, tohelp the comparison between the usefulness of the Github kernels andthe generated CLGen kernels. It is obvious that the kernels generated byCLGen are not as useful for training as are the original Github kernels.In [Goe+19] we also empirically showed that adding more kernels did nothelp. We believe the problem is that the generated kernels are not repre-

sentative. They are not as useful for maximizing ErPs as outlined above,
P being the accuracy of the CPU/GPUmapping. We have to be careful withthe conclusions we can draw from this. Particularly, upon closer examina-tion (see [Goe+19]), the feature space of the Grewe et al [OWG13] heuristicseems to be rather ill-suited for the task.

0.00
0.25
0.50
0.75
1.00

0 10 20 30Principal Component 1 (asinh)Rel
.fre

q.(
sm

oot
hed

) Benchmarks Github CLGen (Synth.)

Figure 3.8: Smoothed relative frequencies of kernels as function of the first prin-cipal component. Adapted from Figure 6 of [Goe+19].
Figure 3.8 shows a smoothed estimation of the relative frequenciesof kernels. The feature space is obviously not one-dimensional. We thus

43

project it into one dimension for visualization by making a principal com-ponent analysis using all points. The figure shows the relative frequenciesas a function of the first principal component, i.e. the one with the largesteigenvalue (by modulus). This figure thus serves to reproduce the intu-ition of representativeness as illustrated in Figure 3.5. It is very clear thatthe (feature) space covered by the benchmarks is larger than that coveredby theGithub kernels. These, in turn, covermore of the feature space thanthe generated CLGen kernels. These results are consistent with an expla-nation of the results from Figure 3.7, within the formalism as introducedhere. Concretely, considering the formalism of benchmarks as reproduc-ing a particular probability density and considering the task we want tolearn as a random variable. We believe this probabilistic model of bench-marks has the potential to drive research forward in this direction, andwe should focus on it in future work.A clear first conclusion from this re-thinking of the benchmarkingmodel is that we should also question the objective we are measuringin Figure 3.7. The accuracy we consider is the accuracy on the establishedbenchmark suites. While this seems natural, the question is, is it themostuseful objective? In a real-world scenario we will have our own codebaseand will want to get the maximal accuracy in our code base. Good perfor-mance in the benchmarks is only useful to us if our code is similar to thaton the benchmarks.To evaluate this scenario, we took all 91 kernels from a concrete project,the Freedesktop project4, and removed them form the Github dataset.The choice of the project is in principle arbitrary, the important propertybeing that it has a moderate amount of kernels to evaluate on, withoutsignificantly reducing the Github dataset to the point we cannot use it.Using the same methods as above, we assessed the accuracy of trainingwith all seven5 benchmark suites compared to theGithub kernels, withoutthe Freedesktop kernels, obviously. Surprisingly, the heuristic performedsignificantly better with the Github kernels at 73%, compared to the 48%obtainedwith the established benchmarks. These results support the the-sis that the concept of representativeness is central to benchmarking andmodels like the one proposed here should be investigated further.
3.4.3 Models of Code

Oneproperty of the generativemodels in CLGen is theway they representcode. They do so by considering the (normalized) code as a stream ofcharacters that the model learns to predict. So far, in this thesis, we havestrongly motivated graph-based representations of code, from dataflowgraphs even to the closely-related level graphs. It is certainly not a newinsight that graphs are well-suited to represent code in its non-linearity.Compiler construction in general is based on multiple graphs, like syntaxtrees or control- and data-flow graphs (CDFGs).Based on this observation, we investigated graph-based representa-tions of code for machine learning. We focused specifically on compil-ers [Bra+20]. Graph models in machine learning are an emerging field,with Gated Graph Sequence Neural Networks (GGNNs) [Li+15] being suc-cessful in multiple reasoning tasks. In the context of programming lan-guage models, GGNNs and related graph models have also been very
4 https://www.freedesktop.org/5 the benchmark suites are: AMD SDK, NPB, NVIDIA SDK, Parboil, Polybench, Rodinia, SHOC

44

successful [ABK17; Cum+20; Ye+20; Pal+20]. These models use a itera-tive message-passing semantics to learn the dependencies from adja-cent nodes in a graph. We designed code representations based on twograph representations of code common in compilers [Bra+20], CDFGs andabstract syntax trees (ASTs), as well as a general framework for investigat-ing these kinds of code representations [BGC20]. Details about the ma-chine learning architecture are beyond the scope of this thesis, here wejust discuss the graph-based models and how they expose their seman-tics.To test the different compiler-based graph representations of code, wetrained [Bra+20] multiple deep learning models for the OpenCL CPU/GPUclassification task described above. Figure 3.9 shows a comparison ofthe accuracy of the different graph-based models. The baseline modelby Grewe et al. [OWG13] is the same baseline model from the previousCLGen experiments in this section. Additionally, we compare with twostate-of-the-art deep learning models for this task, DeepTune [Cum+17b]and inst2vec [BJH18]. The graph-based models we evaluate are a controlflow graph (CFG), and control- and data-flow graph (CDFG), enhanced withmultiple edge annotations, for data dependencies of the return values offunction calls (CALL) and store-load memory dependencies (MEM).The graph shows two distinct evaluation setups. The first is the randomsplit setup, which is the same one used by [Cum+17b; BJH18]. It joins allseven benchmark suites investigated into a large set of kernels and ran-domly splits it into 10 disjoint subsets. Each of the disjoint subsets is thenused as the testing set, training with all other nine. We report the geomet-ric means [FW86] of the accuracy.

0.91 0.86 0.860.93 0.93 0.930.93

0.74
0.81

0%

25%

50%

75%

100%

Acc
ura

cy[
%]

Random split

0.48
0.59 0.580.51 0.52 0.510.53

0.44 0.47

0%

25%

50%

75%

100%

Acc
ura

cy[
%]

Grouped split

Model Grewe et al.DeepTuneinst2vec
GNN CFGGNN CDFGGNN CDFG + CALL

GNN CDFG + CALL + MEMGNN ASTGNN AST + DF

Figure 3.9: A comparison of the accuracy of multiple machine learning methodsfor the CPU/GPU classification of OpenCL kernels. Adapted from Fig-ure 12 of [Bra+20].
A potential problem with the random split setup is that it mixes ker-nels from the same benchmark, which are likely to be more similar. Thisgoes back to the representativeness argument for the Freedesktop eval-uation above. A random split assumes amore representative benchmarkfor training. To investigate how this affects the algorithms, we change thesplit to also test how they generalize across benchmark suites. Insteadof random disjoint subsets of equal sizes, we split the kernels for test/-training according to the benchmark suites. One suite is used for testing,all others for training, and we again report the geometric mean of theaccuracy. This is the second setup, the grouped split.

45

The results in Figure 3.9 show that graph-based models achieved bet-ter accuracy than sequence-based ones, in general terms. This is not sur-prising, as it has been discussed that they are better at exposing thenon-linear structure of code. Also not surprising is that all models doworse in the grouped split, when forced to generalize across benchmarksuites. However, it is worth noting that the CDFG-based representationsperformed better on the random split, and the AST-based representationsperformed better on the grouped split. A CDFG is at a level of abstractioncloser to the machine than an AST, which is closer to the code itself aswritten by a human. In this light, it is not surprising that a CDFG-basedrepresentation was better at learning with a more representative bench-mark in the random split. The problem in that case is more related tothe execution of code on a CPU or a GPU, whereas on the grouped split,for generalizing across benchmark suites, understanding the semanticsof the code is more important for predicting how it might fare.In this section we have seen how graph-based representations and thelevel of abstraction are important, as well as how we should pay closerattention to the representativeness of a benchmark. A natural questionat this stage is whether this insight can be used to improve generativemodels and generate better, more representative benchmarks. For thiswe also need graph-based generativemodels, which have received less at-tention than GGNNs in inference. The graph generative model of [Li+18b]works by generating sequences that construct the graph. While this al-lows us to create graphs representing code, the sequential structureof the generative sequences still pose some problems. This model isalso very generic, which makes it easy to generate invalid code graphs,just like CLGen can generate invalid code. Expanding upon this, Alexan-der Brauckmann managed to generate more valid code samples thanCLGen [Bra20] (up to 88%, compared to 38% for CLGen). In a related ef-fort, Alexander Thierfelder designed a domain-specific extension to themodel of [Li+18b], aiming to generate LLVM-based graphs that are cor-rect by construction [Thi20]. The LLVM language is complex, and we couldunfortunately not design a generative model where the graphs are cor-rect by construction, but we could capturemost of the LLVM semantics inthe model. Graph-based models of code are a promising direction for fu-ture work, which could allow us to generate representative benchmarks,among others [LC20].

46

4MATHEMAT ICAL STRUCTURES IN MAPP INGS

The space of mappings in the software synthesis flow we described hasa rich mathematical structure. This chapter aims to explore and exposethat structure, at least in part. We will consider two main aspects ofthe mathematical structure hidden within the simple notion of a map-ping, namely the inherent symmetry, and the degrees of similarity be-tween mappings. We will consider how to extract this structure in acomputationally-efficient fashion, and how it can be exposed to tools thataim to exploit it, in different representations.This thesis focuses primarily on a view of the mapping problem cen-tered on computation, instead of data. In many cases, with the increasingdiscrepancy between execution frequency and memory access times (cf.Figure 1.1) this view is not ideal. The problem space of data allocation isusually more clearly structured and can be modeled better. For exam-ple, we worked on integer linear programming (ILP)-based methods todescribe and optimize memory allocation [Ode+14; Ode+15; GCL16]. Weomit this work from this thesis for space reasons. We also omit workon emerging memory technologies, concretely race-track memory (RTM),where we used similar ILP-based models and other meta-heuristics likegenetic algorithms or domain-specific heuristics to optimize data place-ment [Kha+20].
4.1 Symmetries
In this chapter we will explore the mathematical structure of symmetryin the software synthesis process, mostly the work published in [GC15;GSC17; Goe+17; GMC18; GNC]. The material in this section makes use ofconcepts in group theory. We assume the basic concepts as seen in anyundergraduate course on group theory, with the definitions of groups, ac-tions and orbits. A brief introduction, to the level required by this chapter,can be found in Appendix A.1.
4.1.1 Architectures and Applications

Intuitively, when we say an object is very symmetric we usually mean ithas parts that are similar or identic, and the object looks identical (or sim-ilar) from multiple points of view. In a symmetric face, for example, boththe left and right sides of the face are similar. A hexagonal mosaic mightlook the samewhen seen from six different angles. Mathematically, this iscommonly modeled through transformations. A reflection along the ver-tical axis in a face, or rotations of 60˝ in the heaxgon, both leave the ob-ject (mostly) unchanged. We can do the same for hardware architectures,even heterogeneous ones.For example, the Exynos 5 in the Odroid-XU4 has four identicalCortex A7™, say PE1, . . . , PE4 and four identical Cortex A15™cores, say
PE5, . . . , PE8. A transformation that swaps the cores PE1 and PE2 leavesthe archtiecture topology unchanged, since the cores are identical. Thisis depicted in Figure 4.1. On the other hand, a transformation that swaps

47

PE1 and PE5 does change the topology, since the cores are of differenttypes. As can also be seen in Figure 4.1.

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

PE2

L1$

PE1

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

symmetrytransformation

PE5

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE1

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

not a symmetrytransformation

Figure 4.1: Examples of transformations in the Odroid-XU4 architecture.
When the interconnect subsystem is more complex, this is also re-flected in the topology. Consider the NoC-based architecture depicted inthe example, with four identical cores PE1 . . . , PE4. An analogous transfor-mation to the one described before, which swaps the cores PE1 and PE2,is not a symmetry of this topology, as depicted in Figure 4.2. The changein the cores changes the communication patterns. Before the transfor-mation, sending data from PE1 to PE3 needs two hops, whereas after thetransformation it can be sent within a single hop, as shown by the redpaths in the NoC.

PE1 PE2

PE3 PE4

R

R

R

R

PE2 PE1

PE3 PE4

R

R

R

R

Figure 4.2: The communication topology affects symmetries in architectures.
Generally, the transformations that preserve the structure of the archi-tecture topology have a clear structure. If two transformations t1 and t2preserve the structure of the architecture topology, then their composi-

48

tion t1 ˝ t2 also preserves it. Similarly, it is clear that reversing a transfor-mation t´1
1 also preserves the structure. Finally, the identity transforma-tion on the architecture idA (which does not change anything) clearly pre-serves the structure. These observations together mean that these trans-formations have the structure of a group with the function composition

p˝q as its operation.More precisely, the group of symmetries of the architecture is preciselythe group of graph isomorphisms from the architecture graph A to itself.An isomorphism from an object to itself is called an automorphism. Wedenote the group of automorphisms of the architecture A as AutpAqFor the case of the NoC-based architecture, the authomorphism group
AutpANoCq – D4 is a dihederal group on 4 points. It conists of 3 rotations,
4 reflections and the identity transformation. The Odroid architecture, onthe other hand, hasAutpAOdroidq – S4ˆS4 as symmetry group. This groupwith 48 transformations consists of (independent) arbitrary permutationsof the A15 and A7 cores.

PE1

Secure&Mngt.C.
SECURE BUS

Cluster1 Cluster2

Cluster3 Cluster4

Cluster5

Figure 4.3: The topology of the Kalray MPPA3 Coolidge.
Since the Odroid architecture is heterogeneous, both clusters are dis-tinct and there is no symmetry between them. Many complex archi-tectures, however, do consist of multiple identical clusters. Considerthe architecture depicted in Figure 4.3. It is the MPPA3 Coolidge fromKalray [inc20] and consists of 5 identical clusters. Each cluster has 17 cores,

16 of which are identical general-purpose cores, and the last one is aspecial-purpose secure and management core.The MPPA3 Coolidge is a hierarchically-designed architecture. The fiveidentical clusters are conceptually at a different level than the cores ateach cluster. Designs like the HAEC [Fet+19] topology mentioned in theintroduction (cf. Figure 1.2) have even more levels of hierarchy. The sym-metries of these hierarchical architectures are reflected in the differentlevels of hierarchy of the topology [GNC]. For example, the automor-phism group of the MPPA3 Coolidge is AutpACoolidgeq – S16 o S5 and has
16! ¨ 5! « 2.51 ¨ 1015 symmetries.So far we have discussed the symmetries of architectures. However, wecan apply the same principle to applications and their graphs. Conisderthe audio filter example application from Section 2.1 (cf. Figure 2.1). Theleft and right channels perform precisely the same computation on dif-ferent data. We could not, for example, just swap the fft_l and fft_rnodes, since that would result in a different application that also swapsthe channels of the audio file. On the other hand, if we swap the wholesubgraph consisting of fft_l, filter_l and ifft_l with the equivalent

49

subgraph of fft_r, filter_r and ifft_r, the application remains identi-cal. This is depicted on Figure 4.4.

src

fft_l

fft_r

filter_l

filter_r

ifft_l

ifft_r

sink original

src

fft_r

fft_l

filter_r

filter_l

ifft_r

ifft_l

sinktransformed

Figure 4.4: A symmetry transformation of the audio filter application.
Mathematically, we need to model the semantics of the application toreflect its symmetries. For an application K “ pVK, EKq we can label thenodes VK with unique identifiers relating them to the KPN process thatexecute them (e.g. the __PNprocess in a CPN program). Formally, thus, theautomorphism group AutpEq of the labeled graph K is trivial, i.e. AutpEq “

tidu. We could label K differently to capture the symmetry from Figure 4.4.For example, if we use the source code of the process as label, we wouldcapture this symmetry. We have to be careful, however, as this can leadto a problematic definition of symmetries.An application might use the same code at different points, resultingin very different behavior. For example, consider an application that re-ceives a list of points, which it sorts before operating on it. Before return-ing the list, it sorts them again to ensure they are sorted. Both times itsorts the list using the quicksort algorithm, yet the second time the listis almost always sorted or close to being sorted. Then, the execution ofthe same quicksort code in the second instance behaves very differentlyfrom the first time.A difference like the one outlined above is very difficult to captureautomatically, as it requires understanding of the application to a veryhigh level of abstraction. We thus consider application symmetries asmanually-defined annotations. There are some conceivable ways to au-tomatically capture and annotate such application symmetries, for exam-ple when dealing with known data-level parallelism (DLP). In future work,a framework as we discuss in Chapter 6, Section 6.2 could be extended toextract application symmetries from DLP. For the rest of this thesis, how-ever, we focus on symmetries induced from the architecture.
4.1.2 Mappings

We have seen how the architecture and applications have symmetriesin their structure. The groups AutpAq and AutpKq act on the architecture
A and the application K, respectively. These actions also induce an ac-tion on the mapping space. Let m : K Ñ A be a mapping. Recall that asymmetry σ P AutpAq of the architecture is a transformation that leavesthe structure of the architecture unchanged. Conisder then the mapping

50

σm :“ k ÞÑ σpmpkqq. Since the structure of A is unchanged, then thestructure of m and σm is also identical. All observable properties Θ of mand σm, like the execution time or energy consumption, are the same. Ifthey were not, it would have to be due to a structural difference in the(sub)architectures mpKq, pσmqpkq “ σpmpKqq ď A, which are isomorphicby assumption on σ. We say that these properties like the execution timeand energy consumption are invariants of the group action.The case for K is analogous. Let π P AutpKq be a symmetry of the ap-plication. Then the mapping πm :“ k ÞÑ mpπ´1kq is equivalent to m. Notethat we define it with π´1 instead of π so that this defines a left action.Indeed, for π, τ P AutpKq, we have
pπpτmqqpkq “ πmpτ´1kq “ mpπ´1τ´1kq “ mppτπq´1kq “ ppτπqmqqpkq

t1
t2

t3

t4

t5

t6

t7
t8 PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 t3 t4t5 t6

t7 t8

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

architecture symmetry:(PE1,PE2)
t1 t2 t3 t4t5 t6

t7 t8

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

application symmetry:(t2,t3)(t4,t5)(t6,t7)
t1t2t3 t4

t5

t6

t7

t8

Figure 4.5: Group actions on mappings.
Figure 4.5 shows an example of the action on mappings. It depicts amapping m “ rPE2, PE1, PE1, PE5, PE1, PE5, PE3, PE7s of the audio filter ap-plication on the Odroid XU4. On the bottom right, we depict the action of

σ on m for the architecture symmetry σ “ pPE1, PE2q, in cycle notation1,which is the same symmetry transformation depicted in Figure 4.1. Thisresults in themapping σm “ rPE1, PE2, PE2, PE5, PE2, PE5, PE3, PE7s. On thetop right, we show the action of π on m for the application symmetry
π “ pfft_l, fft_rqpfilter_l, filter_rqpifft_l, ifft_rq,

which is the application symmetry depicted in Figure 4.4. This results inthe mapping πm “ rPE2, PE1, PE1, PE1, PE5, PE3, PE5, PE7s.From the underlying problem formulation, as defined in Chapter 2,mappings under these symmetries are necessarily indistinguishable fromeach other, since they rely on inherent symmetries of the models. Onthe other hand, these are just models, they need not reflect reality. It stillleaves the question open, how does this hold up in pracitice? Are equiva-lent mappings actually equivalent? In [Goe+17] we tested this empirically,by executing four equivalent mappings and measuring the runtime and
1 See Appendix A.1 for an explanation

51

energy. We tested four equivalent mappings of the audio filter bench-mark on an Odroid XU3 and executed each 50 times, measuring threemetrics. The Odroid XU3 is almost identical to the Odroid XU4, but fea-tures on-board energy sensors. We measured the CPU time, which is thetotal aggregate time spent by all CPUs executing the application. We alsomeasured the wall-clock time, which is the total time of the application,measured from start to finish as it would pass on a wall clock. Finaly, wemeasured the total energy over the INA-231 sensors connected over theI2C bus, as the aggregate of the energy measured at each individual com-ponent, sampled at 10 Hz.

8.1

8.2

8.3

8.4

Wa
ll-cl

ock
tim

e[s
]

mapping
1 2 3 4

10.3

10.4

10.5

10.6

CPU
tim

e[s
]

mapping
1 2 3 4

19
20
21
22
23

mapping

Ene
rgy

[J]

mapping
1 2 3 4

Figure 4.6: Measurements of four equivalent mapings for the audio filter applica-tion on the Odroid-XU3 architecture.
Figure 4.6 shows the results of themeasurements as box-and-whiskersplots. We see that the execution times of all mappings are well withinthe ranges of each other, both when measured as wall-clock or CPU time.We can test this in a more rigurous fashion with an Analysis of Variance(ANOVA) F-test. For the wall-clock data, we get a probability of p “ 5.06%,rejecting the null hypothesis that variance in the wall-clock times from dif-ferent mappings is explained by more than statistical variance. In otherwords, the variance can be considered to be just statistical noise. For the

CPU time data, the value of p “ 15.2% it is even clearer that the variance islikely just statistical. We can conclude that, at least for this example, equiv-alent mappings indeed seem to have the same execution time behavior.The energy consumption of the mappings is less clearly distinct, es-pecially for the first two mappings, yet they all still require comparableamounts of erengy. An ANOVA F-test yields a p value of 0.009%. It is worthnoting here that these measurements are just a first estimation. The ac-curacy of the energy data depends on a multitude of factors like the sam-pling rate or the measurement accuracy of the INA-231 sensors. We havenot made a proper assesment of measurement errors and error propa-gation, which is especially large in the energy measurements that spanmeasurements from four different components. Precise energy measur-ments, however, are beyond the scope of this thesis.With this experimentwe cannot really accept nor discard the hypothesis that energy consump-tion is an invariant of the mapping symmetries.
4.1.3 Calculating Symmetries

The branch of mathematics known as computational group theory dealswith computational aspects of the theory of groups, which we have used

52

here for formalizing the symmetries of applications, architectures andmappings. An overview of the methods of computational group theorycan be found in [Hol05; Ser03], which both cover far beyond the basicspresented in this subsection. Here we will present only the methods nec-essary for the calculations required of applications to software synthesis.To leverage the symmetries explained in this thesis, we need methodsto calculate the following:
1. Given an architecture graph A, calculate (generators for) the groupof symmetries AutpAq.
2. Given a mapping m : T Ñ A and the symmetry group G :“ AutpT Ñ

Aq, enumerate the orbit Gm.
3. Given two mappings m, m1 : T Ñ A and the symmetry group G :“

AutpT Ñ Aq, determine whether m “ gm1 for a g P G, i.e. if the twomappings are in the same orbit.
Mature software exists for computational group theory that can, inprinciple, solve these problems. The GAP system is a Domain-Specific Lan-guage (DSL) for computational discrete algebra with a focus on (computa-tional) group theory [GAP20]. We developed algorithms for dealing withproblems 1-3 in GAP [GSC17]. We also included naive versions of most al-gorithms implemented directly in Python in mocasin.Using GAP-based algorithms in software synthesis tools likeMAPS in prac-tice, however, comes with a series of complications. The largest problemis that it adds a dependency on a whole ecosystem. A complete distribu-tion of GAP is over 200 MiB of size and takes around a second to start upin standard commodity hardware of today. Additionally, to communicatewith a running GAP instance we need to use OS pipes, which is cumber-some and not portable. We thus developed a standalone library [GNC;Nic20], mpsym, which implements the required algorithms to solve prob-lems 1-3 and includes a domain-specific extension for efficiently dealingwith hierarchical (e.g. clustered) archictures [GNC].Calculating the group of symmetries from an architecture graph (Prob-lem 1) is very related to the graph isomorphismproblem. This is a problemin NP, and it is not known, neither believed to be in P nor NP-complete.In December 2015, Lásló Babai published a pre-print where he claims tohave found a quasi-polynomial algorithm [Bab16], yet at the time of thiswriting (January 2021) the peer-review is still not complete. Regardless ofthe worst-case complexity, graph isomorphism can be solved efficientlyin practice for most instances [MP14]. Algorithms for doing so are imple-mented in nauty/Traces, which mocasin and mpsym use to solve Problem 1.Virtually all MPSoCs have topologies that follow a well-defined set of de-sign principles, like using NoCs, hierarchical clusters or groups of identical

PEs. This is also the idea behind the platform designermodule in mocasin.In [GNC] we showed that we can leverage this to construct the automor-phism group of the architecture. In particular, the automorphism groupsof hierarchical architectures are the wreath product of symmetries of theclusters.We used a specialized algorithm that leverages awreath-productdecomposition, originally applied in model checking [DM09]. Table 4.1shows the domain-specific approach to finding architecture symmetriesin hierarchical designs, as described in [GNC].Most algorithms in computational group theory use a special data struc-ture describing the group. This data structure is called a base and strong

53

Table 4.1: Correspondence of architecture and group-theoretic constructions.Adapted from Table 1 in [GNC].
Hardware Architecture Group Theory
Bus-based connection (n identicalelements/clusters) Symmetric Group Sn

Distinct elements/clusters Direct product G1 ˆ . . .ˆ Gn

NoC Connection with topologygraph Γ (identical elements) Automorphism group of Γ AutpΓq

Hierarchical composition Wreath product G o H

generating set (BSGS), see [Hol05; Ser03] for more details. The standard al-gorithm for calculating the BSGS for a group is the Schreier-Sims Algorithm.Multiple variants of this algorithm exist, which are more efficient underdifferent circumstances. Computer algebra systems (CAS) like GAP use dif-ferent variants with sophisticated heuristics for selecting which variant touse. In mpsymwe implement some variants of the Schreier-Sims algorithmwith a less sophisticated selection heuristic, which do not surpass GAP’sperformance. For all groups investigated in this thesis, however, mpsymwas comparable to GAP, without the large ecosystem dependency [Nic20;GNC].Problem 2 is a standard problem in computational group theory. Wesolve it using the Orbit algorithm, which can easily be adapted to a lazyvariant, described in Algorithm 1. If we use a perfect hash, the algorithmreturns exactly the orbit of the mapping. If the hash can have duplicates,a smaller orbit might be returned, but the algorithm will clearly neveryield elements from outside the orbit. This lazy variant is especially usefulwhen looking for any mapping in the orbit which fullfils some properties,instead of being interested in the full orbit. This is especially useful in the
TETRiS system, which we will describe in Section 5.5.
Algorithm 1 A lazy variant of the standard orbit algorithm
input: A generating set X “ pg1, . . . , gnq, xg1, . . . , gny “ AutpMq for themapping space, a mapping m0.
output: The orbit of m0: AutpMqm “ tgm0 | g P AutpMqu
1: HÐ tHashpm0qu

2: CurElemsÐ tgim0, Hashpgim0q R H | i “ 1, . . . , nu
3: HÐ H Y tHashpmq | m P CurElemsu
4: while CurElems ‰ H do
5: for m P CurElems do
6: yield m
7: CurElemsÐ tgim, Hashpgimq R H | m P CurElems, i “ 1, . . . , nu
8: HÐ H Y tHashpmq | m P CurElemsu
Finally, to solve Problem 3, we could simply solve Problem 2 for bothelements and see if the orbits are identical. Orbits form a partition of themapping space M, meaning that two orbits are either identical or dijsoint(and the union of all orbits yields M). This is a very inefficient way of solv-ing Problem 3, since it means we have to enumerate the whole orbit foreach element. Using the same principle of the Orbit’s partition, we canalso just enumerate the orbit for one element and see if the other ele-

54

ment is in it. While this is also an improvement, it is still very inefficient.Orbits can be very large when the problem has much symmetry. By de-fault, mpsym uses this variant as a fall-back method to solve Problem 3when correctness needs to be guaranteed.Another alternative for this which works without enumerating any or-bits is based on the fact that the symmetries of the mapping AutpMq ď
SympMq, the symmetric group on M (i.e. the group of all permutationson M). Thus, if two mappings m, m1 are in the same orbit under AutpMq,then they are also in the same orbit under SympMq: there exists a per-mutation σ P S|M| which takes m to m1. However, |M| as we have seen
can be very large, as it grows (at least) as |VA|

|VK| and SympMq – S|M| isthus unimaginably large, namely | SympMq| “ |M|! ě p|VA|
|VK|q!. If we con-sider only architecture symmetries, this all works over the much smaller

AutpAq. We obviously do not have to iterate over the group to construct σ,since we know both m, m1 we can construct it directly. Knowing σ, we canefficiently solve the group membership problem [Ser03] for these permu-tation groups, using the BSGS data structure. We know, namely, that σ is in
AutpMq if and only if AutpMqm “ AutpMqm1, by the definitions of the orbitand σ. On the other hand, if we cannot construct σ from m, m1, because itleads to contradictions, then, obviously, the orbits are different.There is an alternative variant of this which also allows us to select amapping to work with, e.g. for DSE. It is based on canonical representa-tives [GSC17; GMC18]. A canonical representative of an orbit Gm is an ele-ment m0 P Gm such that there is a function f : M{G Ñ M which maps Gmto m0. In other words, the function f selects a unique element of everyorbit, this element is the canonical representative.For constructing our canonical representatives, we order mappings us-ing the lexicographical ordering. For two mappings m “ pm1, m2, . . . , mkqand m1 “ pm11, . . . , m1kq we say that m ď m1 if and only if there exists a j ď ksuch that mi “ m1i for all i ă j and mj ď m1j. The function f for the canon-
ical element of the orbit thus maps Gm to min Gm. In other words, wechoose canonical elements to be the lexicographical-minimal elementsof the orbits.
Algorithm 2 Local search for finding canonical representatives. Adaptedfrom Algorithm 1 of [GMC18].
input: A mapping m, a generating set S, with xSy “ AutpMq.
output: A mapping mcanonical “ gm with mcanonical ď m1 for all m1 P Gm
1: F Ð tmu
2: Fold ÐH

3: while F ‰ Fold do4: Fold Ð F
5: for all s P S do
6: for all m1 P F do
7: if sm ă m then
8: F Ð FY tsmu
9: F Ð tminm1PF m1u (optional)
return minm1PF m1

To find the lex-minimal canonical representatives we use a local-searchalgorithmbased on an iteration similar to theOrbit Algorithm. Algorithm2shows this local-search heuristic. This algorithm returns the lex-minimal

55

element of the orbit if the generating set has a particular property, whichwe called being a strictly order-preserving generating set [GMC18]. We say
S is a strictly order-preserving generating set if for two mappings m1 ă min the same orbit, i.e. m P xSym1, there exists a word s1, . . . , sn in the gen-erators si P S, such that m1 “ s1 . . . snm with sipsi`1 . . . snqm ă psi`1 . . . snqmfor all i “ 1, . . . , n´ 1. For example, for the symmetric group Sn, the setof all transpositions S “ tpi, jq | i ‰ j P t1, . . . , nuu is such a strictly order-preserving generating set. Without this property, the local search couldyield an element which is not the lex-minimal element. If we remove theoptional reduction in Line 9, we significantly speed up this search andmake the probability of finding only a local minimum instead of the globalone higher. Since allmappings in the orbit are equvialent, such a localmin-imumwill always have the same objective properties Θ as the real canon-ical representative (cf. Section 2.4). Thus, finding a local minimum insteadof the canonical representative is tantamount to considering a smallergroup of symmetries, and thus a very acceptable risk for a considerablespeed-up. Both mpsym and mocasin implement this heuristic and use it bydefault for design-space exploration, as we will see in Section 5.3. We alsointegrated mpsym into mocasin, using the simple Python versions of the al-gorithms in mocasin only as fall-back.
4.1.4 Partial Symmetries

The symmetries we have considered so far can be considered as “global”symmetries: they are transformations of the complete structure (e.g. ar-chitecture, mapping). The intuitive notion of symmetry, however, is moregeneral than this. What we consider as symmetry also includes the rela-tionship of a structure to its parts. In particular, a symmetry can be localto a part of the structure, without being global. A general discussion ofthis can be found in [Law98], as well as a detailed exposition of the math-ematical background of this section.We can seewhatwemeanby local structures in the example depicted inFigure 4.7. It shows two NoC architectures both with a regular mesh topol-ogy. The first one is a two-by-two mesh, the second one four-by-four. Wecan compare now the symmetries of both architectures intuitively, andsee how these translate to the group-theoretic sense. The four-by-fourmesh is larger, and has a sort of self-similarity: it can be thought of ascomposed of four copies of the two-by-two mesh arranged in a largertwo-by-two mesh. Intuitively, thus, this four-by-four mesh has more sym-metry.

PE1 PE2

PE3 PE4

R

R

R

R

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 4.7: A comparison of the two different-sized meshes and the intuitive no-tion of their symmetries.

56

However, if we look at the group of automorphisms of the corre-sponding architecture graphs, we get a result that defies this intuition:both architectures have the same groups of symmetries! More precisely,their groups of automorphisms are isomorphic, they are dihedral groupson 4 points, D4. More concretely, there are only 8 possible structure-preserving transformations acting on these two topologies, which are therotations of 90˝, 180˝, 270˝, 360˝ “ 0˝ and the reflections among each ofthe axes (horizontal, vertical and both diagonals). We cannot, for exam-ple, divide the four-by-four mesh into a two-by-two mesh of two-by-twomeshes, and rotate that larger two-by-two mesh by 90˝ or one of thesmaller ones by 90˝. These two operations both work locally, if we ignorethe rest of the structure, but do not preserve the whole structure of themesh, as illustrated by Figure 4.8. The figure shows how a rotation on thebottom left 2ˆ 2 mesh breaks the communication structure. Highlightedis the communication between PE1 and PE3, which changes from 2 hopsto 1 hop in the transformation.

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

PE5

PE1

PE3

PE4

PE6

PE2

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 4.8: An example of a local symmetry that is not a global symmetry of a 4ˆ 4mesh.
For the mathematical formalization of this intuitive notion of local sym-metries, in this section, we follow [Law98]. There are essentially two equiv-alent ways of formalizing this intuitive notion of local symmetries, inversesemigroups and ordered groupoids. We will consider the formalizationusing inverse semigroups, as it is conceptually simpler for computations,andmathematically equally as powerful. In the case of global symmetries,there are concrete transformations of architectures andmappings, whichcorrespond to abstract groups. For partial symmetries, we will considerpartial transformations of mappings, which we will model as partial per-mutations, and these partial permutations (transformations) have a cor-responding abstract inverse semigroup.We start by defining partial functions and partial permutations.

Definition 4.1.1. Let X,Y be sets. A partial function f : X Ñ Y is a functionfrom a subset of X to a subset of Y. We denote the domain of f by domp f qthe codomain of f by codp f q. Thus, the partial function f : X Ñ Y is a (total)function f : domp f q Ñ codp f q

Definition 4.1.2. Let X be a set. A partial function f : X Ñ X from X toitself is called a partial permutation if the (total) function f : domp f q Ñ
codp f q is a bijection between domp f q and codp f q.

57

PE1

PE2

PE3

PE4

PE5

PE6

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

RR

RR

R

R

RR

RR

R

R

R

R

R

R

R

R

R

R

PE5

PE1

PE3

PE4

PE6

PE2

PE7

PE8

PE9

PE10

PE11

PE12

PE13

PE14

PE15

PE16

RR

RR

R

R

RR

RR

R

R

R

R

R

R

R

R

R

R

Figure 4.9: The transformation of Figure 4.8 as a partial permutation.

We can think of partial functions thus as functions that are not definedeverywhere, and partial permutations, accordingly, are not defined every-where. For example, the partial permutation f : t1, . . . , 16u Ñ t1, . . . , 16udefined as f p1q “ 2, f p2q “ 6, f p5q “ 1, f p6q “ 5 is a rotation of the bottom-left 2ˆ 2-mesh in the 4ˆ 4-mesh depicted in Figure 4.8, but is not definedon the rest of the architcture. This is a partial symmetry of the 4ˆ 4-mesh.This partial permutation is depicted in Figure 4.9. We can write it also as:
˜

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 6 ´ ´ 1 5 ´ ´ ´ ´ ´ ´ ´ ´ ´ ´

¸

Because the set t1, . . . , 16u is understood from context, we can also writeit, shorter, as:
˜

1 2 5 6

2 6 1 5

¸

We also use a notation similar to the cycle notation of group theory,where we use a cicle with round brackets to denote a full cycle, where thelast element maps to the first. Square brackets to denote when this is notthe case, i.e. the function is not defined on the last element of that cycle. Inthis notation, singleton cycles cannot be omitted as in the case of groups.In otherwords, fixedpoints have to be represented as one-element cycles.The partial permutation from Figure 4.9 can thus be written much morecompactly as: p1, 2, 6, 5q. This is a full cycle, but it is only defined on thesubset t1, 2, 5, 6u. In the group context, the cycle p1, 2, 6, 5q as an elementof the symmetric group on 16 points, would instead mean the (complete)permutation that fixes t3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16u. As a partial per-mutation in cycle notation we would write this as:
p1, 2, 6, 5qp3qp4qp7qp8qp9qp10qp11qp12qp13qp14qp15qp16q

A different example of a partial permutation is the partial permutationthat moves the first column to the right (and is not defined on the rest),as a cycle: r1, 5sr2, 6sr3, 7sr4, 8s. On the other hand, the partial permutationthat is a diagonal reflection on the bottom-left 2ˆ 2 (sub)mesh is, in cyclenotation, p2, 5qp1qp6q. These two partial permutations can also be writtenin the matrix notation from above as:

58

˜

1 2 3 4

5 6 7 8

¸ ˜

1 2 5 6

1 5 2 6

¸

For computations [Eas+19], the three notations can be interpreted tomake different data structures that make different opperations more ef-ficient, like application of the partial function (as an array look-up), forsparse partial permutations (as lookups in key-value pairs), or cycles forefficient multiplication (as concatenation). They have different benefitsand drawbacks. For readability though, the cycle notation is themost com-pact one, and the one we will use for the rest of this thesis.Just as for groups, we can define the (left) action of a semigroup:
Definition 4.1.3. Let S be a semigroup and X be a set. We say that S actson X (on the left) if there is a function ¨ : Sˆ X Ñ X such that pabq ¨ x “
a ¨ pb ¨ xq. If S is a monoid with identity 1 and the function ¨ satisfies thecondition 1 ¨ x “ x for all x P X, we say that the action is a monoid action.
The action of a semigroup of partial permutations on an architectureworks the same as with groups, except it does not work on the wholearchitecture. Let f be a partial permutation on an architecture A, and m :

K Ñ A be a mapping on that architecture. If the partial permutation isdefined on all cores that m maps to, i.e., impmq Ď domp f q, then we canuse the action of the semigroup of partial permutations of A to defineanother mapping f m by f mptq “ f ¨mptq for all t in K. If f is not defined onsome of the cores of m, i.e., impmq Ę domp f q, then we cannot define f m.In this way, f also defines a partial permutation f̂ on the set of mappings
M Ď tm : K Ñ Au “: AK.Consider for example the mapping of an application with three tasksto the 4 ˆ 4-mesh defined by m1pt1q “ m1pt3q “ PE1 and m1pt2q “

PE5, which we can also write as the vector m1 “ p1, 5, 1q. Then the par-tial permutation p1, 2, 6, 5q from Figure 4.9 above defines the mapping
p1, 2, 6, 5qm1 “ p2, 1, 2q. Similarly, the action of the partial permutation
p2, 5qp1qp6q yields a new mapping, p2, 5qp1qp6qm1 “ p1, 2, 1q. However, sincethe translation τ “ r1, 5sr2, 6sr3, 7sr4, 8s is not defined on PE5 “ m1pt2q, wecannot define r1, 5sr2, 6sr3, 7sr4, 8s as a mapping. Formally we can say that
the partial permutations {p1, 2, 6, 5q and {p2, 5qp1qp6q are defined on m1, but

{r1, 5sr2, 6sr3, 7sr4, 8s is not defined on m1.What happenswith application symmetries? As defined here, the edgesof the applicationK are the (data) dependencies of a computation process(or task). All dependencies have to be respected, whichmeans that consid-ering partial symmetries of the application can lead to non-determinsticor faulty behavior.We are now ready to formally define the set of partial symmetries of ar-chitectures andmappings, as in the case of groups. Recall that a mapping
m : K Ñ A can be seen as a morphism of graphs from M to A. In particu-lar, every mapping m defines a subgraph mpKq ď A. This subgraph has anodemptq P VA for every PE in the architecture A that is used in amapping,and similarly an edge pmpt1q, mpt2qq P EA for every communication prim-itive where a channel is mapped to. Precisely the isomorphism of thesesubgraphs is what defines the partial symmetries of the architecture.
Definition 4.1.4 (AutSemi). Let A be an architecture graph. The set ofpartial symmetries of the architecture graph AutSemipAq is the set of par-tial labelled-graph isomorphisms of A, i.e. the partial permutations ϕ of

59

VA which induce an isomorphism of labeled graphs between dompϕq and
codpϕq.
As motivated above, AutSemipAq acts on the set of mappings M, just as

AutpAq the group of (total) symmetries does. This action (and the action ofthe groupAutpKq) define together an embedding onAutSemipMq ď IpMq,the inverse semigroup of partial permutations on M, which is how wedefine AutSemipMq.In inverse semigroups, not every element has an inverse, only a pseudo-inverse. Consider the identity partial permutation on the lower-left 2ˆ 2-
NoC in the 4ˆ 4 mesh, i “ p1qp2qp5qp6q. This identity partial permutation isan idempotent, whichmeans that i2 “ i, which implies that i´1 “ i. Groups,in contrast, have precisely one idempotent, the identity element. The setof idempotents of a semigroup plays an important role in describing thestructure of the semigroup [Law98]. If we then consider the translation
τ from above, we can multiply τi “ r1, 5sr2, 6s, which is defined only ontwo cores. If we muliply it with the pseudoinverse of i, i´1 “ i, we get
τii´1 “ τii “ τi ‰ τ. There is no way we can get τ back from τi, since τ isdefined on 4 cores.Just as with groups, we can define orbits for inverse semigroups. How-ever, due to the one-way nature of some multiplication operation, theorbit of a semigroup is more complicated. Let X be a set and let S be asemigroup acting on X. Then, for an element x P X, we can think of the
orbit graph of x as a directed graph O “ pV, Eq where V “ tsx | s P Su. Theedges E are defined by the action, namely an edge e “ pv, wq is added forevery v, w for which there exists an s P S such that v “ sw. This directedgraph is clearly connected, but not strongly connected. The strongly con-nected components (sccs) of this orbit graph define equivalence classesand play the role that orbits played in group actions for our applicationto software synthesis.By definition ofAutSemipAq, for a partial symmetry f P AutSemipAq andamappingmwe know that if themapping f m is defined, then the two sub-graphs f mpKq – mpKq ď A are isomorphic. We also get an isomorphismbetween the two subgraphs by Lemma 4.1.5
Lemma 4.1.5. Let m : T Ñ A be a mapping and let f P AutSemipAq bea partial automorphism of the architecture such that impmq Ď domp f q.Then, the two graphs mpKq and p f mqpKq are isomorphic and the function
ϕ : mpKq Ñ p f mqpKq, mptq ÞÑ f ¨ mptq for all t P K is an isomorphism oflabeled graphs.
Proof. First note that ϕ is well-defined. Indeed, since impmq Ď domp f q itmeans that f ¨ mptq is defined for all t P VK. Since f P AutSemipAq, weknow that the type of mptq and f ¨mptq is equal for all t P VK, as well as thetype of all edges pmpt1q, mpt2qq and p f ¨mpt1q, f ¨mpt2qq is equal. Thus, ϕ is amorphism of labeled graphs. Finally, since f P AutSemipAq, we know that
f is a partial permutation, and in particular, a bijection between domp f qand codp f q. In particular, ϕ is bijective, and as a bijective morphism oflabeled graphs, an isomorphism.
What about the converse, if the subgraphs generated by the mappingsare isomorphic, does this mean that there is a (partial) isomorphism ofthe mappings too? Can we use this to characterize equivalent mappings?In general, no. Consider the subgraph of the mappings m2 :“ p5, 5, 1q

60

and m3 :“ p5, 1, 1q. Both these mappings project into isomorphic sub-graphs m2pKq – m3pKq – m1pKq, but obviously the mappings are notequivalent. Even if the subgraphs are isomorphic, the crucial differenceis, however, that the mapping ϕ as defined in Lemma 4.1.5 is not an iso-morphism of (labeled) graphs. What if tasks t1 and t2 are equivalent? Inother words, what if g “ p1, 2qp3q is a (full) automorphism of the appli-cation graph? Then, the mappings m1 and m3 are equivalent (via g), butthe function ϕ of Lemma 4.1.5 is still not an isomoprhism of the sub-graphs. However, we can generalize the function by applying g first, as
ϕ ˝ g : mpTq Ñ f mpTq, mptq ÞÑ p f m ˝ gqptq “ p f mqpgptqq. This generaliza-tion, in fact, yields a full characterization of equvialent mappings throughisomorphy of subgraphs.
Theorem 4.1.6. Let A be an architecture with inverse semigroup of auto-morphisms S “ AutSemipAq and let K be an application graph with groupof automorphsims G “ AutpKq. Formappingsm, m1 : T Ñ A, the followingstatements are equvialent:

1. There exists a partial permutation f P S and a permutation g P G,such that ϕ ˝ g is an isomorphism of labeled graphs.
2. The two mappings are equivalent by symmetries in the orbit of Sˆ

G.
Proof. The implication p1q ñ p2q follows directly from the definition of ϕand the action of Sˆ G. For the implication p2q ñ p1q, since m and m1 arein the same scc of the orbit of Sˆ G, there exists an x P Sˆ G such that
m “ x ¨m1. We can use the direct product structure of SˆG to decompose
x “ f g for f P S, g P G. This means that m “ f g ¨m1 “ f ¨ pg ¨m1q. ApplyingLemma 4.1.5 on m and g ¨m1 shows that ϕ ˝ g is an isomorphism.
How do partial symmetries with inverse semigroups compare to(global) symmetries, in the sense of group theory? We can start with asimple example, of a 2 ˆ 2 mesh, which we will call M2. The group ofsymmetries of this architecture, as we have seen, is D4 with |D4| “ 8symmetries. What about the partial symmetries? It is easy to check that

|AutSemipM2q| “ 45, which aremanymore partial symmetries than globalones! But in fact, comparing the size of the group and the semigroup ismisleading. We can’t compare them, as they deal with different objects,functions and partial functions. For this case of M2 there is a sense inwhich we do not get any more symmetries by going to the partial sym-metry world. We can see it through the following argument: the group
AutpM2q – D4 acts canonically on the power set of M2, PowpM2q, sim-ply by acting element-wise: For M Ď M2 and g P AutpM2q, the (canoni-cal) action is defined as follows: g ¨ M :“ tg ¨ m | m P Mu. In this action,the orbits PowpM2q{G are in obvious bijection to the sccs of the orbit of
M2{AutSemipM2q.We have seen how to describe partial symmetries, a natural questionis how to calculate them? This can be accomplished with the methodsof [Eas+19], and our applications of it in joint work with Sergio Sicchaand Jeronimo Castrillon [GSC17]. In fact, mpsym implements Algorithm 2from [GSC17]. We worked with Sebastian Krammer in his bachelor the-sis [Kra17] on finding more efficient algorithms. Unfortunately, the algo-rithms as implemented so far are not efficient enough to be useful in thecontext of mappings and DSE.

61

In future work, we believe we should be able to find explicit generatingsystems for an n ˆ n mesh for an arbitrary n, which would significantlyimprove the performance of the algorithms, which is limited by findinga good generating set. Using inverse semigroups also opens up an addi-tional avenue for future work, where similarities can be described insteadof precise symmetries. For example,mapping an edge between two coresin amesh to a different edge typewith a smaller number of hops is sure tonot worsen the performance of the application when running in isolation,although we cannot say if it will improve it or not. Such a transformationcan also be described with semigroups, and the directed graph structureof the orbits nicely encompasses such one-way transformations.
4.2 Metric Spaces
When considering the design space of mappings M “ AK we usually con-sider no quantitative relationship between mappings. For two mappingswe can say if they are identical or not, or perhaps with themethods of Sec-tion 4.1 if they are equivalent or not. However, any further relationship wecan’t describe: can we say that two mappings are very similar, or very dif-ferent? Can we quantify the distance between two mappings? Intuitively,we can. This section requires some basic concepts from the mathematictheory of (discrete) metric spaces and embeddings into real spaces. Ap-pendix A.2 gives an overview of the required concepts, a more thoroughexposition can be found in [Mat02], Chapter 15 in particular.
Normally, we encode mappings as vectors m “

´

a1, . . . , a|VK|

¯ where
ai P VA is the PEs where task i is mapped. If we interpret these vectors asbeing (real) vectors in R|VK|, we can endow them with a vector distance,like the Euclidean distance dEuclideanpv, wq “

a

ř

ipvi ´wiq
2. This can be

generalized to other p-norms, as dLppv, wq “
ř

ipp|vi ´ wi|q
pq1{p, which isa norm for p ě 1. For p “ 1, this norm is also known as the Mathattandistance, in allusion to the distance between buildings in a regular meshlike the streets of Manhattan. We can endow the space of mappings witha metric also by using the Hamming distance, which counts only the num-ber of differing entries in the vector. However, none of these metrics areideal for the mapping space, as we will now explain.

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1

t2

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1 t2

dist “a

p4´ 1q2 “ 3 dist “a

p4´ 5q2 “ 1

Figure 4.10: An intuitive example of distance between mappings.

62

Consider the example in Figure 4.10. It shows three mappings
m1 : t1 ÞÑ PE2, t2 ÞÑ PE1; m2 : t1 ÞÑ PE2, t2 ÞÑ PE4;

m3 : t1 ÞÑ PE2, t2 ÞÑ PE5 .

We would normally write these mappings as vectors, m1 “ p2, 1q , m2 “

p2, 4q and m2 “ p2, 5q . If we calculate the standard (Euclidean) distance ofthese vectors, then m2 is farther away from m1 than from m3. However,we know that communication between PE1 and PE4 is much faster thanbetween PE4 and PE5. The Euclidean distance in the mapping space doesnot reflect the structure of the communication subsystem.
4.2.1 Architectures

In the example illustrated in Figure 4.10 we saw intuitively how mappingscan be more or less similar. This intuitive notion clearly depends on theunderlying architecture. It is the hardware architecture that determinesthe cost of communicating data between processes. In order to endowthe space of mappings with a metric space structure, we should first doso with the architecture.We can use the intuition behind the example to define a metric thattakes latency into account this way [GMC18]. The fundamental observa-tion here is that in a multicore architecture, communication between dif-ferent PEs takes different amounts of time. There are multiple problemswith using the communication time between PEs directly as a distancebetween PEs. Firstly, communication times depend on multiple factors:the latency and bandwidth of the communication resources used, theamount of data being sent, the (software) communication protocol, clocksynchronization between hardware resources like the PEs and buses, arbi-tration or other contention issues, etc. Of course, we can model these tovarious degrees. However, the distance between PEs needs to be a fixednumber and not a function of all these factors. As an approximation, how-ever, we can use the expected latency for a package of a standardized size(e.g. 8 bytes). As an expected value, this is a fixed number, but through itsstatistical nature it can include as much complexity in the model as re-quired2.The second issue we run into when using communication times fordefining a distance is that, by definition, the distance between a pointand itself has to be 0, but usually a PE has to communicate with itselfusing an L1 cache, scratchpad memory or similar, which has a small butnon-zero latency. In this sense, the expected communication latency be-tween cores is not a metric space distance, but it approximates one well.We propose thus to ignore this latency and set the distance to 0, to obtainthe mathematical metric space structure.Finally, thismetric space structure depends strongly on the unit used tomeasure latency (e.g. cycles, milliseconds, etc), as well as on the absolutespeed of the communication sub-architecture. Since the goal of exposingthis structure is to leverage it for algorithmic decisions like finding goodmappings, it is useful to have comparable distances between different
2 If communication in the architecture is asymmetric, this will not define a metric. We canaverage the communication from p to q and from q to p to fix this, but we should probablyconsider this case separately.

63

architectures. For this, we propose to norm the metric distance functionsuch that the average distance between PEs is 1.Put together, these principles yield the following definition:
Definition 4.2.1 (Architecture Metric Space). Let A “ pP, Eq be an archi-tecture graph and lat : P Ñ P be the expected latency between PEs. Thenwe set

dA : Pˆ P, pp, qq ÞÑ

#

latpp, qq, if p ‰ q

0, otherwise (4.1)
Remark 4.2.2. For an architecture graph A “ pP, Eq, the tuple pP, dAq is ametric space.
Proof. Obviously dApp, pq “ 0 for all p P P, by definition, and dApp, qq ą 0for p ‰ q since the expected latency between PEs is always greater than
0. For p, q, r P P we have dApp, qq ` dApq, rq ě dApp, rq since the expectedlatency of moving data from p to q and then to r will always be at least asmuch as moving it from p to r directly.
In this way we endow M with a discrete metric space structure, with ametric that reflects the memory subsystem of the architecture, or moregenerally, its communication. While this allows for a simple and powerfulmathematical definition, a metric space structure can be inefficient forcalculations. To cope with this, we will also discuss low-distortion embed-dings and show how we can find them for the metric spaces introduced.Appendix A.2 reviews the basic notions of metric spaces, as well as moreadvanced concepts needed to introduce and find the more computation-ally efficient low-distortion embeddings.Unfortunately, this metric also has some issues. In particular, it doesnot distinguish between core types on heterogeneous systems. To fix this,we propose an alternative metric space structure on M, by adding extradimensions for the communication and the computation. This is funda-mentally very similar to adding channels in the mapping vectors. We thusdefine a metric on the channels, based on the metric defined by Defi-nition 4.2.1. The distance between two channels c, c1 P EA is defined as

| latpc1q ´ latpc2q| for the communication channel between the cores. Wethen apply a similar concept for the cores, and take relative values of theexpected runtime. Disregarding the ISA or micro-architecture, we can usethe frequencies as a first estimation, which is what we do here. Obviouslythe frequency is not the best estimation of the expected differences in ex-ecution times between PEs, but we restrict our consideration to this for thescope of this thesis. Future work should focus on finding better metricsfor the mapping space.This definition will not produce a metric, since distinct cores which areequivalent will have a distance of 0, and similarly equivalent channels. Todeal with this, we add aminimal distance between the cores (e.g. 0.1 timesthe distance between the next two core types).
Application distances

To go from A to M, we can use the same principle as the Lp norms and de-
fine dpm, m1q “ p

ř

i dpmi, m1iq
pq1{p, which can immediately be checked to be

64

a metric on M. This way we can consider, as a metric space (embedding),the structure of A to be
MK . . .K

l jh n

ˆ|VK|

M, i.e. Mˆ . . .ˆ
l jh n

ˆ|VK|

ˆM with dpMi, Mjq “ t0u for all i ‰ j.

(4.2)
There are multiple issues with this as well. A crucial problem with it isthat this does not consider the dependencies between tasks in the appli-cation graph A, nor does it consider howmultiple tasks might bemore orless relevant. Many methods can be considered to account for this fact,like having factors for the dimensions of the copies of M in the orthogo-nal sum. However, we omit evaluating multiple such metrics to limit thescope of this thesis.

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1
t2

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1 t2

dist = min_dist dist = 2∆tPE

Figure 4.11: An example of a problemwith the orthogonal-sum construction of thedistance metric for the mapping space.
Figure 4.11 illustrates another problem with this construction. The met-ric does not distinguish between tasks mapped on the same core or ondifferent cores, something that has a large impact on the performanceof the mapping. Here we are considering the variant of the metrics withthe extra dimensions, but the problem is independent of the architecturemetric we base this on.A particularly important property of these metric space constructionsis that they give meaning to distances in the mapping space; they makeit into a landscape. This is a highly-dimensional landscape, which we can-not visualize except in the simplest examples, like the two-task mappingwe visualized previously, in Figure 1.4. There are other ways of visualiz-ing this space, however. The t-SNE method [MH08] aims to group pointsby their distances, making points that are close by in the mapping spacealso close in the visualization, and simlarly for points far appart. A disad-vantage of this method is that it does not preserve the actual values, thecoordinates of the points becomemeaningless. A different approach is touse random projections onto a two dimensional-space. By the Johnson-Lindenstrauss lemma [JL84], such a random projection will have a lowdistortion with high probability (see Appendix A.2 for more details). Weuse the methods of [Li+18a] to visualize such a random projection of themapping landscape.

65

Figure 4.12: A visualization of a random projection of the mapping space

4.2.2 Mappings

Figure 4.12 shows a rendering of the design space of mappings for the au-dio filter CPN benchmark onto the MPPA3 coolidge. We generate this ren-dering using the methods of [Li+18a], generating a smoothening from atriangulation of a randomprojection of 1000 randommappings as an artis-tic interpretation that we can visualize with ParaView [AGL05]. This wasgenerated from the Euclidean norm on the mapping space interpretedas vectors. The height of the mountains and valleys in this landscape, aswell as their coloring, represent the value of the execution time for themappings being visualized. We see how the mapping space has multiplelocal minima andmaxima, a fact which wewill discussmore in Section 5.3.
4.2.3 Low-distortion Embeddings

We have seen so far how we can endow the mapping space with multiplemetrics dM : M ˆ M Ñ Rě0 to define distances between mappings. Aproblem with this is that the mapping space is a discrete space, with avery large cardinality. To algorithmically do any computation in this space,e.g. in DSE, we need to iterate through the whole space. For example we

66

might have amapping m0, for which we want to find all mappings that arewithin a radius r of it, i.e. compute the ball Brpm0qwith radius r around m0.For this we need to iterate over all m P M and calculate if dMpm0, mq ď r,which is intractable for all but the simplest examples.To deal with this, we use established methods from discrete geometryto calculate low-distortion embeddings. A mapping ι : M ãÑ Rn such thatthere exists a D ą 0 with
D´1dpx, yq ď }ιpxq ´ ιpyq} ď dpx, yq (4.3)

is called an embeddingwith distortionD (cf. Appendix A.2). In otherwords,the relative error of the distances is at most D. Using convex optimiza-tion [Mat02], we can calculate a low-distortion embedding for a finitemet-ric space. This allows us to work with vectors of real numbers whichmakemany algorithmic tasks scalable, e.g. computing random points in a ball.Since the size of the mapping space grows exponentially with the num-ber of tasks and changes for every application, computing such an embed-ding for a large mapping space every time we want to do DSE would alsobe intractable. We can avoid this by using the orthogonal sum construc-tion from Equation 4.2. Given an embedding ι : A ãÑ Rk with distortion Dfor the architecture with a given metric dA, we can construct an embed-ding ιk of the mapping space defined as in Equation 4.2 with distortion
D.
Theorem 4.2.3 (Theorem III.1 of [GMC18]). Let ι : pM, dq ãÑ pRn, } ¨ }pq bean embedding with distortion D and define ιk : pMk, dpq ãÑ pRnk, } ¨ }pq as
ιkppx1, . . . , xkqq “ pιpx1q, . . . , ιpxkqq. Then ιk is an embedding with distortionof at most D.
Proof. It is clear why ιk is an embedding (well-defined and injective), since
ι is one. The distortion follows from the homogeneity of the } ¨ }p-normapplied to Equation 4.3.
The mapping space can still have a high dimension, a problem usu-ally called the curse of dimensionality. With this construction, for the met-ric without the extra dimensions, the dimension of the embedding ιkis k|VA| “ |VK||VA|. A method to improve this is to use the Johnson-Lindenstrauss lemma to reduce the dimension with a projection. We dothis with an iterative method, described in Algorithm 3.

Algorithm 3 Iterative dimensionality reduction via the Johnson-Lindenstrauss lemma.
input: Adiscretemetric space M, a low-distortion embedding ι : M ãÑ Rn

and a target distortion D.
output: An embedding with dimension ď n and distortion at most D.
1: dimÐ 1
2: while dim ď n do
3: for _ P numIterationsPerDim do
4: ι̃ Ð JLReductionpι,dimq
5: D̃ Ð CalculateDistortionpι̃q
6: if D̃ ď D then return ι̃

7: dimÐ 2 ¨ dim
return ι

Algorithm 3 exponentially increases the dimension, running
numIterationPerDim iterations of a Johnson-Lindenstrauss transform

67

and testing the distortion to see if a target distortion has been reached.Using this algorithm, or variants thereof, we can control the trade-offbetween the distance and the dimension of the embedding.We can combine these embeddings with symmetries, by first calculat-ing a canonical representative (cf. Problem 3 of Section 4.1) and then cal-culating the embedding using ι̃k as defined here. We used these methodsto evaluate and compare multiple metrics. A useful property of this met-ric would be to have the distance between two mappings correlate withthe (relative) relation of their runtimes. In other words, we would expecta good metric to be larger for mappings that have very different perfor-mance and lower when mappings have similar performances.To compare the different metrics and embeddings, for each of themwe calculated 1000 mappings of the audio filter benchmark on the OdroidXU4 platform. For a random subset of the 10002 “ 106 pairs of mappingswe calculated the (relative) distance between two mappings and the rela-tive simulated runtime of these two mappings.

SimpleVector

MetricSpaceEmbeddingED SymmetryEmbeddingED

MetricSpaceEmbeddingNo-ED SymmetryEmbeddingNo-ED

0 5 10

0 1 2 3 4 0 1 2 3 4 5

0 2 4 6 0 2 4 61
2
3
4

12
34
5

12
34
5

1
2
3
4

1
2
3

relative distance

rela
tive

run
tim

e

(target) distortion
1.0011.1 1.21.3 2NA

Figure 4.13: Comparison ofmultiple distancemetrics on the Odroid XU4 platform.
Figure 4.13 shows the comparison of the different metrics and embed-dings. In the figure, the metrics described in this section are labeled asfollows: We call SimpleVector the Euclidean norm on the mappings de-scribed as simple vectors. Themetric based on the latencies asmotivatedfrom Figure 4.10 we denote as MetricSpaceEmedding, whereas we addthe annotation ED for the metric with extra dimensions which accountsfor heterogeneous PEs. The variants described as SymmetryEmbedding and

SymmetryEmbedding ED are the two respective metrics combined with thesymmetries, as described above. These names and details of how we in-cluded the symmetries will be explained in more detail in Section 4.3.The results from the figure show that there is basically no correlationbetween mappings distance and the (relative) runtimes. Two mappingscan be very far apart and have (almost) the same execution time. Thisseems very plausible if we consider the symmetries of the problem. Thesymmetry reduction as used in the figure, for example did not considerthe application symmetries (cf. Section 4.1). Moreover, some similaritiesare also not considered. The computation for the FFT and inverse FFT (IFFT)in the audio filter benchmark is virtually identical, yet not precisely identi-cal, and would not be captured by application symmetries either. In prac-tice, this leads to very similar if not identical mapping execution timesnevertheless.

68

A perhaps better assessment of the metrics is to ask what is the max-
imal relative execution time possible for a given distance. While we un-derstand why two similar mappings that are far apart will have similarresults, we would expect two mappings that are close to each other tohave similar execution times with a good metric. To test this, we take thesame results of Figure 4.13 and just consider the maximal relative execu-tion time for two mappings which are (at most) the given distance appart.

SimpleVector

MetricSpaceEmbeddingED SymmetryEmbeddingED

MetricSpaceEmbeddingNo-ED SymmetryEmbeddingNo-ED

0 5 10

0 1 2 3 4 0 1 2 3 4 5

0 2 4 6 0 2 4 612
34

02
46

01
23
45

12
34

1
2
3
4

relative distance

rela
tive

run
tim

e

(target) distortion
1.0011.1 1.21.3 2NA

Figure 4.14: Comparison of multiple distancemetrics as predictors of themaximalrun-time difference on the Odroid XU4 platform.
Figure 4.14 shows this maximal relative execution times for the dataof Figure 4.13. It also includes a linear regression of the points for eachmetric and embedding. We can see that indeed, most of the metrics arepretty good as a bound on the relative runtime.

SimpleVector

MetricSpaceEmbeddingED SymmetryEmbeddingED

MetricSpaceEmbeddingNo-ED SymmetryEmbeddingNo-ED

0 50 100 150

0.0 0.5 1.0 0.0 0.1 0.2 0.3

0 1 2 3 4 0 1 2 3 41.01.5
2.02.5
3.0

1.01.5
2.02.5
3.0

1.0
1.5
2.0
2.5

1.01.5
2.02.5
3.03.5

1.2
1.6
2.0

relative distance

rela
tive

run
tim

e

(target) distortion
1.0011.1 1.21.3 2NA

Figure 4.15: Comparison of multiple distance metrics on the MPPA3 Coolidge plat-form.
The Odroid XU4 architecture is comparatively small, which obviouslyhas consequences for the mapping space. There are, for example, fewerproblems with the curse of dimensionality and overall a smaller (discrete)space. Howdoes the situation change for theMPPA3Coolidge? Figure 4.15shows the same comparison as above for the MPPA3 Coolidge. We cansee that the space is more complex. In particular, the extra dimensionsclearlymake a difference, separating the space intomore discrete distinct

69

points, with clearly visible vertical lines. Wewill discuss these vertical linesfurther in Section 5.3.

SimpleVector

MetricSpaceEmbeddingED SymmetryEmbeddingED

MetricSpaceEmbeddingNo-ED SymmetryEmbeddingNo-ED

0 50 100 150

0.0 0.5 1.0 0.0 0.1 0.2 0.3

0 1 2 3 4 0 1 2 3 4
1
2
3

1.01.5
2.02.5
3.0

0
1
2
3

1
2
3
4

1.0
1.5
2.0

relative distance

rela
tive

run
tim

e

(target) distortion
1.0011.1 1.21.3 2NA

Figure 4.16: Comparison of multiple distancemetrics as predictors of themaximalrun-time difference on the MPPA3 Coolidge platform.
Similar to the case for the Odroid XU4, Figure 4.16 shows the same com-parison with the maximal run-time difference for the MPPA3 Coolidge.Again we see that many metrics seem to be a decent bound for the differ-ence in execution time, although less so than for the simple Odroid XU4platform. The Euclidean norm on the simple vector mappings, for exam-ple, is considerably worse than in this case than in the Odroid XU4. Wecan quantify more precisely how good metrics are as a bound for the ex-ecution time by comparing the R2 value as goodness of fit assessment ofthe depicted linear regressions.

Odroid XU4

M.S
.Em

b.
No

-ED
Sym

.+E
mb

.
No

-ED
M.S

.Em
b.

ED
Sym

.+E
mb

.
ED

Sim
p.V

ec.

0.00
0.25
0.50
0.75

Lin
ear

Reg
res

sion
R

2

(target)distortion 1.0011.1 1.21.3 2NA
MPPA3 Coolidge

M.S
.Em

b.
No

-ED
Sym

.+E
mb

.
No

-ED
M.S

.Em
b.

ED
Sym

.+E
mb

.
ED

Sim
p.V

ec.

0.00
0.25
0.50
0.75

(target)distortion 1.0011.1 1.21.3 2NA

Figure 4.17: Comparison of the predictive power of multiple distance metrics.
Figure 4.17 shows the R2 value, comparing the predictive power of thedifferent distance metrics and their embeddings. Here it is also very clearthat the Euclidean norm on simple vectors is not so good for the MPPA3Cooldige, while it is comparable to other metrics in the Odroid XU4. Wealso see how the curse of dimensionality yields a trade-off not only inthe computation time (for larger-dimensional spaces), but also in the pre-dictive quality of the different norms. This is more visible on the MPPA3Coolidge.

70

4.3 Representations
When working with mappings, particularly for DSE, we normally want torepresent these mappings in different ways for the algorithms [GMC18].In particular, we usually work with mappings using vectors to representthem. Inmost cases and flows, this is done implicitly, usually with the sim-ple vectors we have been describing in many places so far. A mapping
m : K Ñ A is described as a vector pmpv1q, . . . , mpvkqq P Vk

A, where VA is in-terpreted to be a subset ofZ, assigning integer values for the different PEsin VA. Sometimes this representation is extended to consider channels,
pmpv1q, . . . , mpvkq, mpe1q, . . . , mpelqq P pVA Y EAq

k1`k2 , adding more integersto represent the communication primitives. In Section 4.2 we saw howwe can interpret this as a metric space by using the Euclidean distance.This metric space structure is also commonly assumed when adaptingmeta-heuristics from other domains for mapping, often without givingthe metric space structure any second thought.In this section we want to generalize this representation and use theconcepts introduced in this chapter to define three additional such rep-resentations. Here we define a representation to be specifically an em-bedding of the mapping space to a (real) vector space, for manipulatingmappings e.g. in meta-heuristics for DSE. We refer to the simple vectorrepresentation we just discussed as the SimpleVector representation. In
mocasin we implement representations as a type of “lens” to see map-pings in different ways. We used this representation implicitly for ex-ample in Figure 1.4, where we described the mapping space of a two-task application to the Odroid XU4, which as a two-dimensional space inthe SimpleVector representation so that we could visualize the mappingspace on a plot.In Section 4.1 we introduced symmetries of the mapping space, and ex-plained how equivalent mappings in an orbit have the same objective val-ues Θ, like run-time, at least in simulations. We can define a (vector) rep-resentation to factor out the symmetries, as described when discussingProblem 3 in Section 4.1. We do this by choosing a canonical representa-tive for every orbit, specifically the minimal element of the orbit with re-gard to the lexicographical ordering. Thus, in mocasin, when “inspecting”a mapping with the Symmetries representation, it returns the lex-minimalelement in that mapping’s orbit. This effectively prunes the design space,factoring out the symmetries.

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8T1 mapping (PE)

T 2m
app

ing
(PE

)

time

Figure 4.18: A visualization of the mapping space of Figure 2.9 in the Symmetriesrepresentation.

71

Figure 4.18 shows the same two-task application from Figure 2.9, thistime seen through the Symmetries representation. Only the lex-minimalelements remain, which for this simple example are exactly 6 mappings,namely p1, 1q, p5, 1q, p1, 2q, p1, 5q, p5, 5q and p5, 6q. From this figure it is intu-itively clear why this representation prunes the mapping space, as wellas why this might be useful for DSE.We also implemented the low-distortion embeddings discussed in Sec-tion 4.2 in mocasin as the MetricSpaceEmbedding representation. We im-plemented both additional distance metrics described in Section 4.2and enable the one with extra dimensions by default. By default, weset a target distortion of 1.001, which effectively disables the Johnson-Lindenstrauss reduction. We do this because it is yet unclear how to bestmanage the trade-off enabled by this transform, to define a sensible de-fault, and we want to keep the distortion of the metrics as close to thedefinedmetric as possible. Combining both representations, with the em-beddings and the symmetries, we obtain the SymmetryEmbedding repre-sentation. A mapping inspected through this representation is first nor-malized to the lex-minimal element using symmetries and then embed-ded into a real space using the low-distortion embedding.

-300

0

300

-300 0 300 600Axis 1 (meaningless)

Axi
s2

(me
ani

ngl
ess

)

time

-300

0

300

-300 0 300 600Axis 1 (meaningless)

Axi
s2

(me
ani

ngl
ess

)
time

Figure 4.19: A visualization of the mapping space of Figure 1.4 in the
MetricSpaceEmbedding (left) and SymmetryEmbedding (right) rep-resentations.

Figure 4.19 shows an intuitive visualization of MetricSpaceEmbeddingand SymmetryEmbedding, the two representations based on low-distortionembeddings, on the same two-task application example on the OdroidXU4. The real vector spaces to which we embed these spaces are in thiscase 30-dimensional, not 2-dimensional. To visualize them we use the t-SNE [MH08] method, which is not a good representation of the actual dis-tances but provides a good overview of the structure of the whole space.We see how in these metrics the structure of times is intuitively betterorganized than in the SimpleVector representation with the Euclideannorm.Finally, Figure 4.20 gives an overview of the four representations of themapping space introduced here on the example of the two-task applica-tion mapped onto the Odroid XU4.

72

PE1

L1$

PE2

L1$

PE3

L1$

PE4

L1$

PE5

L1$

PE6

L1$

PE7

L1$

PE8

L1$

L2$ L2$

DRAM

t1t2 t1t2

t1 t2

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8T1 mapping (PE)

T 2m
app

ing
(PE

)

time

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8T1 mapping (PE)

T 2m
app

ing
(PE

)

time

-300

0

300

-300 0 300 600Axis 1 (meaningless)

Axi
s2

(me
ani

ngl
ess

)
time

-300

0

300

-300 0 300 600Axis 1 (meaningless)

Axi
s2

(me
ani

ngl
ess

)

time

SimpleVector MetricSpaceEmbedding

Symmetries SymmetryEmbedding
Figure 4.20: An overview of all four representations discussed in the example ofthe mapping space for a simple two-task application from Figure 1.4.

73

5APPL I CAT IONS OF MATHEMAT ICAL STRUCTURES INMAPP INGS

In Chapter 4 we have seen how the mapping space has inherent struc-ture and howwe can describe this structure explicitly usingmathematicalmethods. In this chapter we will see how we can leverage this structureto improve software synthesis flows in different ways.
5.1 Compact Mappings
In Section 4.2we showmultipleways of endowing themapping spacewitha distancemetric. A commonmethod for defining ametric in a NoC-basedsystem is to count the number of hops between two processors [Sin+10;Sch+17]. Indeed, this is the same as the L1 (Manhattan) distance on thetopology graph of the architecture. A natural idea that arises from this isto search for compactmappings, i.e. mappings that take a (geometrically)small area in the chip.

R R

RR

R

R

RRR

R

R

R

RRR R

R R

RR

R

R

RRR

R

R

R

RRR R

“Compact” mappings“Non-compact” mappings

Application

Figure 5.1: Equivalent mappings of two applications, one being compact and theother one not. Adapted from Figure 1 in [GMC19].
Figure 5.1 illustrates the idea of compact mappings. It depicts two vari-ants for mapping the two application graphs depicted in the figure. Theparticular property of these two variants is that they are equivalent fromthe point of view of the distances: For any two connected nodes in anyof the application graphs, the node distance in terms of number of hopsbetweenboth nodes is identical in bothmapping variants. Intuitively, how-ever, the mappings on the right are preferable to those on the left. Doesthis intuition translate to actual benefits in mappings?We first have to translate this intuition into a formal definition. We de-fine the support of amappingm as the set of cores that have tasksmappedto them, i.e. supppmq “ mpVKq Ď VA. We can look at the size of the supportin the metric interpretation of the mapping space. Let rm be the minimalradius r ą 0 such that there is a ball Brpv0qwith radius r for a point v0 P VAthat contains the support of the mapping, i.e. supppmq Ď Brpv0q. A com-pact mapping is a mapping with a small r. How small r should be to be

75

considered compact, depends on factors like the metric space and thenumber of tasks. What we can do properly is compare rm for differentmappings to see if they are more or less compact, according to this defi-nition. For the examples in Figure 5.1 we can see that both mappings onthe left have a radius of rm “ 3 according to the L1 (Manhattan) distance,whereas those on the right both have a smaller rm “ 2.To test this idea we used a SystemC-based NoC simulator,Noxim [Cat+15], which we modified to obtain more detailed statisticsabout the simulations [GMC19]. In particular, we extracted the variance ofthe package delays in the simulation. We configured Noxim to simulatea 10ˆ 10 mesh topology with xy routing and worm-hole switching. Thischoice was made to mimic the routing of commercial platforms likethe Tile-Gx series from Mellanox Technologies [Mel15a; Mel15b], Intel’sXeon Phi [Tam+18] Scalable Platform [Sod+16], or academic ones likeOpenPiton [Bal+16].If we execute the example from Figure 5.1, the non-compact exampleon the left actually outperforms the compact one on the right. By closer in-spection of the figure, this is because the distances within the applicationare very high. In other words, themappings depicted are simply badmap-pings. A lot of contention within the application offsets any gains fromavoiding contention against other mappings.However, while the motivational example is not very informative interms of finding good mappings to combine, it does motivate the idea ofcompact mappings. We used a heuristic to find such compact mappingsin a regular mesh NoC, while also ensuring they are not as bad as thosein the example. We do this by ensuring the communication costs are lowwithin the application as well, using a greedy heuristic.
Algorithm 4 A greedy heuristic for low-communication mapping in NoC-based architectures. Adapted from Algorithm 1 in [GMC19].
input: A connected application graph K “ pVK, EKq, the size of the mesh

n, a set of occupied cores X Ď t1, . . . , nu ˆ t1 . . . , nu “: VA
output: A mapping m : VK Ñ VA1: CurNodeÐ RandomFrom(VAzX)2: v0 Ð RootpKq
3: mappingÐ pv0 ÞÑ CurNodeq
4: X Ð XY tCurNodeu
5: for e “ pn1, n2q P BreadthFirstEdgeSearchpKq do
6: CurNodeÐmapping(n1)7: d Ð mind“1...nta P VAzX | |a´ CurNode| ď du ‰ H
8: q Ð RandomFrompta P VAzX | |a´ CurNode| ď duq
9: mappingpn2q Ð q
10: X Ð XY tqu

returnmapping
The heuristic is described in Algorithm 4. We assume the applicationgraph is (weakly) connected. The heuristic then starts with any node inthe application such that there is a path from it to every node in the appli-cation (Root). It then randomly assigns an unused core to this node, subse-quently iterating through the application graph in a breadth first fashion.In this breadth-first search, it assigns cores such that the distance froma node to its predecessor is minimized in the mapping. This greedy algo-

76

rithm thus minimizes local communication, but it does not ensure thatthe communication is minimized globally for the whole application.A central concept behind this algorithm is the set of cores marked asoccupied, which can be initialized in a particular fashion to enforce thegeometry of the mapping. To produce compact mappings we mark everycore as occupied, except for an m ˆ m1 rectangle such that m, m1 ą |V|,and we choose tm, m1u Ď t
a

|V|,
a

|V| ` 1uminimal with this property. Wecompare these mappings to those produced without the additional rect-angle constraint, which are low-communication mappings that are notnecessarily compact.To evaluate the concept of compactmappingswe again used theNoximsimulation. We generated random task graphs with a Gilbert randomgraph approach (cf. Section 3.3) with 10 random applications with a vari-able number of tasks (4-6). We simulated all 10 applications running to-gether in the system, multiple times, using different mapping strategies.For each application we then generated 100 random, 100 compact and
100 non-compact (low-communication)mappings.We tested using a fixedpacket size of 32 flits (although the results were similar with packet sizesof up to 212 “ 4096 flits). Packages in Noxim were injected with a fixedinjection rate (of packages per cycle), which we also varied between 10´2

and 10´5.
Injection rate: 1e-05 Injection rate: 1e-04 Injection rate: 0.001

com
pact

nonc
omp

act
rand

om
com

pact
nonc

omp
act

rand
om

com
pact

nonc
omp

act
rand

om

50

100

Avg
.ne

two
rkd

ela
y/

cyc
les

Figure 5.2: Comparison of latencies between compact, non-compact and randommappings. Adapted from Figure 2 in [GMC19].
Figure 5.2 shows the results of a comparison between compact, non-compact and random mappings. Each point reports the average network

delays over the course of the whole simulation for each of applicationand each mappings. We can see that for injection rates above 10´3 thereis basically no difference between compact and non-compact mappings,and for the very high injection rate of 10´3 the difference is still negligible.To make a better comparison, we designed an additional experimentthat compared between two distinct scenarios. In one scenario, the appli-cation was running alone in the system (isolated), and another one whereit was executing alongside 9 additional applications (joint). In the case ofthe joint applications we report the values of one specific application (thesame as in the isolated case), ignoring the rest. The other applicationsonly serve to create contention.Figure 5.3 shows the results of this experiment comapring applicationsrunning in isolation and with contention. For an injection rate of 10´5 con-tention is so low that itmakes nodifference between two cases (except forrandom mappings). When increasing the rate to 10´4, while contention

77

Injection rate: 0.001 Injection rate: 0.01

Injection rate: 1e-05 Injection rate: 1e-04

compact noncompact random compact noncompact random

compact noncompact random compact noncompact random
2030
50

1e+03
1e+04
1e+05

2030
50

2030
50

Mapping typeAve
rag

en
etw

ork
del

ay/
cyc

les

case isolated joint

Figure 5.3: Comparison between compact, non-compact and random mappingsrunning isolation orwith another 9 applications. Adapted fromFigure 4in [GMC19].

does affect applications, the compactness of the mappings still makesno difference. Compact mappings do perform slightly better only for veryhigh injection rates (10´3) and significantly better for extremely high injec-tion rates 10´2. Note that an injection rate of 10´2 every task is sendinga package in average every 100 cycles, which is arguably of no practicalrelevance.

R R

RR

R

R

RRR

R

R

R

RRR R

R R

RR

R

R

RRR

R

R

R

RRR R

“Compact” mapping"“Non-compact” mapping

Application

Figure 5.4: Two equivalent mappings that yield good performance. Adapted fromFigure 5 in [GMC19].
From these experiments we can conclude that compact mappings arenot particularly useful. The improvements they bring in reducing con-tention are not relevant in practice, since the amount of contention re-quired for the compactness to make a difference is unrealistically high.Figure 5.4 shows a comparison between a typical example of two low-communicationmappings, a compact one and a non-compact one. Theseare the kinds of mappings that result from Algorithm 4 (with and withoutthe additional compactness constraint). These two mappings are good inthe sense that they produce low average network delays, as they mini-mize the distance that the tokens travel and the contention they gener-ate. While their geometries are very different, one being compact and theother one not, their topologies are identical. These twomappings are alsoequvialent in the same sense as themappings in Figure 5.1 were. The num-ber of hops between any two nodes is identical for both. A key takeawaythus is that the topology of the mapping is much more important than its

78

geometry, as seen by comparing the compact mapping in Figure 5.1 withthe non-compact one in Figure 5.4 (note that the application is sligthlydifferent).
5.2 Robust Mappings
Faulty cores are an unfortunate reality ofMPSoCs. After some time, at leastone core is likely to fail. However, using hardware monitors, these faultscan be reliably detected, sometimes even before the core actually startsfailing [ZK11; Zha19]. A strategy to deal with faulty cores, when detected, isto migrate tasks executing in that core to a different core. This way, whenthe core fails, the execution can continue without the application failing.While such a remapping strategy is ideal for preserving the functionalcorrectness of applications, it can have negative consequences on the per-formance of the application. Especially for real-time applications, wherethe timing performance is part of the functionality, these consequencescan be as fatal as a core failing without being detected or without remap-ping. Moreover, in mixed-criticality domains, a pre-determined mappingcan be varied at runtime due to priority issues or similar unforseen cir-cumstances. To deal with this, we propose to search for mappings thatare robust [Hem+17]. We say a mapping is robust when its runtime prop-erties are unchanged by minor variations in the mapping.The robustness of a mapping and the corresponding methods pro-posed in this section are appropriate for soft or firm1 real-time applica-tions, especially inmixed-criticality contexts. In this context, we say amap-ping is feasible if its execution time is below a specified real-time deadline.To test if a (feasible) mapping is robust, we apply perturbations. A pertur-bation consists in taking the mapping and changing it partially, to see if itis (still) feasible. A robust mapping should be resistant to perturbations,as motivated by the remapping scenarios described before.To find such robust mappings we propose [Hem+17] adapting the bio-inspired algorithm for called Lp-adaptation [AMS17]. This algorithm usesthe metric space structure of the mapping space (cf. Section 4.2) to navi-gate it and find a design center. For a fixed probability P, a design center isa feasible point m in the design space, such that points in a neighborhoodof m are feasible with probability at least P. For the context of this discus-sion, we consider neighborhoods of the form Brpmq, a ball with radius raround the pointm. The Lp-adaptation algorithm seeks to find anmwhichmaximizes the radius r such that the Brpmq is feasible with probability atleast P.Figure 5.5 again uses a visualization with the method describedin [Li+18a] to illustrate the intuition behind the design centering algorithm.We see themountain landscape of themapping space, where the height isthe execution time of that mapping. The figure shows three different pos-sible thresholds (high, medium, low). All peaks that are above the thresh-old are colored red: these depict infeasible points. A robust mapping is amapping such that we could “walk” in any direction from it without reach-ing one of the red peaks. The larger the radius where this is possible, themore robust the mapping. This metric interpretation of the design spaceallows us to use the metric-based algorithm of Lp adaptation to estimate

1 A firm real-time application is one where the computation and data is useless after missinga deadline, yet a small percentage of missed deadlines might still be tolerable.

79

(a) High threshold. (b) Med. threshold.

(c) Low threshold.
Figure 5.5: Visualization of the design space for multiple thresholds

these neighborhoods around which we can walk without reaching a redpeak.The particular principle behind the Lp-adaptation algorithm is thatit is based on estimation using an Lp ball, i.e. with the norm ||x||p “

p
řn

i“1 xp
i q

1{p. The algorithm is inspired on the evolution of robustness inbiological systems [AMS17]. The basic principle behind the mapping is atwo-step process, where we simultaneously search for a design centerand estimate its robustness. For the current candidate design center, uni-formly randompoints from an Lp ball around the point are sampled usingan algorithm from [CDT98]. By assessing if these points are feasible, thealgorithm can estimate the robustness of the design center. In the nextstep, the algorithm adapts the design center and the estimated maximalradius. Additionally, from the covariance matrix of the sampled points,the algorithm stores a linear transformation to skew or stretch the ballaround a point. This way, the neighborhoods are not restricted to balls
Brpmq around the point m, but rather to linear transformations of suchballs, i.e. ABrpmq for a matrix A with |detpAq| “ 1.Figure 5.6 shows examples of possible design centers in two-dimensional projections like those used for Figure 5.5 (without the artis-tic rendering). These are mappings for the audio filter application to theOdroid XU4 platform. We see how the shape of the balls is also stretchedand rotated by the covariance matrix.These methods all rely on the metric space structure of the mappingspace, as distances between mappings and the concept of neighbor-hoods all rely on the metric space structure. Strictly speaking, neighbor-hoods can be defined on any topology, but not with radii as in the Lp algo-rithm. In [Hem+17] we used the SimpleVector representation for this al-gorithm. Here we also consider other metrics, as discussed in Section 4.2.In particular, we use the MetricSpaceEmbedding representation for map-pings as described in 4.3. When considering other metrics, this also plays

80

4
5
6
7
8

2 4 61. Dimension (projection)2.D
ime

nsio
n(p

roje
ctio

n)

infeasible feasible

Low threshold

4
5
6
7
8

2 4 61. Dimension (projection)2.D
ime

nsio
n(p

roje
ctio

n)

infeasible feasible

Med. threshold

4
5
6
7
8

2 4 61. Dimension (projection)2.D
ime

nsio
n(p

roje
ctio

n)

infeasible feasible

High threshold

Figure 5.6: Examples of possible neighborhoods around design centers in two-dimensional random projections of the design space for the audio

filter application on the Odroid XU4.

a role in the perturbation analysis. In [Hem+17] we define a perturbationto be a change in the mapping of exactly one process. This is equivalentto a point with distance 1 in the SimpleVector representation from theperturbed mapping. Equivalently, if the change is uniformly at random,selecting such a point is equivalent to a uniformly randompoint in the ball
˝

B1pmq “ B1pmqztmu without its center. We can generalize this to use thedistance metric in the used representation to perturb the points, select-ing (uniformly) random points from the ball Brpmq in the correspondingrepresentation.To evaluate our methods, we re-implemented the Lp adaptation algo-rithm and the corresponding perturbation tests in mocasin. From 1000random iterations we take the 1., 2. and 3. quartiles of the execution timefor each of the three CPN applications on each platform, and we use thoseas thresholds to have a high, medium and low feasibility threshold level,respectively. We then execute the bio-inspired design centering flow with
10 different random seeds for each of the threshold levels and comparecenters to other (random) mappings for their stability using a perturba-tion test.

speaker recognition, speaker recognition, speaker recognition,

HOG, HOG, HOG,

audio filter, audio filter, audio filter,

center other center other center other

025
5075
100

025
5075
100

025
5075
100

Point type

Per
tur

bat
ion

spa
sse

d[%
]

SimpleVector MetricSpaceEmbedding

Figure 5.7: Design centering and perturbation stability for multiple threshold lev-els in the Odroid XU4 platform.
Figure 5.7 shows the results of this method for mapping the CPN appli-cations onto the Odroid XU4 platform.We show the results for each appli-cation separately, for each of the three threshold levels. The thresholds

81

are drawn onto the figure as horizontal dotted lines. This means that ifafter the perturbations mappings stay above the line, then the mappingis robust. In almost all cases the design centering strategy indeed pro-duces robust mappings, such that they are more robust than other (ran-domly chosen) points in a statistically significant manner. For the OdroidXU4 platform we can see that the MetricSpaceEmbedding representationyields better results, albeit only slightly so. We can see how this comparesto the more complex platform, MPPA3 Coolidge.

speaker recognition, speaker recognition, speaker recognition,

HOG, HOG, HOG,

audio filter, audio filter, audio filter,

center other center other center other

025
5075
100

025
5075
100

025
5075
100

Point type

Per
tur

bat
ion

spa
sse

d[%
]

SimpleVector MetricSpaceEmbedding

Figure 5.8: Design centering and perturbation stability for multiple threshold lev-els in the MPPA3 Coolidge platform.
Figure 5.8 shows the results of the design centering via Lp adaptationon the MPPA3 Coolidge platform. In contrast to the simpler Odroid XU4,the SimpleVector representation yields clearly better results in this case.Probably the so-called “curse of dimensionality” affects the algorithmhere more, since it relies on traversing the hypervolume of the space,which is more difficult with a larger dimension. Overall the Lp algorithmseems to produce even more robust mappings in this case, yielding gen-erally very good results. A possible explanation for this is again the sizeof the design space. In a larger space, with more points, it is plausible toalso find larger neighborhoods of feasible points.In this section we have successfully used metric space interpretationsof themapping space to adapt the Lp adaptation algorithm to find robustmappings. The mapping space, however, is a discrete space, while the Lpadaptation assumes a continuous design space. In the algorithm we dealwith this problem by approximating a point to the closest mapping repre-senting it. However, a better strategymight be to adapt the Lp adaptationalgorithm itself to work on a discrete space. This is a promising avenuefor future work in this direction.

5.3 Design Space Exploration
As we saw in Chapter 2, a central step of model-based software synthesisis a DSE step for finding mappings, among others. We know the mappingspace is intractably large and complex and we cannot find the actual op-tima in the space for any real-life problem sizes. The best we can hope forare near-optimal mappings in a reasonable amount of time. Thus, we fo-cus both on the quality of the mappings as well as the time required. Thissection will focus on DSE for finding near-optimal mappings, as defined in

82

Section 2.4. We will see many applications of the structures defined andanalyzed in Chapter 4
5.3.1 Heuristics and Metaheuristics

Generally in DSE we distinguish between two approaches for dealingwith these kinds of intractable problems, heuristics and meta-heuristics(cf. Section 2.4). Recall that mapping heuristics are domain-specific al-gorithms that exploit the specific domain-knowledge to find a solutionbased on a pre-defined model of the problem, whereas meta-heuristicsrely on an iterative evaluation of the points. As we outlined above, dif-ferent heuristics and meta-heuristics come with trade-offs between theexploration time required to find a solution and the quality of said solu-tion. This is certainly the case for many discrete optimization problems ingeneral, the mapping problem being no exception [Goe+16]. Commonly,meta-heuristics tend to find better results provided enough time, but re-quire accordingly more time to do so.A particular difficulty of comparing mapping approaches and algo-rithms are the different models used by different algorithms [Goe+16].With the mocasin tool we designed a common framework that allows us tocompare betweenmapping algorithms [Men+21]. In particular, in mocasinwehave twoheuristics formapping: the GBMheuristic [Cas+12] and a staticmapping variant [Men+21] of the CFS scheduler from Linux. Additionally,we have implemented genetic algorithms based on and inspired by thosefound in Sesame [ECP06; QP14; Goe+16], a simulated annealing [Ors+07]mapping algorithm and a tabu search [MEP08]. We also have a simplerandom walk algorithm for reference. A survey of these mapping algo-rithms, among others can be found in [Sin+13]. We implemented these al-gorithms for mocasin and this thesis to have a basis for comparison fromestablished literature.We first compare thesemapping algorithms to establish a baseline. Weexecute a random walk 500 random iterations. For the genetic algorithmwe run an evolutionary µ ` λ strategy for 20 generations of populationsize 10, crossover rate of 1 with probability 0.35 and mutation probability
0.5, with a tournament selection with tournament size 4. For the GBM algo-rithm we set the parameters as bx_m of 1, bx_p of 0.95, by_m of 0.5,by_p of
0.75, The simulated annealing heuristic we execute with an initial temper-ature of 1 and a final temperature of 0.1, with a temperature proportion-ality constant of 0.5 and a random movement starting radius of 5. Finally,for the tabu search mapper we set a maximum of 30 iterations, each ofsize 5 and with a move set size of 10 and tabu tenure of 5, and a randomcandidate move update radius of 2. These parameters were not chosensystematically (e.g. using something like Bayesian optimization or general(hyper-)parameter optimization approaches), but throughmanual testingon examples to find sensible defaults. A deliberate choice in the param-eters, however, is that the exploration times should be comparable be-tween the meta-heuristics, i.e. such that the iterative mappers evaluate asimilar amount of mappings.Figure 5.9 shows a comparison of the different heuristics and meta-heuristics on the E3S benchmarks. Each of themetaheuristics that requirerandom data we execute 10 times and show the variation as calculatedby the unbiased estimator of the standard deviation of the multiple sam-pled times. The execution times vary obviously depending on the differ-

83

21.5

1

7.95
1.23

15.88

0.97
0
5
10
15
20

Rel
.m

app
err

esu
lts

Odroid XU4

7.7

1

7.72
4.09

0.14

5.1

0

5

10

Rel
.m

app
err

esu
lts

MPPA3 Coolidge

0.14
10.97

0.6
0.13

1.79

0.0
0.5
1.0
1.5
2.0

Rel
.ex

plo
rati

on
tim

e

GBM
Static CFS

Random Walk
Sim. Annealing

Tabu Search
Genetic

2.62
11.49

8.36

0.11
2.28

0

4

8

12

Rel
.ex

plo
rati

on
tim

e

Figure 5.9: Comparison of multiple mapping heuristics andmetaheuristics on the
E3S benchmarks, relative to the results of the genetic algorithms.

ent benchmark applications and on the platforms they run on. The abso-lute values of these times, however, are not interesting for comparing themapping algorithms.We thus norm the values of the execution times, tak-ing the results of the genetic algorithms as baseline. We then aggregateall values with the geometric mean. The error bars in the plot are calcu-lated by taking the average value˘ the estimated standard deviation andnorming each of the two extremes, the results of which are the extremesshown in the plot.We first examine the results for the Odroid XU4 architecture. The twoheuristics find comparatively worse results than meta-heuristics, in aver-age, but they do so in considerably less time. More concretely, they yieldabout an order of magnitude worse results in about an order of magni-tude less time. The results of the random walk heuristic are significantlyworse than those of the more structured metaheuristics, even though ittakes a comparable amount of time. This is the case since, as explainedabove, the number of random mappings was chosen specifically to becomparable to the number of mappings evaluated by the other meta-heuristics. Since 500 mappings is not a small amount, it is not terriblysurprising that the random mapper beats the two heuristics. Finally, thebest mappings are found by the simulated annealing meta-heuristic, al-beit only by 3% compared to the genetic algorithm.When we turn our attention to the significantly larger and more com-plexMPPA3 Coolidge architecture, we see that the picture changes drasti-cally. The marked difference between heuristics and meta-heuristics dis-appears in this case. The GBM heuristic is on par with the random walkresults in average, while taking substantially less time. This is simply ex-plained by the significantly larger design space of mapping to the MPPA3Coolidge. In this case, the genetic algorithm significantly outperformsboth other meta-heuristics, by a factor of 4´ 5, while taking less time. Themost striking result here, however, is the extremely good performance ofthe static CFS heuristic. This good performance is misleading at first. Aperhaps more honest assessment of the results is that all other (meta-)
heuristics perform poorly. We can interpret this as a consequence of the

84

growing design space and its complexity, which affects the metaheuris-tics, while the static CFS mapper can still leverage domain-specific knowl-edge to find fairly good mappings.
5.3.2 Leveraging Symmetries

As motivated when discussing them in Section 4.1, symmetries can beused to improve DSE in themapping problem. There are two distinct appli-cations of symmetries in DSE. The first application is for speeding upmeta-heuristics (without modifying them), as shown in [GSC17], by leveragingthe equivalence of symmetric mappings in a symmetry-aware cache. Thesecond application is by pruning the design space as seen by the meta-heuristic, effectively changing the meta-heuristic [GMC18; GNC].We will first discuss the idea of a symmetry-aware cache. As discussedbefore, meta-heuristics work through an iterative principle, where theyevaluate mappings and drive the search based on the results of the eval-uation. While the evaluation is fast and light-weight by design (cf. sec-tions 2.5 or 2.3), it still usually dominates the execution time of the ex-ploration (cf. Figure 5.9). A defining property of the symmetries is howsimulation results are invariants of the equivalence classes of orbits (cf.Section 4.1). This means that if we know the results of a simulation for amapping, we know the results for allmappings in its equivalence class.Wecan leverage this by designing a symmetry-aware mapping cache, whichstores simulations results by equivalence class instead of storing them foreachmapping [GSC17]. This yields a trade-off, where computations aboutthe symmetry have to be executed every time a mapping is going to belooked-up in the cache or evaluated. Ideally, these calculations would re-quire but a fraction of the time saved on simulations.We implemented a symmetry-aware cache in mocasin which uses
mpsym and its Python interface. We used this to evaluate the methodof symmetry-aware caching on the E3S benchmarks by accelerating thevarious meta-heuristics discussed in Section 5.3.1. We can also evaluatethe domain-specific methods of mpsym [GNC] by applying this methodto multiple architecture topologies. In addition to the Odroid XU4 andMPPA3 Coolidge, which we used consistently throughout this thesis, wealso test the methods on the exploration of two additional architectures:
HAEC and a simple generic cluster. The HAEC architecture (cf. Figure 1.2) is a
PCB design with low-latency optical interconnects on layers with a regular-mesh structure (we modeled it as a 4ˆ 4 mesh). Multiple such layers (wemodel 4) are then connected, using low-latency wireless interconnects tocommunicate between adjacent layers. While in the HAEC design, eachnode of the layer is an MPSoC, we model the topology by placing coresin those nodes and considering the board as a single MPSoC. This servesto evaluate our methods on this topology. The generic cluster architec-ture we evaluate is the simplest non-trivial clustered architecture topol-ogy possible. It consists of two identical clusters, each of which with twoidentical cores. Each cluster shares a cache, and the two clusters can com-municate over main memory.To manage the sheer amount of experiments (" 105) for this evalua-tion and the upcoming ones in this chapter, we slightly modified the pa-rameters of the meta-heuristics, reducing the overall execution time. Wereduced the number of generations of the genetic algorithm to 10, thenumber of iterations of the random walk to 300, reduced the initial tem-

85

perature of the simulated annealing heuristic to 0.1 and the maximumnumber of iterations of the tabu search algorithm to 5, with an increasedradius of 2.5.

Odroid XU4 Simple cluster MPPA3 Coolidge HAEC

gen.
rand.w.

sim.ann.
tabus.

Regular Symmetries Regular Symmetries Regular Symmetries Regular Symmetries

0.00.3
0.60.9

0.00.3
0.60.9

0.00.3
0.60.9

0.00.3
0.60.9

Cache Type

Rel
ativ

ee
xpl

ora
tion

tim
e

runtime overhead simulation time

Figure 5.10: The effect of a symmetry-aware cache onmultiple architecture topolo-gies as evaluated on the E3S benchmarks.
Figure 5.10 shows the results of evaluating a symmetry-aware cache onthe different meta-heuristics on different architecture topologies. It re-ports the execution time of the full exploration, separating the overheadfrom symmetry calculations from the rest of the exploration time for thesymmetry-aware cache. These relative times are normed such that theexploration using a regular (non symmetry-aware) cache has a time of 1.Both variants were executed with identical seeds, for 10 different seedsand for each benchmark. Thus, they executed the exact same exploration,evaluating the exact same mappings and returning the same result.Unsurpisingly, the symmetry-aware cache does not offset the overheadof symmetry calculations for the random walk meta-heuristic. Since themapping space is extremely large, the probability of finding two equiv-alent mappings at random is quite small. Thus, both a symmetry-awarecache and a regular cache are not very useful for an unstructured randomwalk. The other meta-heuristics are much more structured, and clearlydo benefit from the cache. For the Odroid XU4, the symmetry-awarecache consistently yields a large speedup of the exploration time, around

1.4´ 1.7ˆ. For the simple cluster and the HAEC architectures, the resultsare similar. The best results are achieved for the MPPA3 Coolidge topol-ogy, which despite its complexity has a very well-defined structure we canexploit with our wreath-product construction (cf. Section 4.1). For the sim-ulated annealing meta-heuristic, our symmetry-aware cache sped up thesimulation in average by 14.5ˆ!We see that our mpsym-powered symmetry-aware cache is useful forspeeding up DSE. It can still be improved, however. In [GSC17] we also in-cluded application symmetries in the cache, which actually made a sig-nificant difference, as we were not using the more optimized algorithmsfrom mpsym. Application symmetries havemuch potential, which is also in-tuitive if we consider the cardinality of the mapping space |VA|
|VK| growsexponentially with the number of processes. However, as explained inSection 4.1.1, we have no systematicmethod of reliably detecting these ap-plication symmetries yet, which is why we do not include them in mocasin.

86

The other improvement comes from partial permutations. While we de-scribed them in Section 4.1.4 and have a partial implementation in mpsym,we still need efficient algorithms on partial permutations for exploitingthe partial symmetries of the mapping space. This is evident in the com-parison between the results of theMPPA3Coolidge and HAEC topologies inFigure 5.10. The HAEC topology has potentially useful partial symmetries ineach of themeshes (cf. Section 4.1.4), and it also has potentially useful par-tial symmetries in the symmetry group of the clusters (the larger groupfrom the wreath product). Since the first and last layers cannot commu-nicate with each other directly (the topology is not toric), the symmetriesof the clusters are all only partial.We can also leverage symmetries in DSE by changing the underlyingspace as seen by themeta-heuristic. We also implemented this in mocasinby using the SymmetryRepresentation as described in Section 4.3. In thisway, the meta-heuristics see the factor space and are effectively changedin their operations.

Odroid XU4 Simple cluster MPPA3 Coolidge HAEC

Bestmapping
Explorationtime

gen.rand
. w.
sim.

ann.tabu
s. gen.rand

. w.
sim.

ann.tabu
s. gen.rand

. w.
sim.

ann.tabu
s. gen.rand

. w.
sim.

ann.tabu
s.

0.1

1.0

10.0

0.1

1.0

10.0

Mapping algorithm

Tim
e(n

orm
ed,

log
)

Standard Changed operations

Figure 5.11: The effect of symmetry-pruning of the DSE by changing the operationsin algorithms to consider symmetry. Evaluated on multiple architec-ture topologies on the E3S benchmarks.
We tested this with the same setup as before, the results of which canbe seen in Figure 5.11. It shows both, the relative results of the mapper (interms of the runtime of the best mapping) and the relative explorationtimes. The times shown are relative to the randomwalk meta-heuristic inthe regular implementation, i.e. without symmetries. It is not surprisingthat most times for the best mapping results are thusă 1, as the randomwalkmeta-heuristic is not as good as the othermeta-heuristics. Themoreinteresting comparison, however, is between both variants of each map-ping algorithm. For the simpler platforms, Odroid-XU4 and the simplecluster, the symmetry-enabled variant speeds up the execution in a fash-ion similar to the symmetry-enabled cache, while yielding similar results.For the more complex platforms, HAEC and the Kalray MPPA3 Coolidge,

87

the results vary between both. The results of the mapping algorithm areconsiderably better on the MPPA3 Coolidge, while being very similar forboth representations in the HAEC platform. The exploration time was alsoimproved consistently for both platforms. The difference between the re-sults for the HAEC and MPPA3 Coolidge platform can again be explainedby the missing partial symmetry support in the implementation.The performance improvement for the MPPA3 Coolidge, however, isvery impressive. For the simulated annealing meta-heuristic, the map-pings found for the E3S benchmarks were an average of 32.4ˆ better withthe symmetries than without them. This impressive result is, as we haveseen in Figure 5.9, rather a testament of how badly the meta-heuristicperformswithout the symmetries for this complex architecture. To under-stand the mapping results for the MPPA3 Coolidge, Figure 5.12 shows theresults for this platform in more detail. Instead of separating the bench-mark by domain (cf. Table 3.1), we separate them by the number of tasksin the task graph. The number of tasks is ametric that better describes thecomplexity of the mapping space. In this case the values are normed tothe regular variant of the algorithm for each algorithm, instead of norm-ing all values relative to a single algorithm.
genetic random walk s. annealing tabu search

2.5 5.0 7.5 2.5 5.0 7.5 2.5 5.0 7.5 2.5 5.0 7.51e-02
1e-01
1e+00
1e+01
1e+02

Number of TasksBes
tm

app
ing

(rel
.,lo

g)

Figure 5.12: The effect of a pruning via symmetries on the MPPA3 Coolidge as afunction of the number of tasks in the application as evaluated on the
E3S benchmarks.

It is obvious that the symmetries are not advantageous for a randomwalk, as explained before due to the sheer size of the mapping space.This is clearly visible in Figure 5.12. For the algorithms based on tabusearch and simulated annealing, the advantage comes predominantly forsmaller task graphs (with 2´ 5 tasks). For larger tasks probably the sym-metries are not as effective anymore and both variants perform poorly.The genetic algorithm seems to continue to profit from the symmetriesfor larger task graphs, but it is conceivable that this advantage would stillnot hold for task graphs larger than those found in the E3S benchmarks.
5.3.3 Leveraging Metric Spaces

The same way we used the Symmetry representation to improve DSE, wecan use the MetricSpaceEmbedding representation and see if this im-proves the performance of mapping algorithms. The twometa-heuristicsthat are primarily based on an underlying metric space structure of thesearch space are tabu search and simulated annealing. We compare theresults of these twometa-heuristics on both the E3S and CPN-based bench-marks. For each meta-heuristic, each representation and each bench-

88

mark application, we measure the results of 10 runs with different ran-dom seeds.
CPN E3S

Sim. Annea
lingTabu Search Sim. Annea

lingTabu Search
0.0

0.5

1.0

1.5

2.0
Rel

.m
app

err
esu

lts
CPN E3S

Sim. Annea
lingTabu Search Sim. Annea

lingTabu Search

0.1

1.0

10.0

Rel
.ex

plo
rati

on
tim

e(l
og)

SimpleVector MetricSpaceEmbedding SymmetryEmbedding

Figure 5.13: The effect of embedding-based representations in metaheuristicsthat leverage the geometry on the MPPA3 Coolidge platform.
Figure 5.13 shows the results of this experiments for the MPPA3Coolidge platform, where we have seen before that the metric spacestructure of our embedding-based representations is better than thecanonical metric in the SimpleVector representation. We see that the re-sults of the exploration are significantly better for both meta-heuristicswith the representations based on this better distance metric. This mod-est improvement does come at a cost in exploration time, which is clearlyattributable to the increased dimension of the embedding spaces in theserepresentations. We have also seen in the previous results that thesemeta-heuristics perform poorly for the MPPA3 Coolidge with its complextopology and large design space.The results provide some insight into the nature of the design spaceand the usefulness of the embedding-based representations.We can con-cretely make two observations from these results and combine themto produce a new meta-heuristic. The first one is the knowledge thatgeometry-based heuristics indeed benefit from a better metric, indepen-dent of if the resulting heuristics are overall good. The second observa-tion is more subtle, it’s about the general structure of the design space.The design spaces of mappings seem to consist of multiple islands of per-formance with similar properties, separated by poorly-performing map-pings. This is apparent already in the extremely simple two-task exam-ple in Figure 4.20. The visualization with the methods from [Li+18a] in Fig-ure 4.12 or in Figure 5.5 makes this even more apparent.The idea behind the representations is leveraging the underlying struc-ture of the design space. As such, these “performance islands” seem tobe reduced by both representation methods discussed here, as is alsosuggested by Figure 4.20. We also applied the methods from [Li+18a] tothe same design space of the audio filter benchmark on the MPPA3Coolidge with the SymmetryEmbedding representation. Figure 5.14 showsthe results of this visualization alongside the same mapping space visu-alization for the SimpleVector representation, reinforcing the intuition ofthese “performance islands”.The best indicator of this, however, are the vertical lines in the relativedistances from themetric spaces (cf. Figure 4.13 and Figure 4.15). Since the

89

(a) SimpleVector (b) SymmetryEmbedding
Figure 5.14: Visualization of the same design space of the audio filter benchmarkon the MPPA3 Coolidge platform in two different representations.

abscissa in these two plots represents the (relative) mapping distance inthe corresponding metric, vertical lines indicate equidistant points. Thefact that there are points with the full range of relative execution times inthese equidistant ranges is consistent with such “performance islands”. Ifthe mapping space landscape were more uniform, the plots would moreclosely resemble those where we only considered the maxima (cf. Fig-ure 4.14 and Figure 4.16 respectively).We can use this observation to derive a new meta-heuristic for explor-ing themapping space. Our “performance islands” hypothesis implies themapping space is full of local minima. Guiding a local search towards anoptimumshould thus not be as conducive to good results. Instead, we canuse a simple and fast meta-heuristic to find a local minimum quickly andapply it to multiple points spread around the design space’s geometry. Asmeta-heuristic for finding local minima we use the well-known gradientdescent optimization algorithm with the momentum method [RHW86].For the step-sizewe use the Barzilai-Borwein [BB88]method. In its regularform, this heuristic will quickly get stuck in a local minimum and producepoormapping results, as confirmed by experiments (which we omit here).However, we can add a simple additional meta-heuristic to leverage the“performance islands” hypothesis. We start the heuristic at multiple ran-dom points, uniformly distributed in the design space, as defined by thedistance metric. In these spread-out locations we execute (parallel) gradi-ent descent optimizations which we cancel as soon as they reach a localminimum, which empirically happens after a handful of iterations. Themeta-heuristic returns the fastest mapping found in any of the differentstarting locations. We configure the meta-heuristic to run on 5 differentlocations with a maximum of 20 iterations each, even though this maxi-mum is almost never reached in practice in the experiments.Figure 5.15 shows a comprehensive comparison on the Odroid XU4platform for both benchmarks of all meta-heuristics, including our new

90

CPN
E3S
GBM Static CFS Random Walk Sim. Annealing Tabu Search Genetic Grad. Descent

0.91.0

2.0

1
3
10

Rel
.m

app
err

esu
lts(

log
)

CPN
E3S

GBM Static CFS Random Walk Sim. Annealing Tabu Search Genetic Grad. Descent

0.03
0.10
0.30
1.00
3.00

0.3
1.0
3.0
10.0

Rel
.ex

plo
rati

on
tim

e(l
og)

SimpleVector Symmetries MetricSpaceEmbedding SymmetryEmbedding NA

Figure 5.15: Comparison of the effects of multiple representations on the OdroidXU4 platform.

islands-based gradient descent method. The results reflect our previousresults (cf. figures 5.11 and 5.9). We see that the embedding-based repre-sentations yield worse results for tabu search and simulated annealing,and require more time in almost all cases. These representations are notvery useful for this platform, which is consistent with the previous results.Themore interesting results are for those for the considerably more com-plex topology of the MPPA3 Coolidge.Figure 5.16 shows the same comprehensive comparison of all heuristicsand meta-heuristics with all representations on all benchmarks, this timefor the MPPA3 Coolidge platform. Besides from the results already seenand discussed before in figures 5.11, 5.9 and 5.13, themost notable resultsare the results for our new island-based gradient descent meta-heuristic.Despite its simplicity, this meta-heuristic significantly outperforms all theothermore sophisticatedmeta-heuristics. The twoembedding-based rep-resentations yield worse results, which is consistent with our “perfor-mance islands” hypothesis. In a more structured design space it is moredifficult to find the better performance islands than in a less structuredone which features good mappings in more islands. The Symmetries rep-resentation yields the best results, which is also consistent with this, as itonly reduces the size of the design space without fundamentally chang-ing its topology. In a smaller space it is more likely to find an island witha higher local minimum.Recall the intuition of Figure 4.20 of all representations for the simpletwo-task example. We can see how the Symmetries representation hastwo islands, with fast mappings, whereas the SymmetryEmbedding repre-sentation only has one. For such a simple example the symmetries cap-ture all different execution times. In the original task graph, a GSM appli-cation from the E3S benchmarks, the differences in execution times weremuch lower. Figure 5.17 shows the actual mapping space. Since the dif-ferences in execution times are barely visible from the color coding, the

91

CPN
E3S

GBM Static CFS Random Walk Sim. Annealing Tabu Search Genetic Grad. Descent

0.03
0.10
0.30
1.00

0.03
0.10
0.30
1.00
3.00

Rel
.m

app
err

esu
lts(

log
)

CPN
E3S

GBM Static CFS Random Walk Sim. Annealing Tabu Search Genetic Grad. Descent

1e-03
1e-02
1e-01
1e+00
1e+01

0.1
1.0
10.0

Rel
.ex

plo
rati

on
tim

e(l
og)

SimpleVector Symmetries MetricSpaceEmbedding SymmetryEmbedding NA

Figure 5.16: Comparison of the effects of multiple representations on the MPPA3Coolidge platform.

times (in ms) are also explicitly written in the figure to show the differ-ences. This shows one of the limitations of the symmetries and a possibleexplanation for the “performance islands” hypothesis: many mappingsare not equivalent, but very similar. In futureworkwe could capture thesesimilarities in mappings in a more formal fashion, e.g. using partial sym-metries as motivated at the end of Section 4.1.4. This should allow us tobetter explore the design space.
5.4 A Vision of IoT Mappings
The Internet of Things (IoT) is a term used to describe the phenomenonthat manymodern embedded devices have internet connectivity and canall be interconnected this way. This opens many opportunities for au-tomation and increased interconnectivity. Sensors and actuators in IoT de-vices canbe combined to addnew functionalities to the system thatwouldnot be possible for the individual devices. In [Web19] a case is made for
spatial ontologies through a logical language they call semantic localization,to reason about distances in the real world in multiple representations,as found in the different IoT devices. These different representations ofdistances are not unlike the different representations of mappings dis-cussed in Section 4.3. In analogy to semantic localization, in this sectionwe describe how we can define a logical language that permits queryingand combine representations of mappings, or mapping ontologies2, in auniform fashion. This language is based on first-order logic and also in-cludes implicit domains and relations to define and combine statementsin the different ontological representations of mappings.

2 Ontologies have awell-definedmeaning in logic and theoretical computer science, whichweallude to, but not precisely mean here. We use the word here in its more everyday (philo-sophical) sense of meaning its existence or reality.

92

2.267 2.234 2.234 2.234 2.241 2.241 2.241 2.241
2.234 2.267 2.234 2.234 2.241 2.241 2.241 2.241
2.234 2.234 2.267 2.234 2.241 2.241 2.241 2.241
2.234 2.234 2.234 2.267 2.241 2.241 2.241 2.241
0.035 0.035 0.035 0.035 0.032 0.014 0.014 0.014
0.035 0.035 0.035 0.035 0.014 0.032 0.014 0.014
0.035 0.035 0.035 0.035 0.014 0.014 0.032 0.014
0.035 0.035 0.035 0.035 0.014 0.014 0.014 0.032

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8T1 mapping (PE)

T 2m
app

ing
(PE

)
time

Figure 5.17: The actual mapping space of a GSM-based two-task application from
E3S on the Odroid XU4 that inspired Figure 1.4.

Depending on the context, different representations of the mappingspace might offer extremely efficient ways of answering a particular typeof question about a mapping. In the SimpleVector representation, thequestion “Is TaskA mapped to PE3” is very easy to answer, whereas an-swering the question “is the expected latency between TaskB and TaskCbelow 10µs?” is more difficult to answer. Conversely, in the representa-tion based on the metric space topology, MetricSpaceEmbedding, with ametric defined by the communication distances between hardware re-sources, the difficulty of these two last questions might be reversed. Inorder to efficiently find mappings thus, depending on the objectives, analgorithm might want to use a representation or the other, or perhaps acombination of them.There is a distinct advantage in defining a language, as opposed to sim-ply defining a series of programming interfaces to the different represen-tations, and letting algorithm programmers combine them in a program-matic way using a general-purpose language, like Python. By defining adomain-specific query language, we are creating a new level of abstrac-tion that will hopefully allow researchers to reason about the mappingproblem in newways, transcending the simple usages to combine queriesthat will be presented in this section.We go over the representations as defined in Section 4.3, focusing onthe kinds of questions they are well-suited to answer. We then proceedto give examples of questions that might be asked, and how these couldbe combined using the language. A language was implemented by FelixTeweleitt [Tew19] for mocasin based on these principles. We omit the de-tails of the actual syntax and implementation of the language, as it fallsoutside the contribution of this thesis.The SimpleVector representation is, as described throughout the pre-vious chapters, the typical mapping representation that uses vectors ofthe form m “ pp1, . . . , pk, c1, . . . , clq to define the mapping. It is well-suitedto answer questions of the form:
• Is task A mapped to PE1?
• Does PE2 execute any process?

93

• Do tasks A and B execute on the same PE?
The Symmetries representation representation normalizes mappingsthat are equivalent to a single (canonical) mapping, while still using thevector form (cf. Section 4.1). Some examples of well-suited questions forit are:
• Is this mapping equivalent to mapping m1?
• Do tasks A and B execute on the same PE?

The MetricSpaceEmbedding representation uses the communicationtopology to define meaningful distances between PEs and by extension,between mappings (cf. Section 4.2). This representation is well-suited toanswer questions like:
• Is this mapping very similar to mapping m1? (can give false positives,as seen in Section 4.2)
• Is the expected latency between tasks A and B under 10µs?

The SymmetryEmbedding representation combines the Symmetries and
MetricSpaceEmbedding representations. As such, it combines the boththeir strengths and weaknesses as a mapping ontology. Other represen-tations, not necessarily based on metric spaces, could readily be addedto this language. For example, we could design a hierarchy or inclusion-based distance with a way to define a PE hierarchy with refinements (PEs
P clusters P chips) and similarly for hierarchical applications.
The Language

The statements in the language refer to a mapping, i.e. every mapping inthe mapping space either satisfies such a statement or it does not. Thus,the questions motivated for the different representations above can becombined in a single statement, like: “Is this mapping very similar to m1(distance ď 100) and not Is this mapping equivalent to m1 and (there existsa PE p such that tasks A, B and C aremapped to p or (the expected latencybetween tasks A and B is small than 10 and the expected latency betweentasks B and C is smaller than 10 and the expected latency between tasks
A and C is smaller than 15µs)).”In this language, a special solver tries to find a solution to a statement(i.e. a mapping) or a set of such solutions by evaluating the propositionsin the statement in a specific order. For example, if we have a proposi-tional statement in conjunctive normal form, we can solve the differentconjuncts iteratively. Since a mapping has to satisfy each of them, the fi-nal mapping can be found by first filtering a large portion of mappingswith the strongest conjunct, and iterating from there. In his work, FelixTeweleitt designed a solver for mocasin which utilizes a simple heuristicwith precisely this principle to solve some queries [Tew19], but there ispotential for much more sophisticated solving methods.We choose to extend propositions about mappings to first-order logicso that we can have quantifiers only valid for some specific domains, likemappings, PEs, hardware communication resources, tasks (or processesor actors), communication channels. It is clear why and how these do-mains are the ones we can quantify over for first-order formulas de-scribing mappings. An additional idea would be to include physical dis-tances (over a discrete set of distances). This can be combined with differ-ent spatial ontologies in semantic localization for the Internet of Things

94

(IoT) [Web19]. This way, we could define IoT-mappings that have specificrequirements specified in our logical mapping language.A vision of such IoT mappings could be the following example: A smartautonomous car enters a smart parking lot. The parking lot is dark andpretty full already, and the car is low on battery, so that it needs to finda parking space with a suitable recharge station. To navigate in this darkenvironment, the smart car needs to offload its pedestrian recognition al-gorithm to a service in the parking lot, which it does by using an ontology-powered service discovery [WAL19] mechanism. Since the large concretestructure of the mapping space blocks the signal, only some very close-by servers in the smart parking lot are suitable for offloading computa-tion with low latency and high reliability. Spatial ontologies have to beincluded in the mapping query to offload the high-performance pedes-trian recognition in a dark environment. Furthermore, for legal reasons,the car cannot offload some decision-critical parts of the computation toan external device. This complex set of constraints on the IoTmapping canbe formulated in a mixed-ontology sentence, which includes a successorof our logical mapping language with multiple representations, as well asother IoT-ontologies like semantic localization.Clearly this vision is very far removed from today’s reality, but it explainsthe motivation for a logical language and mapping ontologies based onthe representations as discussed in this thesis.
5.5 Run-time applications: TETRiS
So far, the applications of the structures we have discussed are primarilyuseful at compile- or design-time. In this section we will discuss TETRiS, ahybrid mapping approach where the structure of mapping symmetriesare useful at run-time.In Section 4.1 we saw how the symmetries of the mapping problem de-fine multiple mappings to be equivalent. We expect mappings that areequivalent to have the same runtime or energy consumption. Indeed, thesimulation results are identical for equivalent mappings. When leverag-ing this structure for DSE, we consider only one of the multiple equiva-lent mappings, disregarding the rest, since they yield identical results in asimulation. The Transitive Efficient Template Run-time System (TETRiS) ap-proach [Goe+17] leverages this property in a complementary fashion, byselecting equivalent variants at run-time according to the current systemload.While this works for a singlemapping, the strength of TETRiS lies in se-lecting from different mappings with different properties first and usingthe equivalent variants to find a multi-application schedule.We say that a design point (mapping) m1 dominates another m2 if forthe objective property Θ, m1 is at least as good as m2: Θpm1q ď Θpm2q. Re-call that as defined in Equation 2.1, Θ is a multi-objective function and thecomparison Θpm1q ď Θpm2q is to be understood component-wise, i.e. foreach objective i, Θipm1q ď Θipm2q. A Pareto point is a design point (map-ping), which is not dominated by any other design points. The differentmappings TETRiS chooses from are, ideally, Pareto points in the space ofproperties we are interested in. Figure 5.18 illustrates this for the proper-ties of energy, performance and resource utilization. Each of the greenpoints in the property space depicted to the right of the figure is a Paretopoint. It is better than every other point in at least one of the properties(performance, energy or resource utilization). Only the red point corre-

95

resource utilization

pe
rf

or
m

an
ce

energ
y

Pareto point
non-Pareto point

Mapping A Mapping B

Mapping C Mapping D

Figure 5.18: An illustration of Pareto points in the mapping space.

sponding to Mapping D is dominated by Mapping C, which utilizes thesame number of resources, while being faster and more energy efficient.The selection algorithms based on the desired properties are beyondthe scope of this thesis, but mocasinhas implementations ofmultiple suchalgorithms [KC20]. Once a mapping has been selected for each applica-tion, they need to be combined in a multi-application mapping. This iswhere the symmetries come into play.
System Status Canonical Mapping

g1 g2

g1 g2

X

Selected Variant

Application 1
Application 2
Application 3

New System Status

Figure 5.19: Variant selection in TETRiS.
Figure 5.19 depicts the principle behind this symmetry-enabled variantselection. At this point we assume a mapping has been selected, whichwe call the canonical mapping in reference to the canonical representativeof the equivalence class (orbit). TETRiS keeps track of the system’s status,knowing where other running applications are mapped. The idea behindthe variant selection is then to apply the generators gi P G of the auto-morphism group G for the mapping space. We call the process of apply-

96

ing these generators TETRiS rotations, informed by the geometric intuitionof these transformations3.
compile-time

canonical

mapping

generation

mapping C

energy eff.

p
e

rf
o

rm
a

n
c
e

application

target arch.

exec. trace

 run-time

requirements system load

canonical

mapping

selection

mapping

mapping

variant

selection

final

mapping

X X X

XXX

X

XXX

X X X

XXX

X

XXX

A

B

C

A

B

C

pareto front

pareto front

mapping B

mapping A

Figure 5.20: The TETRiS flow.
Combining the principles outlined above, Figure 5.20 shows the gen-eral flow of the hybrid TETRiS approach. In a compile-time phase, so-called

TETRiS canonical mappings are generated as Pareto points in a multi-objective design spacewhich ideally includes the system’s resources as anobjective. Then, at run-time, a selection algorithm decides which canoni-cal mapping to use based on the requirements (e.g. real-time constraints)and possibly also based on the system’s load. The selected canonicalmap-ping is then placed onto the system by leveraging the symmetries of themapping space in a variant selection phase, generating a final run-timemapping. When generating mappings with this method, we can guar-antee the spatial isolation of computation. Provided the contention incommunication is not too large, this also means that the properties ofthe canonical mappings are preserved (cf. Section 5.1). We tested this onan Odroid XU4 system running a pthread-based implementation4 of the
TETRiS principle [Goe+17].Figure 5.21 shows the results of this test, running different instances ofthe audio filter benchmark (CPN). The three mappings T1, T2 and T3 arethree different Pareto points in terms of wall-clock time, CPU time andenergy consumption. Themapping CFS refers to an execution using Linux’
CFS scheduler and thus technically without a (static) mapping, which wemeasured for comparison. For each mapping we executed the four con-current instances of the application andmeasured the wall-clock and exe-cution times as well as the total energy consumption. We see that the ex-ecution of applications with TETRiS is indeed significantly more predictablethan with the dynamic approach of CFS. This is especially clear for the ex-

3 This might be reminiscent of the commercial game Tetris. Note that the TETRiS system is anindependent research project and any resemblance is purely coincidental.4 https://github.com/l3nkz/tetris

97

https://github.com/l3nkz/tetris

12.5
15.0
17.5
20.0

T1 T2 T3 CFSmapping
Wa

ll-cl
ock

tim
e[s

]

instance
1234

40

44

48

T1 T2 T3 CFSmapping

Ene
rgy

[J] instance
1234

6.5
7.0
7.5
8.0
8.5
9.0

T1 T2 T3 CFSmapping

CPU
tim

e[s
] instance

1234

Figure 5.21: Comparison of the TETRiS system with Linux’ CFS executing four in-stances of the audio filter benchmark simultaneously an Odroid XU4.Adapted from Figure 9 in [Goe+17].

ecution times, where the variance of CFS of around 1.3 ¨ 10´1s is two or-ders of magnitude higher than that of TETRiS, which for example for T3 isonly 2.7 ¨ 10´3s. However, the difference is also very clearly visible for theenergy consumption. The variance of CFS is around 2.9J, whereas that of
TETRiS for T3 is around 6.9 ¨ 10´1 J, about an order of magnitude lower.We have already implemented the symmetries and some of the algo-rithms of [KC20] in mocasin. In future work wewant to integrate the wholeflow as depicted in Figure 5.20 for this. In [Men+21] we showed in prelim-inary results how this could yield an improvement over static mappingapproaches. There we evaluated the methods on a 5G use-case. This use-case will be discussed further in Section 6.3.1. Another avenue for futurework is supporting OpenMP applications.

98

6BEYOND KPN : MODELS OF COMPUTAT ION

In his seminal paper in 1936, Alan Turing proposed what he called a “com-puting machine”1. While his machine was motivated by a person doingcomputations, he intended to capture the very notion of compatibility byit: namely what is possible to compute at all. He was modeling computa-tion. Two additional such models of computation existed at the time, the
λ-calculus as proposed by Alonzo Church that same year [Chu36], and theconcept of general recursive functions due to Herbrand and Gödel, de-veloped by Kleene [Kle36]. These three equivalent models [Tur37] werethe original models of computation. They are equivalent in the sense thatthey define the same notion of what is computable. To an extent, thesemodels were not concerned with how to (efficiently) compute something,but rather, what we can compute and what not. Since then, with the revo-lution of digital computers, the interest increasingly shifted to care about
how we can compute. This spawned a much larger amount of models ofcomputation at different levels of abstraction.In 1972, Karp [Kar72] kick-started the field of computational complexityby identifying many problems that were equivalently difficult to compute,the class of NP-complete problems. Computational complexity relies onthe fact that the asymptotic behavior of the number of steps of an algo-rithm, as a function of the input (size), is invariantwhen changing betweenthese models of computation. Around the same time, in 1970, Dana Scottproposed a mathematical theory of computation [Sco70] based on whatare now called (Scott) domains2 and the Scott-topology. Two ideas arecentral in Scott’s formalization. The first is a method for capturing partialcomputations, i.e. computations that have advanced but not finished yet.The second idea is that of modeling a computation as a continuous func-tion between such domains, where a proper notion of continuity (in theScott topology) models causality in the computation. Scott’s semanticsallowed to capture the process of a computation, but not the internals,which are abstracted away by the function.The question of how we compute can be modeled in different waysby complexity asymptotics or partial computations in the Scott formal-ism, but some aspects are still left unmodeled. A significant such aspectnot taken into account by these models is where we are computing. Thetheory of distributed computation was growing, with models like PetriNets [Pet62] or seminal work like Lamport’s on clocks and ordering ofevents [Lam78]. These models deal with properties of a computing sys-tem that has physically separate parts which split and distribute the com-putational load. However, the focus of themodels is the system doing thecomputation, not the computation itself.In this thesis we are mostly interested in concurrent models of com-putation. Such models abstract away the (distributed) computing systemand focus on the computation itself. They consider and express concur-rency in the computation, which can be exploited for parallel or asyn-chronous execution.

1 Now known as a Turing machine2 Also called ω-complete partial orders [Gun92], and closely related to algebraic lattices.

99

6.1 An overview of Models of Computation
This section will survey some of the most important concurrent modelsof computation. Before diving into the models, we will first discuss themathematical semantics3 of computation by Scott.
6.1.1 Partial Computation: Scott Domains

When Scott proposed his mathematical theory of computation [Sco70],he used the term mathematical to contrast it with operational compu-tation. In practice, the steps of a computation are defined by the ISA ofthe machine executing them. Most people don’t write programs directlyfor the ISA, however. They write them in an abstract programming lan-guage, which is translated by a compiler into machine instructions. Thus,in practice, the implementation of a compiler is what informally dictatesthe (operational) semantics of programs. Scott’s theory had the ambitiousgoal of being an abstraction that sat between these operational seman-tics and the abstract notions of computability of e.g. Church or Turing.He intended to abstract away the arbitrary implementation choices thatwere necessary but did not change the essence of the execution. Whiletoday his model is not the single established abstract model of seman-tics he sought out to define, it introduced several important ideas andmathematical structures to models of computation. In particular, a cru-cial abstraction introduced by his theory is that of partial computation.His theory makes it possible to express a computation as a series of par-tial results, without regarding the actual implementation of these. We willnow introduce the basics of Scott’s mathematical theory of computation.Two related concepts can be used to computation in Scott’s semantics,
ω-complete partial orders [Gun92] or complete semi-lattices [LM09]. Wewill use the latter. Let xA,ďy be a partially-ordered set (poset). For a subset
B Ď A, we say a is an upper or lower bound of B if a ě b (resp.ď) for all b P
B. Similarly, we say a is a greatest lower bound/least upper bound of B if a is alower/upper bound of B and for all other lower/upper bounds a1 we have
a ď {b or a ě b, respectively. A nonempty set D Ď A is then called directedif every nonempty subset of D has an upper bound . If every such set Dhas a least upper bound, we say that A is directed-complete. In that case,we denote the least upper bound of D as\D. If A additionally has a leastelement K P A with K ď a for all a P A, we say that A is a complete partialorder. If, instead, A is directed-complete and every non-empty subset hasa greatest lower bound, we say A is a complete semilattice.The canonical example of this are sequences, which are a generaliza-tion of strings. Let Σ be an alphabet (a set). We call Σ˚ the set of words(Kleene star) over Σ, and Σω “ N Ñ Σ is the set of (countably) infinitesequences over Σ. We then define S “ Σ˚ YΣω as the set of (finite or infi-nite) sequences over the alphabet Σ. The set of sequences S is obviouslya poset with the prefix relation Ď, where s Ď s1 iff there exists a t P S with
s.t “ s1. Here, p.q : S Ñ S denotes the concatenation operator (which co-incidentally makes S a monoid with neutral element ε, the empty string).In fact, S is a complete semilattice with regard to Ď (cf. [LM09]). In Scott’smodel, these sequences describe the partial steps of a computation pro-cess, generating data in discrete steps (not necessarily all at once).

3 Nowadays we call these semantics denotational

100

A function f : S Ñ S is called monotone if for s Ď s1 it holds that
f psq Ď f ps1q. Interpreting f as computation, this models causality: havingmore input data cannot change the data that has already been output.In other words, the future cannot change the past. An additional, moretechnical definition is that of continuity. A monotone function f : S Ñ Sis called continuous if for all directed sets D in S, it holds that f p\Dq “
\ f pDq :“ \t f psq | s P Du. This concept is distinct from that of a mono-tone function only for infinite sequences. It means that a function will notproduce its output only after reading an infinite amount of input. We callthis continuous because the prefix relation defines a topology on the set
S, the Scott topology.
6.1.2 Concurrent Computation

Scott’s computation model implicitly assumed a sequential computationprocess, and Scott-continuous functions are a powerful method for de-scribing partial sequential computations. Can we also use this model todescribe parallel computation? Gilles Kahn did precisely this, four yearsafter Scott published his mathematical theory of computation. He usedthe formalism of Scott to define a model of parallel computation, basedon what he coined as process networks, now known as Kahn Process Net-works (KPNs) [Kah74].The basic idea to generalize the Scott theory of computation for con-current execution is simple. We compose functions in networks of Scottfunctions, these are the KPNs. These composed functions yield a systemof equations. For example, we can compose a Scott continuous func-tion f with itself by applying it to its output. This yields an equation:
f psq “ f p f psqq, which is solved by a fixed point of f (i.e. a sequence s P Swith f psq “ s). A series of related results on such systems of equationsand fixed-points by Tarski, Kleene and others show that such a systemalways has a least fixed point. This defines the semantics of KPN. For ex-ample, for the case of the single function f as above, if f is the identityfunction, this least fixed point is ε. This solves problems with loops in thesystem by giving well-defined semantics, and even yields a procedure tofind the fixed points, by recursively applying the functions. In particular,this means that KPNs are deterministic (as per their fixed-point semantics).There are other related models that span from the same time period,like the Hewitt-Agha actor model [HBS73; Agh86]. This was also a modelof parallell computation. In it, actors communicate with other actors viamessages in a non-deterministic fashion. Actors can also be dynamicallycreated and the connections between them are also dynamic. While thisyields much more flexibility, it comes with a high price: determinism.Other models of parallel computation include Petri Nets [Pet62], inwhich a bipartite graph of places and transitions models the distributedexecution of a system. Transitions in petri nets are very flexible as well,but they are also non-deterministic, the order in which multiple activatedtransitions fire is non-deterministic in general.A series ofmore abstractmodels are the Process Calculi, which includesthe well-known Π-calculus and CSP. These models are called calculi be-cause they define specific composition rules, like parallel composition
A|B or A}B for processes with clear semantics. They are well-known fordescribing systems and specifying their behavior, e.g. in the context of

101

model checking [BK08]. However, these are also very abstract models ofcomputation.Figure 6.1 shows an overview of the different models of computationand their properties. The dotted nodes refer to abstract properties ofthe models, whereas the filled nodes are concrete models. Concretely,the ones colored light-blue are that we review and use more in detail inthis thesis. Timed models, like reactors, will be discussed in Section 6.3,and dataflowmodels in the section below. This figure was inspired by Fig-ure 1.6 in [Pto14].
MoCs

Concurrent

TimedDeterministic

Sequential

Functional TuringMachinesStateMachines

Untimed

ProcessCalculi Synchronous/Reactive

KPN

DiscreteEvents

Reactors

Petri Nets DataflowThreadsActorModel

SDF

µ-recursive Functions λ-Calculus

Π-CalculusCommunicatingSequentialProcesses

DDF

HSDF / task graphs

Figure 6.1: Overview of different models of computation. Color-filled nodes referto concrete models, dotted ones are abstract properties.

6.1.3 Dataflow Models of Computation

A series ofmodels stands out in the context of software synthesis and alsoin the domain of embedded system software, these are dataflow modelsof computation. More dataflow models have been proposed than whatwe could reasonably list and describe here. The original idea however,or at least one of the first to be published, goes back to Dennis [Den74;Den86] These dataflow models were also related with KPN, in so-called

102

dataflow process networks [LP95; LM09]. Common amongmost dataflowmodels is the concept of actors, which encapsulate computation andwhich have firing semantics. Actors communicate exclusively via explicitinput and output channels, whichwork as FIFObuffers. An actor fireswhencertain conditions are met, consuming tokens in (some of) its input chan-nels, and producing other tokens in its output channels.We will describe Dennis dataflow using a formalism similar to the onedescribed in [Par95; LM09]. This formalism is very general and allows todescribe many other dataflow paradigms as special cases. The basis ofthe formalism are the firirng rules. An actor has a finite setR of firing rules,and each rule R P R is a finite tuple of words over the alphabet of values
Σ̄ :“ ΣY tKu. Here, K represents an abscent value, which means no datahas to be present in that channel for the actor to fire. The patterns aresometimes also interpreted to be words in an extended alphabet withwildcards, e.g. Σ Y tK, ˚u, where ˚ stands for any value in Σ. Note that,mathematically speaking, both K and ˚ are unnecessary, as the emptystring ε has the same effect as K and ˚ can be replaced by a series ofrules, one for each value in Σ. In most practical instances of dataflow, onthe other hand, rules only consist of values in tK, ˚u, which is why they arevery useful for descriptions.An actor fires whenever there is enough tokens in the input channelsto satisfy a rule. Here, satisfying a rule specifically means the rule R is aprefix of the channel values C, i.e. R Ď C. If we include special values Kand ˚, the pattern has to be interpreted, e.g. by transforming it into themathematically equivalent variants explained above. In this case, the to-kens are consumed from the channels and the actor executes, computingsomething and potentially producing some outputs, which are not part ofthe specification in the firing rules.Note that there is nothing preventing multiple rules to apply simultane-ously. For example, an actor with two inputs could have the rules p˚,Kqand pK, ˚q, firing as soon as one of the two channels has a token. If mul-tiple rules apply simultaneously, there is no general order in which theactor fires and consumes the inputs. This means that this model is non-deterministic. We denote this very general, dynamic variant as DynamicData Flow (DDF) (alternatively, Dennis Data Flow).If we add an additional condition, requiring that for two rules R, R1 thereis no upper bound S (i.e. with R Ď S, R1 Ď S), then we can show thatthe model is deterministic. We can even relax this condition somewhatand keep determinism. In [LM09], the authors show this by explicitly con-structing a Scott-continuous function from actor firings and embeddingthe model into KPN. They also discuss possible relaxations. This determin-istic variant of (Dennis) dataflow is sometimes referred to as DataflowProcess Networks (DPN).All these models are very expressive, so much so that they donot permit very strong analysis of their behavior. In contrast, the SDFmodel [LM87] has a very well-defined behavior and allows more anal-ysis to be done statically, like scheduling or bounding the sizes of thechannels [Par95]. The firing rates in the SDF model are fixed. In the for-malism, this means the firing rules are always of the form p˚n1 , . . . , ˚nkq,where ˚0 “ ε p“ K and the ni are called rates. Moreover, the number oftokens produced is also fixed statically, which is not part of the formal-ism of firing explained above. An apparently more strict variant of SDF isHomogeneous SDF (HSDF), in which all the rates are 1. However, these two

103

are equivalently expressive: a well-behaved4 SDF graph can be unrolledto an equivalent HSDF graph. The semantics of HSDF are basically equiva-lent with the model of task graphs, which are widespread in the design ofembedded systems and HLS.We discuss two additional variants of dataflow which sit semanticallybetween SDF and DDF. The first is Cyclo-Static Data Flow (CSDF) [Bil+96], inwhich the static values of SDF are replacedwith cycles that repeat, allowingfor some controlled dynamism while retaining the analysability. Finally,Scenario-Aware Data Flow (SADF) [The+06] is a more general model whichallows enabling and disabling certain paths in the graph, which are other-wise static.Figure 6.2 shows a Venndiagramof the dataflowmodels discussedhereand their relationship. Here we draw the distinctions as strict as possible.For example, we draw HSDF as a subset of SDF since, definitionally, it is,even though they have the same semantic expressive power. In otherwords, every HSDF is an SDF, and conversely, not every SDF is an HSDF, eventhough there exists an equivalent (unrolled) HSDF, it is just equivalent, notidentical. We also include KPN and the Kahn-MacQueen (KMQ) blocking-reads semantics since they are commonly discussed as dataflow modelsas well. Since the models are fundamentally different, we depict themin the Venn diagram as what is embeddable semantically. Note that wedepict DPN as being included in KMQ (which is proven in [LM09]), but we donot know if this inclusion is strict, in other words, if there are KMQmodelswhich are not expressable as DPN. We will discuss the difference between
KMQ and KPN in Section 6.2, where we also show that this inclusion is strict.

SDF
HSDF

DDF

KPN
KMQ

SADF

CSDF

DPN

Figure 6.2: Relationships between different dataflow models of computation.

6.2 The MacQueen Gap
The KPN model was defined by Gilles Kahn in 1974 [Kah74]. While in thispaper he motivated how examples of such networks could be defined,the semantics of a concrete language were only later postulated by Kahnwith MacQueen in 1976 [KM76]. However, there is a gap in the semanticsof formally defined networks (KPN) and the concrete networks that canbe defined by the Kahn-MacQueen blocking-reads execution semantics:These concrete semantics are not as general as the formal model allows

4 Concretely, a graph that can be executed without deadlocks and without an indefinite accu-mulation of tokens.

104

them to be. More concretely, there are networks which fall under the KPNformalism that cannot be expressed using the Kahn-MacQueen blocking-reads semantics. We call this gap in the semantics “the MacQueen gap”,as the gap between the formalmodel by Kahn and the concrete executionsemantics by Kahn and MacQueen [LM09; KGC18].In this Sectionwe explore theMacQueen gap by showing the differencebetween the two formalisms, and see how we can exploit it. The contri-bution of this thesis is limited to the theoretical advantage from this se-mantics gap. The practical implementation and evaluation of the librarythat we describe in [KGC18], which exploits this gap in the semantics is,accordingly, beyond the scope of this thesis.
6.2.1 The MacQueen Gap

Recall from sections 2.1 and 6.1.2 that a KPN can be modeled as a directedgraph K “ pV, Eqwhere the nodes V are Scott-continuous functions f P Vmapping from the set of sequences from the input channels Si1 ˆ . . .ˆ Sikto the set of output channels So1 ˆ . . .ˆ Sol , and the edges represent thecorresponding Scoott-domains of sequences.The Kahn-MacQueen (KMQ) blocking reads semantics are defined in amore operational fashion. The model of computation is defined implic-itly by the semantics of a language [KM76], characterized mainly throughblocking reads to channels. While the original semantics by Kahn [Kah74]do suggest a programming paradigm similar to the KMQ blocking-read se-mantics, Kahn’s original examples in a programming language made thewaiting explicit in the program, not implicit in the read semantics. Nei-ther paper aims to prove that the semantics emerging from the proposedlanguages correspond to the mathematical semantics of the networks interms of Scott-continuous functions.A central point of this distinction is the level at which these two seman-tics are defined: While the KPN semantics are defined at a denotationallevel, the KMQblocking-read semantics are operational in nature, and thus,more fine grained. This distinction is also crucial for understanding the se-mantics gap, since the gap itself is operational in nature as well.To understand the difference between the semantics we will first con-sider both fromadenotational point of view. It is obvious that the basic se-mantics of the language describe a finite directed graph, and conversely,that any finite directed graph can be defined this way, by sequentially list-ing every node and all incoming and outgoing edges. Thus, we can thinkof every KMQ process as a function f mapping from the set of sequencesfrom the input channels Si1 ˆ Sik to the set of output channels So1 ˆ Sol .The pertinent question for characterizing KMQ processes is the continuity.We sketch a proof of this in Theorem 6.2.1.
Theorem 6.2.1. A KMQ process is Scott-continuous.
Proof. (Sketch)Let P be a KMQ process. Since P is sequential, and the reads and writesare blocking, there is exactly one sequence of read and write operationsthat will be executed for given inputs. Thismeans that we can divide P intosegments of execution between reads and writes, resulting in a sequence
ps1, c1q.ps2, c2q. . . . where for each i si P Σ is a value and ci is the channelto/from which the value is read. We can then construct the correspond-ing (Scott-continuous) function f . We discuss the case for f : S Ñ S, for a

105

single input channel r and a single output channel w, the others are anal-ogous. Let i1 be such that s1.si1 where c1 “ . . . ci1 “ w, ci1`1 “ r. The in-dex i1, as well as s1, . . . , si1 have to be identical for all sequences, since theycannot depend on any inputs, by defnition. We set f pεq “ s1.si1 “: f0.Similarly, we let i2, i3 be such that
ci`1 “ . . . ci2 “ r ‰ w “ ci2`1 “ . . . ci3 ‰ r “ ci3`1.

We define x1 :“ si1`1.si2 and set f px1q “ f0.si2`1.si3 , and continuethis process for all psi, ciq. It is clear that such a construction will produce aScott-continuous function if it is well-defined. To see that it is well-definedwe need to prove with the concrete semantics of the programming lan-guage that the same input produces the same output.
Clearly, the proof sketch in Theorem6.2.1 is not a formal proof, sincewedon’t have formal semantics for the concrete language that defines the

KMQ blocking-reads. Defining these and proving Theorem 6.2.1 properlyis beyond the scope of this thesis. We get the following corollary immedi-ately by definition:
Corollary 6.2.2. Every Kahn-MacQueen Network is a Kahn Process Net-work.
What about the converse implication? Can every KPN be realized by aprogram following the KMQ blocking-reads semantics? To understand thechallenges this imposes, consider the network defined in Figure 6.3.

s1

f

s2

k1

i1

i2

o1
f : Si1 ˆ Si2 Ñ So1

f : px, yq “ ppx1, . . . , xjq, py1, . . . , ykqq

ÞÑ px1 ` y1, . . . , xminpj,kq ` yminpj,kqq

Figure 6.3: An example of a KPN which admits non-blocking-read semantics.
By abuse of notation, we allow j, k “ 8 and for j “ 8 “ k to mean thatfor two streams x : ω Ñ Σi1 , y : ω Ñ Σi2 we define f ppxi, yiqq “ pxi ` yiq forall i P N. The process f is, thus, a deterministic merge via addition of thetwo input streams and obviously Scott-continuous, i.e. a Kahn process.Now consider the following three cases:
1. x “ ε, y “ p1q

2. x “ p1q, y “ ε

3. x “ p1q, y “ p1q

It is clear that the first two cases are prefixes of the third. By the defini-tion of f , only this third case will generate an output p2q, whereas the firsttwo cases will result in an empty stream on the output channel o1. How-ever, operationally, there are different ways of processing these streams.A KMQ program has to choose to read one channel first, blocking, thenread the second channel, blocking, and then output the sum. Listing 4shows an example of code in their original language proposed by Kahnand MacQueen.

106

Process F in I1,I2 out O1 ;

Vars x,y;

repeat

GET(I1) -> x;

GET(I2) -> y;

PUT(x+y,O1);

forever

Listing 4: A deterministic merge (sum) in the POP-2-based language of KMQ.

This implementationwill block in Case 1 leaving unread data in the chan-nels, while it will execute normally in cases 2 and 3. This is because we(arbitrarily) choose to read i1 before i2. If we reverse this order, the imple-mentation would block on Case 2 instead, leaving unread tokens in thechannel i1. This is relevant if we consider the execution and communi-cation times, since e.g. there is a finite read time required to read everychannel. Consider the Gantt-charts depicted in Figure 6.4. They show howblocking when reading i1 delays the whole execution, even if i2 could beread. This is because the blocking-read semantics forces a deterministicordering of reading tokens when executing, whereas the KPN semanticsonly require the output to be deterministic, not the order of the compu-tation itself.
Read 1 first

Read i1

Read i2

execute `
Write o1

i2 “ 1 i1 “ 1

Read 2 first

Read i1

Read i2

execute `
Write o1

i2 “ 1 i1 “ 1

Figure 6.4: Examples of Gantt Charts corresponding to implementations of theKahn Function f .
Having understood the nature of the semantics gap, we can thus re-turn to the question of the other direction in Theorem 6.2.1. The gap wehave shown here exposes a difference in the operational semantics, yetthe different versions discussed all result in the same denotational Kahnprocess as defined in Figure 6.3. This does not contradict the conversedirection to Theorem 6.2.1.
s1

g

s2

k1

k2

i1

i2

o1

o2

g : Si1 ˆ Si2 Ñ So1 ˆ So2

g : px, yq “ py, xq

Figure 6.5: A counterexample of the equivalence of Kahn-MacQueen and Kahnprocesses.

107

By exploiting the problemexposed in the first example, we can comeupwith a proper counterexample to the reverse direction of Theorem 6.2.1.The example depicted in Figure 6.5 is again clearly a Kahn process (Scottcontinuous), which just forwards the two incoming channels indepen-dently. In practice, this Kahn process is not very useful, but it serves for-mally as a simple counterexample to the equivalence of KMQ blocking-reads processes and Kahn processes. To this, consider again as inputsstreams pi1, i2q the three cases from the first example:
1. x “ ε, y “ p1q

2. x “ p1q, y “ ε

3. x “ p1q, y “ p1q

Unlike f , the function g has a different behavior for every case:
1. gpε, 1q “ p1, εq

2. gp1, εq “ pε, 1q

3. gp1, 1q “ p1, 1q

This process cannot be realized by a KMQ process with blocking reads.Assume there was such a process. Then, from the sequentiality of code,either i1 or i2 will be read first. Without loss of generality let us assumethat i1 is read first. Then for the input stream pε, 1q however, the processwill block and will never output the 1 from channel i2, which yields thecontradiction.
6.2.2 Exploiting the Gap

We have seen in the previous section how there is a gap in the opera-tional blocking-read semantics proposed by Kahn andMacQueen and thedenotational KPN semantics. While the counterexample from Figure 6.5does not seem very useful, the gap in the operational nature shown in Fig-ure 6.4 readily suggests how this gap could be exploited. In general, theScott continuity of KPNs requires the arrival of tokens to be determistic,but it does not require the execution of independent nodes to follow thesame order as the tokens, as required by the Kahn-MacQueen blocking-read semantics. Thus, as suggested by the example, the MacQueen gapcan be exploited for asynchronous computation, as long as it does notbreak determinism.This asynchronous execution can be used to execute multiple work-ers in a data-parallel fashion. Figure 6.6 shows an example of a networkwhich does this. The worker processes w1, . . . , wn can exploit data paral-lelism by dividing a workload into different parts. This allows us to asyn-chronously execute theworkloads, as long aswe take care to preserve theorder at the sink node. We can achieve this by making it part of the logicof the channels. In [KGC18] we proposed to exploit this gap and testedan implementation of this in MAPS, which modified the FIFO libraries ofnodes labeled as data-parallel to relax the deterministic semantics of the
KMQ blocking-reads and allowed asynchronous execution of data-parallelworkers while preserving the deterministic KPN execution. The implemen-tation of this library is beyond the contribution of this thesis, which islimited to the theoretical part of identifying the semantics gap and waysof exploiting it.

108

src ...
wn

w1

w2

sink

Figure 6.6: An example of data-parallelism exploiting the MacQueen gap.

6.3 Reactors
So far we have discussed multiple MoCs with different extensions. Mostmodels we have focused on in this thesis are deterministic, which asexplained in the introduction, is an important and useful property of amodel’s semantics.We have showndeterminism in KPNs allows us to simu-late and analyze their execution. Without it, many concepts we have seenin chapters 2,4 and 5 break down.However, the models we have discussed neglect one important aspect,time. Computation takes time [Lee09], and this is a fundamental prop-erty of its semantics which is usually implicit. Determinism as we havediscussed it here means that the output of a computation is a determin-istic function of its input. This does not mean that the time it takes is de-terministic, as we have studied in [Goe+17]. Especially in the context of
CPSs or real-time systems, the computation time is an essential part ofthe functional specification of an application. In this section we discussthe Reactormodel [Loh+19], which aims be a deterministicMoCwith timedsemantics.The Reactorsmodel is inspired by theHewitt-Agha actormodel [Agh86],which is a very widespread and well-known model of concurrent compu-tation. The actor model is neither deterministic nor timed. Determinismin Reactors comes from combining ideas frommultiple paradigms [LL19],notably, through explicit discrete-event semantics. The reactormodel hastwo distinct time notions, physical and logical time. Physical time refers tothe time as elapsing in the physical part of the system, and that part ofthe model is thus not part of the digital logic. Logical time, on the otherhand, is the digital counterpart of physical time, and is the time that gov-erns the computation of the reactor network. Every CPS has physical andlogical time, by their very definitions. A novelty of the reactor models ismaking both time concepts and their separation explicit. Just as in anyother timed MoC for CPSs, the two times are tightly coupled and intendedto be synchronized. Making the separation explicit allows us to controlthe synchronization of both time models and have better control over adeterministic execution of the time logic.Just as in the dataflowmodels discussed in Section 6.1, the actor modeldivides computation into isolated actors that communicate solely over ex-plicit messages. The main difference to models like SDF or KPN is that ac-tors and channels are not fixed. Instead, they can be dynamically created

109

and destroyed. In Reactors, we aim to combine good ideas from multi-ple established MoCs. We permit dynamic re-configuration of the networkthroughmutationswhich are well-defined (not arbitrary) transformationsof the network’s topology [Loh+20c]. This permits us to reason about de-terminism more explicitly. At the time of this writing, mutations are onlydefined abstractly. Specifying a set of well-defined mutations that allowus to reason about determinism and time, while still providing enoughflexibility as need by the applications, is ongoing work. We will discussthis in an example use case for 5G in Section 6.3.1.This thesis deals with model-based design in general. As such, Reac-tors are part of the contribution as yet another model with distinct advan-tages and disadvantages. Thus, apart from the design choices discussed,we only briefly outline the concepts behind reactors and a simplified de-notational semantics, as well as some applications leveraging particularfeatures of this model as opposed to other MoCs. The detailed design andimplementation of Reactors as runtime systems and the correspondingpolyglot coordination language, Lingua Franca5, are outside the scope ofthis thesis [Loh+20a; Loh20].
Denotational Semantics

In [Loh+20c] we laid the groundwork for an operational formalization ofreactors. The reactormodel is amoving target and has been refined since.At the time of this writing, the most thorough and up-to-date account isin [Loh20]. Here we will deviate from the formalization both in [Loh+20c]and [Loh20], however, and attempt a denotational approach to seman-tics. In ongoing work with Marcus Rossel, we are using the Lean theoremprover [Mou+15] to formally verify reactors, proving properties like deter-minismunder certain conditions. A reason for this denotational approachis that the original formalization has somemathematical inaccuracies andunspecified behavior. Clarifying or correcting these inaccuracies is neces-sary for having a well-definedmodel. The second reason for the deviationis the level of detail. We want to simplify the formalization of [Loh+20c;Loh20]. The aimof the formalization here is to isolate the abstractmodel’s(denotational) semantics and leave implementation-specific details out asmuch as possible. An advantage of this formalization is that it relates KPNsand Reactors formally.We explicitly restrict ourselves to a subset of themodel, leaving outmu-tations and any kind of exception-handling policies. A more comprehen-sive (operational) model, including some of these concepts, is discussedin Chapter 2 of [Loh20]. These restrictions are in part for simplicity, butalso due to this being ongoing work. At the time of this writing, we havenot finished the Lean-based formalization to include these aspects. Ex-tending a simple model is easier than changing a complete model that isproblematic. It is important to note that as ongoing work, this alternativeformulation has not yet undergone peer-review (as opposed to [Loh+20c])and is subject to change.
Timeless model

Reactors are a timed model, with specific semantics of how the time pro-gresses and what can happen when. The logical (functional) semantics ofa reactor network are complex as well, however. We first begin defining
5 https://github.com/icyphy/lingua-franca

110

https://github.com/icyphy/lingua-franca

the computational semantics of the network in a timeless fashion, andthen extend the model to include time.Computation is essentially manipulation of data. Models are thus builtand defined by how they manipulate data. We follow a model of compu-tation based on Scott’s semantics of computation (cf. Section 6.1). Data ismodeled as sequences s P S “ Σ˚ Y Σω over a finite alphabet Σ, which
we require to include a special symbol K !

P Σ that represents absenceof data 6. The basic unit of computation in Reactors are reactions, whichtake a finite number of data tokens as input and return a finite number asoutput. Thus, to define a reaction we simply consider a Scott-continuousfunction n : Sk Ñ Sm. Sequences can have different lengths (both finiteor infinite), yet reactor networks execute in discrete ticks, which result insequences of the same length. To model this we define “padding” usingthe special symbol K P Σ on a finite sequence s P Σ˚ “ SzΣω , by defining
ŝ “ s.pKωq. Finally, an important restriction is that we want to ensure reac-tions in the timeless model do not to take multiple inputs from the samechannel before producing an output.
Definition 6.3.1 (Reaction). Let n : Sk Ñ Sm be a Scott continuous func-tion. We call n a reaction if for any two s, s1 P S such that s1 is a properprefix7 of s, i.e. s1 Ĺ s, then this also holds for the images under n, i.e.
nps1q Ĺ npsq.
Note that our definition is a restriction on the definition of reactions.As defined in [Loh+20c] with an informal source code “object”, they canbe interpreted in the semantics of the language of that source code. Assuch, they could implement any relation on Sk ˆ Sm. In particular, we as-sume reactions are deterministic (asmathematical functions) and respectcausality (being Scott-continuous). Note that this does not mean they arestateless. State is implicit in the definition of a function on the completehistory of inputs, as opposed to a function on a single input token. In thelatter, for f : Σk Ñ Σm, state can be formalized as a “self-edge” i.e. an i, jsuch that

f p˚, s
ljhn

i

, ˚q “ p˚, s1
ljhn

j

, ˚q with s, s1 P Σ,

the ˚ being other values we don’t care about here. However, we use thedenotational formalization of computation of functions by Scott as com-plete sequences of inputs and outputs, which makes the state implicit.Definition 6.3.1 also has strong theoretical consequences. It implies thatevery monotone reaction is Scott-continuous, since it is equivalent with
| f psq| ě |s| for all s P S, which avoids the pathological cases that distinguishmonotone and Scott-continuous functions. Proving this fact is beyond thescope of this thesis.Modeling reactions as Scott-continuous functions, we do not specifyanything about the length of the sequences. A reaction might producea longer output sequence than its input sequence. At this stage this is notimportant, as wemodel the complete computation with a single function.We will come back to this later, in the timed model, when we relate thesesequences to concrete times.

6 Note that the exclamation mark in the notation before refers to the requirement of thatinclusion (as opposed to a statement of a fact).7 Not to be confused with s1 Ę s, the negation of s1 Ď s.

111

If a reaction f : Sk Ñ Sm has the property that
f ps1, . . . , si´1,K, si`1, . . . , skq Ď pKω, . . . ,Kωq for all sj P S, 1 ď j ď k, j ‰ i,

we say that f has a trigger on the input i. Recall that the symbol K repre-sents the absence of values. Intuitively, thus, a reaction that triggers on
i will not execute if there is no input on i. In other words, the values in itrigger the reaction, hence the name. Besides triggers, the original defini-tion also has other components as part of reactions, namely sources andeffects (or dependencies and anti-dependencies), scheduleable actionsand a deadline. We include most of these concepts in other definitions,e.g. the reactor or the network.To communicate between reactors (or perhaps more precisely, be-tween reactions), we need to send and receive data. We do this usinginput and output ports, which we model simply as identifiers in an indexor identifier set I. A reactor has a series of reactions with input and outputports, and reactors connect to each other through them.
Definition 6.3.2 (Reactor). Let I be an index set. A reactor is a tuple r “
pN, D, D_q where N is a finite poset of reactions n : Skn Ñ Smn and

D :N Ñ pt1, . . . , knu Ñ Iq,

D_ :N Ñ pt1, . . . , mnu Ñ Iq,

are called the sources and effects respectively. We define the set of in-put ports as Inputprq “
Ť

nPN impDpnqq and, similarly, the set of out-put ports we define as Outputprq “
Ť

nPN impD_pnqq. We require that
Inputprq XOutputprq “ H as part of the definition of a reactor.
The sources D make a correspondence between the indices in the tupleof input streams of a reaction and the (port) identifiers I. For example, ifa reaction n : S2 Ñ S takes two inputs, Dpnq : 1 ÞÑ c, 2 ÞÑ b means that theports c and b are the two input ports of n, in that order. The effects D_are analogous but for the outputs of the reaction.We require N to be a poset for two reasons. Firstly, we want to be able tospecify an order inwhich reactions are always executed. However, we alsowant to allow explicitly making the model non-deterministic by makingreactions incomparable. When two reactions are incomparable, they areexecuted in a non-deterministic order. By the order-extension principle, itis always possible to execute reactions while respecting the partial order.More formally, let n, n1 : S Ñ S be two reactions. For simplicity, weassume they have a single (shared) input and output port: pDpnqqp1q “

pDpn1qqp1q and similarly pD_pnqqp1q “ pD_pn1qqp1q. Recall that ŝ “ s.pKqωfor s P SzΣω is a “padding” of a sequence with absent values. We say thata function f : S Ñ S is a priority-preserving execution if for all s P S and forall i P N, it holds that:
p f̂ pŝqqi “ pn̂pŝqqi, if n ď n1, pn̂pŝqqi ‰ K (6.1)
p f̂ pŝqqi “ pn̂1pŝqqi, if pn̂pŝqqi “ K (6.2)
p f̂ pŝqqi “ pn̂1pŝqqi, if n1 ď n, pn̂pŝqqi ‰ K (6.3)
p f̂ pŝqqi “ pn̂pŝqqi, if pn̂1pŝqqi “ K (6.4)
p f̂ pŝqqi P tpx̂pŝqqi | x P tn, n1uu otherwise (6.5)

In this case we write f P
Ů

D,D_tn, n1u. Equations 6.1 and 6.3 formal-ize the reaction priority when the two reactions are ordered, and Equa-tion 6.5 the non-deterministic ordering when n and n1 are incomparable.

112

If a reaction returns an absent value K, then the value of the other re-action is written on the output sequence. Note when n ď n1 or n1 ď n(which trivially includes the case n “ n1), all functions in Ů

D,D_tn, n1u areequivalent up to padding with K.This definition can be trivially generalized to more than one (shared)input or output sequence (component-wise), and to non-shared input oroutput sequences by requiring equations 6.1-6.5 to hold quantified overall non-shared sequences. Finally, for a poset N of reactions, we define
Ů

D,D_ N analogously (component-wise), requiring equations 6.1-6.5 tohold pairwise for any two n, n1 P N.Reactors are connected in networks. We model these networks explic-itly, separate from reactors themselves. In the original definition, this isavoided by building reactors hierarchically. There is no semantic distinc-tion between a hierarchical model and a flat model, where all containedreactors are “inlined” in a network8. We prefer separating the reactorsand their networks, since the definition of reactor networks allows us tospecify the semantics of how they can be connected. Here, we distinguishbetween two cases: an untimed one, which we call timeless and repre-sents the purely logical execution of the network, and a timed one, whichis the general case and is built on top of the former.
Definition 6.3.3 (Timeless reactor network). A timeless reactor networkis a multigraph R “ pV, E, ξq with a set of reactors as nodes V, a setof edges E, which we require to be pairs of indices, E Ď I ˆ I and
ξ : E Ñ ttr1, r2u | r1, r2 P Vu. For this multigraph we require that forany two distinct reactors r1 ‰ r2 P V the input and output ports are pair-wise disjoint, i.e. Inputpriq XOutputprjq “ H for all i, j P t1, 2u and everyedge is a tuple consisting of an output port and an input port, i.e. forall pi, jq “ e P E Ď I ˆ I there exist r1, r2 P V such that i P Outputpr1qand j “ Inputpr2q. We additionally require that the multigraph has no self-edges, i.e. |ξpeq| ą 1 for all e P E.
Recall that amultigraph is a graph that can havemultiple edges, and thefunction ξ : E Ñ ttr1, r2u | r1, r2 P Vu defines which vertices are connectedby each edge. Here, the edges themselves carry semantics as well. Theydefine which ports specifically they connect in the reactor. We define theset IpRq “

Ť

rPVpInputprq YOutputprqq as the set of ports of R.We make an additional remark about Definition 6.3.3, namely that wedon’t require all ports to be connected. Indeed, some ports we explicitlywant to leave disconnected to define the general, timed model.
Timed Networks

We are finally ready to introduce time into the model. Reactors are basedon a logical time model of discrete events. We formalize logical time asa totally ordered set of discrete timestamps, which is order-isomorphicto the naturals N (or a finite subset). When two events happen at thesame time, we want to keep the total-order property to distinguish them.For this, we use superdense time [MMP91; Pto14] , which adds microstepsat every time unit. Thus, time tags t P N ˆN are lexicographically or-dered tuples of natural numbers, where the first number represent thetimestamp as ticks (in some specific unit of time), and the second num-ber represents microsteps. Physical time, on the other hand, we define
8 Note that this might change if we extend the model to include mutations.

113

as real numbers R to allow continuous-time physical models (e.g. New-tonian mechanics). However, computation only can interact with physicaltime at discrete time intervals. We compose these two types of time in aunique time object, a tag.
Definition 6.3.4 (tag). A (time) tag t P T is a value in the sum (type) T :“
pNˆNq ‘R “ pNˆNq 9YR, which is commonly also called the disjointsum9. The embedding for the first componentNˆN ãÑ T is called logicaltime, and the embedding from the second component R ãÑ T is calledphysical time. We say that t is a logical or physical time tag respectively.
Note that Definition 6.3.4 differs from [Loh+20c; Loh20]. The rationalefor this is that this definition gives us a uniform way of referring to timewhile still distinguishing between logical and physical time. We could alsohave defined T “ pNˆNq‘N taking into account only the discrete mea-surements of time that are available to the digital component of the CPS.This definition with the real numbers R instead allows the model to becombined with continuous-time models of physical time, and it adds norestrictions to our semantics.Reactions are, in a sense, controlled functions we compute from incom-ing data. Some data we have no control over, like incoming input (e.g.froma sensor), or an asynchronous computationwe scheduled. Tomodeltheseweuse actions. Note that these actions aremore amodel of (tagged)data, as opposed to reactions which are a model of computation. Thiscreates a false dichotomy, since actions are fundamentally different fromreactions. Actions are more closely related to the input and output ports,and the naming confusion might be thus easier to resolve when thinkingthat, in this way, reactions react to actions.Actions are central to the model, since they are the mapping betweenthe functional world of reactions and the time semantics. Definition 6.3.5ensures actions do not mix the two different time types, and respectcausality (i.e. an action cannot change the past).

Definition 6.3.5. Let Tdiscrete :“ t| T Ď T | T is discreteu be the set ofdiscrete subsets of T. An action is a partial10 function A : Tdiscrete Ñ Ssuch that
• For all T P dompAq, the discrete set of tags T and the correspondingsequence ApTq are order-isomorphic (in particular, |T| “ |ApTq|).
• All T P dompAq are either sets of logical or physical tags, i.e. T Ď

NˆN or T Ă R. We call A a logical or physical action, respectively.
For a discrete set of times T P Tdiscrete, with Tdiscrete as in Defini-tion 6.3.5, we call dpTq “ inftăt1PdompAq t1´ t theminimumdelay or spacingof the time set T. Here, subtraction is to be understood component-wise,and only up to 0, as it is sometimes [Run89] defined on the set of nat-ural numbers i.e. pt1, t2q ´ pt11, t12q :“ pmaxpt1 ´ t11, 0q, maxpt2 ´ t12, 0qq. Foran action A we define dpAq “ infTPdompAq dpTq. Note that the formulationin [Loh20] distinguishes between the minimum delay as specified by theprogrammer and the minimum (time) spacing as acceptable for the run-time system. We consolidate both here, since, for simplicity, we disregardpolicies for when this spacing is violated and error handling in general.Consequently, we also do not model the spacing violation policy included

9 In the language of set theory, that we use by convention in this thesis.10 See Section 4.1.4 for the required definitions.

114

in [Loh20]. We define it also for the time set and not the action, since oursemantics are denotational and not operational.Definition 6.3.5 allows us to associate any given subset of times to adifferent sequence of values. In particular, this allows us to model thetimestamps themselves being part of the value in the sequence, e.g. fora reaction that stores the current time to a log file.The order-preserving bijection between a discrete set of tags andsequences ensures a causal execution. Since the mapping is order-preserving, a going forward in timestamps can only increase the port’shistory (the sequence of values). Similarly, adding tokens to the port’s his-tory can only move forward in time. Moreover, since it is a bijection, itmeans that adding tokens to the port’s history has to move forward intime, and vice-versa. One step in the discrete set of tags corresponds toexactly one value in the history. In particular, time has to advance everytime reactions are executed. This is why we need microstep delays in log-ical time, so that we can execute events with identical logical timestamps.For physical time we cannot have two events with identical timestamps,but the timestamps can be arbitrarily close to each other, so this is not avery strong restriction. Note that in [Loh20] physical time gets convertedto logical time when assigned a tag. In that formalism it is thus possiblefor two physical actions to have values with identical tags, but the tagswould ultimately have different microstep units when executed, which isan unavoidable source of non-deterimnism. This is not different from e.g.adding a small enough ε ą 0 in this model.
Definition 6.3.6 (Reactor network). A reactor network is a tuple pR, τq,where R “ pV, E, rq is a timeless reactor network and τ : IpRq Ñ A isa partial function of the identifier set (of ports) of R to a set of actions
A, such that for every i P I “ IpRq, exactly one of the following is true:
i P dompτq or there exist an edge e in ER, such that e “ pi, jq or e “ pj, iq foran i ‰ j P I.
We call impτq Ď A the set of actions of the reactor network pR, τq. Here,the mapping τ relates actions with all dangling ports in the timeless net-work. The last condition on τ ensures that no ports are left dangling inthe (timed) reactor network.Both our original description in [Loh+20c] and the updated onein [Loh20] are very explicit about reaction and event queues, schedulingand mutexes. These are very important aspects for any implementationof the model, yet they conflate the implementation and the semantics.Here we are interested mostly in the general concepts behind reactors,the implementation is outside the scope of this thesis. As a consequence,we rather err on the side of abstraction, by preferring to abstract awaydetails and clarify them in future work if necessary.

Definition 6.3.7 (Execution of reactor networks). Let T Ď T be a discreteset of time tags and let pR, τq be a reactor network. We denote by RτpTqthe network obtained by substituting in the timeless network R for eachport i P dompτq the sequence pτpiqqpTq (recall that τpiq is an action). Anexecution of R with discrete set of time tags T is a sequence si for everyport i P I such that:
1. For every reactor r “ pN, D, D_q in VR there exists a function f P

Ů

D,D_ N with f psi1 , . . . , sikq “ psj1 , . . . , sjmq where i1, . . . , ik, j1, . . . , jmare the corresponding ports of r according to the edges E of RτpTq.

115

2. For every f as in 1, the sequences psiqiPIpRq are a fix-point of the setof equations defined by the network RτpTq.
3. For every time value t P T, at least one action A is non-absent, i.e.
|tA P impτq | Aptq ‰ Ku| ě 1.

The execution of a reactor network in this way is notmodeled as an iter-ative process. The computation itself is modeled through the sequences
S in the Scott semantics of computation. The time values of actions Aare chosen (non-deterministically) for an execution, modeling the non-determinism from the environment. Condition 1 in Definition 6.3.7 de-fines the execution priority of reactions. This, together with Condition 2ensure that reactions have well-defined semantics. Finally, Condition 3ensures that only one action is scheduled at a time.A central idea behind Reactors is to split logical and physical time ex-plicitly. However, these two time concepts are conceptually linked, sincelogical time is just a digital estimation of physical time. Thus, the reactorruntime should strive to synchronize these two time concepts wheneverpossible. This is realized by the requirement of executing events in times-tamps order, ensuring logical time never goes past physical time. Nothingguarantees that the converse does not happen, however. Physical timecould go far beyond logical time. In an implementation, and indeed in theformalization of [Loh20], a deadline in the reactions controls how far awaylogical time can lag behind physical time.Note that the definition of reactor networks does not exclude any loops.The fix-point-based definition allow us to have well-defined semanticswith such loops (cf. [Kah74; LM09]), as ensured by Condition 2 in Defini-tion 6.3.7. In some cases, however, the least fix-point of the networkmightresult in an empty sequence. This can be the case when the ordering inreaction causes a so-called causality loop. See Section 2.6 of [Loh20] fora more thorough discussion. Also note that Condition 2 does not requirethe fix-point to be minimal, but this is given by the order-isomorphismcondition on actions.In [Loh20], reactors are explicitly required to have two special actions,a startup and a shutdown action. We do not require these two actionsexplicitly. An empty reactor network, that does nothing, is also a well-defined reactor network, albeit a pretty useless one.
Conjecture 6.3.8 (Reactors are deterministic). Let pR, τq be a reactor net-work such that for every reactor r “ pN, D, D_q the set N is totally ordered.Then for every executionRτpTq with a discrete time set T the values of sifor every port i P I are uniquely specified.
Our formalization has allowed us to specify determinism in reactorsin a mathematically precise fashion. We believe in future work we canprove Conjecture 6.3.8 by using fix-point theorems, in a fashion similarto [Kah74].This also gives us the language to discuss different kinds of determin-ism: can the values be independent of the set of time tags T? In general,it cannot work. Consider a network which prints the timestamps it sees,this will never be independent of the timestamps. On the other hand, ifevery discrete sequence of timestamps is mapped to the same sequenceof values, i.e. ApTq “ ApT1q for all actions A and (valid) sequences oftimestamps T, T1, then the behavior is trivially time-deterministic. Notethat in this case, Definition 6.3.5 implies that T – T1 are order isomor-phic and, consequently, T “ T1, which is a very strict condition on the

116

network, that has to have a constant number of actions. There are cer-tainly relaxations of this that allow us to define reasonable conditions fortime-determinism.We can even go further and distinguish between logical and physical ac-tions for determinism. For example, we can define a reactor network tobe time-deterministic if it only depends on the image sequences of phys-
ical actions A. The non-determinism from the physical world is outsideour control, but with this definition we are also ensuring logical actions tobehave deterministically as a function of the physical ones.A final word on distributed execution, which we have ignored so far,is due here. Our semantics are denotational, they are meant to describewhat is computed, not how. In particular, a distributed execution shouldadhere to these semantics just as a sequential one. A fundamental prob-lem with using our model for distributed execution, however, are timetags, which are uniform in the model. Strictly speaking, we could replaceour Newtonian model of time with a relativistic one and consider differ-ent frames of reference and transformations. The model, as is, can thusbe considered a model for a fixed (inertial) frame of reference.In future work we plan to consider distributed execution and its conse-quences (or lack thereof) on our denotational semantics. We also plan toprecisely identify conditions for these different possible definitions of de-terminism and verify them, using the Lean theorem prover [Mou+15] anda formalization similar to the one described here. As mentioned above,this is ongoing (unpublished) work with Marcus Rossel.
6.3.1 Applications in 5G

Having defined Reactors formally, we consider some applications for themodel. In this section we will discuss Reactors in the 5G standard.Telecommunication standards evolve constantly, pushing the limits ofsignal processing systems from almost every angle. Consumer demandsadapt to increases in capabilities. This results in a feedback loop that notonly raises the demands themselves, but also their heterogeneity. In LTEtoday we already see very dynamic demands, with different users requir-ing very different bandwidths at different times. With the increased capa-bilities of 5G, the dynamicity of the demand will only increase.Signal processing systems, however, are not built for dynamic work-loads; they must tolerate the worst case. This makes sense, since a sys-tem that is capable of processing the highest demands can also processlower demands. However, parameters like user count, resource blockssupported, used MIMO scheme and carrier aggregation have a nuancedrelationship in terms of resources pressure. Additionally, the sub-carrierspacing is also flexible in 5G systems. As a direct consequence, the real-time requirements have to adapt to the changing transmission time in-terval. All of this yields a parameter space with a large dynamic range ofpossible workloads.Figure 6.7 shows a simplified overview of the uplink modem in a bases-tation for 5G. We see that the overview already resembles MoCs likedataflow or Reactors. Details on the requirements, like the sizes and num-bers of FFT nodes depend significantly on the workload being processed.However, the dependencies between the resources required for the base-band processing and the parameters of the workload are non-trivial. Fig-ure 6.8 shows a small selection of parameter combinations for LTE base-

117

Sync FFT

FFT

EstimSync FFT

FFT

EstimSync FFT

FFT

EstimSync FFT

FFT

Estim

#Antennas
#Carriers

#Sub-Carriers
Inv

IDFT Demap

1010 11

DecodIDFT Demap

1010 11

DecodIDFT Demap

1010 11

DecodIDFT Demap

1010 11

DecodIDFT Demap

1010 11

Decod

IDFT Demap

1010 11

DecodIDFT Demap

1010 11

DecodIDFT Demap

1010 11

DecodIDFT Demap

1010 11

Decod

#Layers #RBs #Users

Figure 6.7: Simplified model of a basestation uplink modem. Adapted from Fig-ure 2 of [Wit+20]

FFT

IDFT
eqlz

demod

ChanInv

FFT

IDFT
eqlz

demod

ChanInv

FFT

IDFT
eqlz

demod

ChanInv

FFT

IDFT
eqlz

demod

ChanInv

FFT

IDFT
eqlz

demod

ChanInv

FFT

IDFT
eqlz

demod

ChanInv
No. RB: 50 No. RB: 6 No. RB: 75

No. RB: 100 No. RB: 15 No. RB: 25

0.000.250.500.751.00

0.000.250.500.751.00

Users: 1 , Carrier: 1Users: 1 , Carrier: 4Users: 10 , Carrier: 1Users: 10 , Carrier: 4Users: 12 , Carrier: 1Users: 12 , Carrier: 4Users: 16 , Carrier: 1Users: 16 , Carrier: 4Users: 4 , Carrier: 1Users: 4 , Carrier: 4Users: 6 , Carrier: 1Users: 6 , Carrier: 4

Figure 6.8: Different parameter combinations and their effects on the require-ments on computation in LTE. “No. RB” denotes the number of resourceblocks.

band processing and how the required computations depend on them. Inthe figure, the number of antennas and layers are both fixed at 1. Thesealso affect the required numbers of FFT, IFFT, equalization, demodulationand channel inversion nodes. The length of the values in the radar plotshows the relative amount of kernels required for each type of operation.Even for fixed parameters, designing modems for 5G is already an ex-tremely complex endeavor on its own. In order to make a system adapt-able, developers need to ensure that the behavior remains correct whenadapting. A model that ensures deterministic execution for easy debug-ging and time semantics for real-time reasoning is thus sought for thistype of applications. For this reason, we propose to use the Reactorsmodel [Wit+20]. We adapted the WiBench benchmark [Zhe+13] (cf. Fig-ure 6.10), dealing with PHY in LTE, using Lingua Franca [Loh+20a]. LinguaFranca is an implementation of the Reactors model.
Adaptability in 5G and beyond

We used LTE traces to extrapolate information about the dynamicity ofthe demands for 5G and beyond. These traffic traces, collected over a 5hour period spread over 15 days feature real data with over 1.2 millionRadio Network Temporary Identifiers (RNTIs) from 24 different base sta-tions [BCM20]. They were generously shared by Arka Maity, Nishant Bud-hev and Tulika Mitra.Figure 6.9 shows statistical data points extracted from the traces. In thefigure, every point represents the workload of a base station at a particu-lar set of subframes. We consider the relationship between the number

118

0

200

400

600

0 4 8 12 16Number of UEs

(To
tal)

Nu
mb

ero
fRe

sou
rce

Blo
cks

DynamicStaticImpossible
Instance count

110010000

Figure 6.9: Possible configurations in a resource-constrained LTE environment.The number of UEs are depicted with a meaningless random jitter forvisibility. Adapted from Figure 2 in [Wit+20].

of User Equipment (UE) units and the total number of resource blocks re-quired at those subframes. The size of each point represents how manysubframes in the trace had those precise requirements in terms of UEsand total resource blocks.In a traditional setup, with a static implementation of a PHY, we wouldmake worst-case assumptions. This includes the number of PEs and re-source blocks per UE that we can support, as dictated by resource con-straints. Let’s assume that, given our limited resources, our PHY imple-mentation supports at most 10 UEs and 47 resource blocks per UE. Thesenumbers are admittedly low, even for LTE. However, we choose this lowthreshold deliberately. This way we can use these LTE traces to extrapo-late the possible dynamicity of behaviors in 5G and beyond. Out of the
3017424 considered subframes in the traces, slightly over half (1689447)could be processed with these static resource constraints. These designpoints we classify as “Static” and depict as green points in Figure 6.9. Con-sider a dynamic system that can adapt to the current workload, e.g. bysupporting less UEs but more resource blocks per UE, or vice-versa. Wecan estimate the resources required for different configurations by gen-erating task graphs for each and comparing the computational resourcesrequired. Somedesign points in Figure 6.9 can be supported by a dynamicsystemusing the same resources as in the static version.We classify themas “Dynamic”. Slightly less than half of the subframes in the trace (1327900)fall under this category. Finally, the remaining 77 points would needmoreresources to be supported, evenwith a dynamic system.We classify themas “Impossible” (red points). Overall, this means that over 99.997% of thesubframes observed could be implemented by a dynamic system, wherea static one using roughly the same resources covers less than 56%.This statistical analysis of LTE traces shows very clearly how much abaseband system could benefit from dynamically adapting to the work-load. We can cover significantly more design points with constrained re-sources. Equivalently, we can use less resources to cover all the observedcases. However, such dynamic systems come with several drawbacks.Programming base station decoders is already a complex endeavor forstatic systems, much more so with dynamic ones. With real-time require-

119

WiBench

GenerateInputs

(0, 1nsec)
2

1 Encoder RateMatcher Scrambler Modulator Precoder

SubCarrierMapper SCFDMAModulator ChannelReactor SCFDMADemodulator

SubCarrierDemapper EqualizerReactor TransformDecoderReactor Demodulator

Descrambler RxRateMatcher TurboDecoder

Figure 6.10: The Reactor network of the modified WiBench benchmark in LinguaFranca.

ments, we must ensure that the changing system not only respects thedeterministic semantics of the decoder, but also the timing requirements.This is why we propose to use a formal model of computation to describe5G (and beyond). Using themodel of Reactors we canmake the executiondeterministic and timed. It also can help define well-behaved dynamic be-havior through the use of mutations in future work.
Modeling 5G with Reactors

In ongoing (unpublished) work with Robert Wittig and Christian Menard,we adapted theWiBench benchmark [Zhe+13] to work with Lingua Franca,an implementation of Reactors. Figure 6.10 depicts the Reactor networkimplementing this benchmark. Since WiBench is single threaded, we onlycompared to a single threaded version in Reactors. In particular, we didnot leverage data level parallelism throughout the layer, nor the pipelineparallelism that we get from the network’s topology for free. This is aworst-case assumption we made to analyze the overhead. By using theReactor model, the benchmark is deterministic, even if it was to run us-ing this parallelism [Loh+20c]. More importantly though, we can use themodel’s time semantics to define the constraints that ensure each sub-frame is processed on time. Our implementation is thus still static (cf. Fig-ure 6.10), since we have not yet specified well-defined mutations. This im-plementation presents a great opportunity for future work to researchand develop safe mutations for 5G.Our implementation of the Reactor-based WiBench had an overheadof 15% (median over 100 executions), compared to the baseline imple-mentation of WiBench. There is certainly potential to improve this, e.g. asthe scheduler of the C++ implementation on Lingua Franca, used for thisimplementation, was not optimized at all. Nevertheless, this is a purelysoftware-based implementation, so it serves only as a very rough estima-tion of the overhead; it is best suited to study the model’s suitability anddevelop Reactor mutations for adaptability. An efficient implementation

120

in practice could work with reconfigurable hardware, e.g. implementinga Precision Timed (PRET) [EL07] machine, which is well-suited to Reactors’semantics.In general, these preliminary results open up many avenues for re-search in adaptability in 5G. We can the Reactors model, at the semanticlevel to support the necessary adaptability in 5G. Similarly, we can designreconfigurable hardware that implements it.
Other applications: Automotive

The reactors model has many desirable properties for designing reliable
CPSs, which can be applied in a multitude of domains. An important exam-ple is the automotive domain, where the high-performance requirementsof autonomous driving and modern entertainment are coupled with thetimed CPS including the car and its surroundings. To keep the scope ofthis thesis limited, we omit a thorough discussion of an application of Re-actors in the automotive domain. In [Men+20], we showed how we canuse the Reactorsmodel to achieve determinism in the AUTOSAR AdaptivePlatform (AP), a modern automotive standard.

121

7PROGRAMMING LANGUAGES

In this thesis we have discussed multiple Models of Computation (MoCs),reasoning about their semantics and how to best deploy themon a partic-ular hardware architecture. A natural question arising from this is, “howdo we program in these MoCs?”.In Chapter 2, Section 2.1 we saw the C for Process Networks (CPN) lan-guage. It is a DSL designed to describe data flow programs with the KMQblocking-read semantics, with special annotations for SDF actors. Other
MoC-based languages exist, like the CAL actor language [EJ03], or LinguaFranca [Loh+20b]. These languages allow “freedom from choice” [Lee19],by enforcing a model that limits the ways in which to make mistakes, ide-ally without compromising the expressiveness of what can be designedwith the model.A common trade-off when designing programming languages is alsothe question of expressiveness versus performance. High-level expres-sive abstractions are often at odds with low-level performance optimiza-tions. However, well-designed abstractions can use semantics-preservingcompiler transformations to still derive an efficient execution. The wholeprinciple of software synthesis can be seen as an instance of this.This chapter discusses programing languages for defining and enforc-ing the semantics of a MoC. After a short review of existing languages, itfocuses on the Ohua [Ert19] language, which defines dataflow implicitly. Italso discusses how we can leverage the language and its semantics to de-fine semantics-preservings transformations at a language level. We showthis for a use-case optimizing I/O on microservice-oriented architectures.
7.1 Freedom from Choice
This section reviews some programming languages and how they provide“freedom from choice” in the sense of A. Sangiovani-Vincentelli [Lee19].There is a distinct sense in which this is the central question of program-ming languages in general. By removing memory management throughhaving no pointer arithmetic and garbage collection, Java frees its usersfrom multiple families of errors that are possible in C. Rust’s owner-ship types take a different approach, also removing complete familiesof memory-management based errors, without introducing large perfor-mance overheads or unpredictable behavior from the garbage collector.Elm [Cza12], on the other hand, exposes a functional paradigm with astrong type-system for GUI development of web applications, which elim-inates virtually all run-time errors.These kinds of “freedom from choice” are beyond the scope of this the-sis, which focuses on MoCs like those described in Chapter 6. In more con-strainingMoCs, like the ones discussed here, the temptation to break awayfrom the semantics might be higher. An interesting observation and dis-cussionof this phenomenon canbe found in [TDJ13]. Not only does it showthat developers commonly break away from the semantics if these arenot enforced, but also gives multiple explanations why. This is why webelieve MoCs should not be exposed as a library, but rather as implicit in

123

Figure 7.1: An audio filter in SDF semantics in Ptolemy II

the semantics of a (full) language. Here we will briefly survey languagesfocused on MoC-based paradigms.
7.1.1 Dataflow, Actors and Discrete Events

Most well-known languages that follow MoCs like the ones described hereare based on the actor model. Compared to more sophisticated models,the actor model has mostly intuitive semantics. The Erlang language is asuccessful example of a language whose semantics are in principle an im-plementation of the (Hewitt-Agha) actor model. Another example of anactor based language is Rebeca [Sir04], which is primarily a design andspecification language used in model checking. Another prominent ex-ample is the CAL actor language [EJ03]. It has been used to define theReconfigurable Video Coding (RVC) standard [Bha+11]. The RVC-CAL com-piler1 is an Eclipse-based compiler for the CAL actor language, which isused to compile the RVC reference implementations.Ptolemy II [Pto14] is another prominent MoC-centered programming en-vironment. In contrast to most of the other frameworks, Ptolemy II sup-ports a plethora of MoC, including most of the models discussed in thisthesis. Also in contrast to most other frameworks, MoCs are a centralcomponent of Ptolemy II, which makes them explicit using directors. Theframework uses the Java programming language to allow the definitionof arbitrary actors, but it also comes with a large library of pre-definedactors. Figure 7.1 shows an implementation of an audio filter, which whilenot identical, is semantically similar to our running example described inChapter 2. This implementation uses only pre-defined actors in Ptolemy II.In the case of discrete-event models, there are many well-establishedlanguages which implement them. The hardware description languagesVHDL and Verilog work with discrete-event semantics, since hardware ar-guably does. The SystemC language, well known for discrete event sim-ulations (of hardware), also has discrete event semantics [Mue+01]. Simi-larly does the related SpecC language [Gaj+12]. Finally, more on the soft-ware side are the Synchronous languages, like LUSTRE [PHP87] or ES-TEREL [BD91], which are (complete) programming languageswith discrete-event semantics.
1 https://sourceforge.net/projects/orcc/

124

https://sourceforge.net/projects/orcc/

Figure 7.2: The audio filter example in Lingua Franca

The Lingua Franca language [Loh+20b]2 is also in the discrete eventsdomain. Lingua Franca is a complex framework that implements theReactors model, described in Section 6.3. This novel language is a self-described polyglot coordination language, which means that it is not usedto define the computation, but rather, to compose reactors written in adifferent language. Nothing prevents programmers from “cheating” in thecode of the reactors and going around the semantics, yet it does enforcethem more strongly than a library. Lingua Franca is a (complete) DSL thatgenerates Reactors-based applications in a source-to-source compilationprocess. Figure 7.2 shows the Eclipse-based programming environmentof Lingua Franca, with an implementation of the audio filter benchmark.Wewill not discuss the frameworkmore in detail, as the design and imple-mentation of Lingua Franca is not part of the contribution of this thesis.In Chapter 2 we discussed the CPN language, as well as the MAPSframework which is used to lower CPN to different implementations inheterogeneous systems. In contrast3, e.g. the YAPI programming inter-face [Koc+00] defines process networks only as a runtime library and canbe evaded just like Scala developers do with actor frameworks [TDJ13].The Sesame framework uses a DSL called YML, and also supports YAPI-based programs, e.g. derived from Compaan [SD03] for DSE[PEP06]. Mostof the software synthesis flows discussed in Section 2.6 use the languagesdescribed here, e.g. TURNUS which uses CAL or SystemCoDesigner whichis based on SystemC. Other systems like DAARM or mocasin do not useactual source code for the applications but rather application models for
DSE.Most of the flows discussed above and in Section 2.6 are academicand deal with more sophisticated MoCs. Many ideas that seem goodin academia do not hold up in a practical development environment,where the learning curve of the models and time-to-market considera-tions change the field. It is therefore not surprising that the more sophis-ticated models have seen less adoption. Nevertheless, some MoC-basedcommercial systems do exist and have seen successful adoption. For ex-ample, the LabVIEW Communications System Design Suite restricts theLabVIEW language to a dataflow MoC. Similarly, Matlab Simulink has a

2 https://github.com/icyphy/lingua-franca3 As an extension of C, the CPN language also does not fundamentally prevent programmersfrom breaking the semantics.

125

https://github.com/icyphy/lingua-franca

1 (defn -main

2 "Audio filter example"

3 [args]

4 (ohua

5 (smap

6 (algo [s]

7 (let [[x y] (split s)]

8 (let [[xout yout]

9 [(ifft (filter (fft x)))

10 (ifft (filter (fft y)))]]

11 (sink xout yout))))

12 (src))))

Listing 5: The Audio Filter Example written in Ohua

dataflow-like semantic with time triggering, and is thus closer to discreteeventmodels. On the discrete events side, asmentioned above, hardwaredescription languages like Verilog or VHDL have discrete-event semantics.These languages are very widespread and are used commercially.
7.1.2 Implicit Dataflow

The languages surveyed so far are explicit about their abstractions: Ac-tors, Reactors or Processes are declared explicitly. Similarly, channels de-scribing the data flow are made explicit either through channel declara-tions or through the connection of explicit ports. A programmer writing ine.g. CPN or Lingua Franca has to have a model of the network describingthe application in their head (or in their IDE). Implicit abstractions, on theother hand, work by generating implicit models from linguistic constructsthat don’t exhibit their structure directly.Implicit abstractions, as we just defined them, are ubiquitous in pro-gramming languages. Objects in object-oriented programming (OOP), forexample, are an implicit abstraction for data encapsulation that is funda-mentally similar to actors. A thorough classification of these implicit mod-els is outside the scope of this thesis. Instead, we will look closely at theOhua programming paradigm [Ert19], which derives a dataflow executionfrom functional semantics.The Ohua programming paradigm, by S. Ertel, and others is an implicitmodel of concurrency. It can be used to express concurrency at a lan-guage level, without explicit constructions, like threads and locks. Thiscomes from lowering an Ohua program into a dataflow-based execution.This model is not part of the original contribution of this thesis. We willintroduce it here as background material.Ohua itself is a general paradigm that works onmultiple languages, andthe framework has evolved over the years of its development. The versionof Ohua we will discuss here is based on Clojure and Java, but the Ohuacompiler and its principles work with many languages. Rutimes also ex-ist for Rust, Javascript or Go, at different levels of maturity. Ohua is bestunderstood by diving directly into examples.Consider the code in Listing 5. The code in the example iswritten in a DSLembedded in Clojure, a dialect of Lisp. It implements the same examplefrom Chapter 2 (cf. Listing 2 or Figure 2.1), a two-channel audio filter. Inter-

126

nally, the compiler transforms this code into a dataflow graph (similar tothat depicted in Figure 2.1) for execution. A special function, ohua, anno-tates the AST it receives as argument to be executed as implicit dataflow.The smap function is a special variant of map that considers state in thefunctions. We will discuss the semantics of smap in Section 7.2. Finally, the
algo definition in Ohua is akin to the anonymous function definition fn inClojure. It defines Ohua “algorithms”, which are transformed to dataflowactors. As a MoC, this can be embedded in the Dennis dataflow modelsdiscussed in Chapter 6.The example in Listing 5 can be transformed into a dataflow graph forexecution.The main advantage of this transformation is that a dataflowgraph exposes concurrency, which can be exploited e.g. in a parallel ex-ecution or for optimizing I/O (cf. Section 7.3). This duality between codeand dataflow graphs is a core concept behind Ohua. The other central pi-lar of the Ohua design concept are stateful functions, an abstraction thatencapsulates functions with state and side-effects in the context of theirdataflow execution.
7.1.3 Stateful Functions

The functional programming community has made the distinction be-tween pure and impure functions widespread. A pure function is a func-tion in themathematical sense of the word: it receives a certain input and,deterministically, produces an output. This could be as simple as negat-ing a boolean value, or as complicated as inference with a gargantuandeep neural network. The main point is that the entirety of the usage of afunction is that it returns a value in a deterministic fashion from its inputs.Inmost imperative languages, like C or Java, functions usually also haveside-effects. Writing the output to the terminal, storing data in a globaldata structure or even reading data from a sensor in a CPS, these are allexamples of side effects. A language that only allows pure functions is ba-sically useless, since even printing the result of a computation is impure.Stateful functions are a special abstraction, where the concept of purefunctions is extended to consider the state of the computation. While thisexcludes aspects like the time of the computation and side-effects likeactuation, it is general enough to cover large classes of functions used inmost software. A stateful function is a function f : a Ñ b and an abstractstate S, where the execution of the function can be seen as dependenton the state, which it also modifies. In other words, we consider f as afunction:
f : aˆ S Ñ bˆ S (7.1)

Pure functions can be seen as a special case of stateful functions, with atrivial state S “ t˚u. Listing 6 shows an example of a stateful function, writ-ten in Java, which is identified as such by the @defsfn annotation [EAC18].It models a parser, which writes the parsed symbols to a symbol table.The table, a private object of the class, is the state of this stateful function.It is implicitly managed as the state by the Ohua runtime.
7.2 Stateful Parallelism
Software synthesis formulticores is effective becausewe useMoCs that ex-pose concurrency. The most natural way of leveraging the exposed con-

127

public class ParseVariable {

// state

private SymbolTable table;

@defsfn

public SymbolObject parse(ExpressionObject expr) {

var symbols = expr.parse();

this.table.write(symbols);

return this.table.getLastSymbol();

}

}

Listing 6: An example of a stateful function.

currency is parallelism. When writing code using explicit models in thedataflow family, like KPN or SDF, the concurrency also becomes explicit.However, in an implicit language like Ohua, we need to be careful to con-sider stateful computation when extracting concurrency.Ohua uses a special operator, smap, to derive concurrency from statefulcomputation. The principle behind smap is that it extends the higher-order
map function to consider the state of the function it maps. This adds a de-pendency between multiple executions of the same (stateful) function.For a single function mapped over a collection, this principle exposes noconcurrency. There is none, in general. However, when we compose mul-tiple functions in a map, we get a different picture.Consider three (stateful) functions, f : a Ñ b and g : b Ñ c, h : c Ñ dwith respective states S f , Sg and Sh, which we thus model as functions:

s f : aˆ S f Ñ bˆ S f , sg : bˆ Sg Ñ cˆ Sg, sh : cˆ Sh Ñ dˆ Sh

We use the prefix s to distinguish the stateful version of the function(with the state dependencies explicit). Then,we get the dependency graphfor the execution of the (Haskell) expression map (f.g.h) inputs as de-picted in Figure 7.3
f g h

input1

input2

output1

output2

inputn outputn

[

,

…

],

Sf,0

sf1

sgn

Sg,0

sg1

shn

sh1

Sh,0

[

,

…

,]

Sf,n Sg,n Sh,n],,[

[],,

sfn

Figure 7.3: Dependencies of (map (f . g . h) inputs). Adapted from Figure 5in [Ert+19b]
The pattern we see in Figure 7.3 is very similar to the higher-order func-tion scan on the state. Intuitively, if we consider the function sf' that onlyreturns the state of sf, then the state S f ,i :“ pS f qi corresponds to the

128

i-th value of the expression scanl sf' S f ,0 input. Threading the statearound f explicitly can be achieved with the functional pattern known asa monad, in a fashion similar to the state monad in Haskell. Two differ-ent concrete implementations of this principle in Haskell are discussedin [Ert+19b]. These implementations are beyond the scope of this thesis.The result of this monadic composition of state threads, however, is thatwe can write virtually the same expression as above in a monadic compo-sition:
smap (f >=> g >=> h) inputs

The >=> operator is the monadic equivalent of function composition,with the . (dot) operator. This yields the dependencies explicitly. Similarly,these state threads and their composition can be formalized using cate-gory theory [Ert+19a]. This formalization is rather technical. We will onlysketch it here.Let C be a Cartesian closed category, which is a technical conditionthat in a model-theoretic interpretation of categories corresponds to thetyped λ calculus [Hue85]. We can think of C as the values and functionsof the language, like the category of Haskell types Hask4. A Cartesianclosed category has a terminal object K P ObjpCq, and any two objects
B, C P ObjpCq have a product BˆC and an exponential BY. These construc-tions are defined via universal properties in commutative diagrams andare rather technical. We will omit the precise definitions here for spacereasons. It suffices to say they correspond with the known constructions,e.g. the product is the Cartesian product in the category Set of sets.The main idea of formalizing and dealing with state threads is to in-dex them. We do this through a (countable) index set N Ď N, whichfor practical purposes we can also think of as being finite. We “split” thestate into local states which correspond to the indices in N. Formally, let
Si P ObjpCq, i P N be pairwise distinct (i.e. i ‰ j ñ Si ‰ Sj). We define for
I Ď N the state object SI “ ˆiPISi as the product of the Si for all i P I. If
I “ N, we call the state object SN the global state. The individual states
Si :“ Stiu for i P N we call fundamental states. We thus formally define a
state thread as a morphism:

f : paˆ SIq Ñ pbˆ SIq, for an I Ď N

This definition formalizes the intuition behind Equation 7.1. It is justifiedby Lemma 7.2.1.
Lemma 7.2.1 (Lemma 1.3 of [Ert+19a]). The following define the objectsand morphisms of a subcategory S of C,

ObjpSq “ taˆ sI | a P ObjpCq, I Ď Nu , (7.2)
MorphpSq “ t f : paˆ sIq Ñ pbˆ sIq | f P MorphpCq, I Ď Nu . (7.3)

Proof. Since C is a category, and as such the composition of morphismsbehaves as required, it suffices to show that morphisms respect thestructure of the subcategory. It is clear that idaˆsI P MorphpSq for every
a P ObjpCq, I Ď N, since ida P MorphpCq. Let f , g P MorphpSqwith such that
g ˝ f is defined in C. Then it has to hold that there are a, b and c P ObjpCqas well as I Ď N, such that f : paˆ SIq Ñ pbˆ SIq and g : pbˆ SIq Ñ pcˆ SIq,since g ˝ f is defined in C. But then g ˝ f : paˆ SIq Ñ pcˆ SIq is in MorphpSqby definition of S .

4 Note that this might not, strictly speaking, be a category. See http://math.andrej.com/

2016/08/06/hask-is-not-a-category/

129

http://math.andrej.com/2016/08/06/hask-is-not-a-category/
http://math.andrej.com/2016/08/06/hask-is-not-a-category/

[Source: I Love APIs 2015 by Chris Munns, licensed under CC BY 4.0, available at:
http://bit.ly/2zboHTK]

Figure 7.4: Microservices at Amazon.
Intuitively, we think of a state thread f : paˆ SIq Ñ pbˆ SIq as operatingonly on the state object SI , which is a part of the global state SN . As canbe seen from the proof of Lemma 7.2.1, state threads compose when theyhave the same state objects SI . The goal of the formalism is to be able toextend this composition to arbitrary I, J Ď N. In particular, this gives us aframework to reason about the dependencies of state threads. Indeed, if

I X J “ H, then the state threads f : paˆ SIq Ñ pbˆ SIq and g : pcˆ SJq Ñ

pdˆ SJq are concurrent.The definition of a general composition of state threads is, again, some-what technical. We will only sketch it here: Given a state thread f : paˆ
SIq Ñ pbˆ SIq, the idea is to define an extension f˚ : paˆ SNq Ñ pbˆ SNqwhich acts as an identity on aˆSNzI . By using a technical construction, thisextension can be made such that the information of the I is kept, whileallowing a well-defined composition of state threads. In this way, the re-sulting category allows us to elevate arbitrary computations in C to statethreads in a fashion that allows us to reason about their composition bylooking at the state objects SI , as described above.The formalism outlined here defines the semantics of smap, allowingus to express implicit concurrency even when dealing with stateful func-tions.With theHaskell implementation from [Ert+19b], this allows us to ex-tract implicit parallelism. These smap semantics of Haskell are the same asthe Clojure-based smap in Ohua. The implicit concurrency extracted withOhua, however, enables more than a parallel execution. We can also useit to optimize I/O.
7.3 Concise code and Efficient I/O
Dataflow models expose concurrency. While concurrency enables par-allelism, it can also be leveraged in other ways. This section discussesŸauhau [Ert+18], a framework for optimizing I/O inmicroservice-based sys-tems. This Ohua-based framework uses the concurrency exposed by the
MoC to do so.The infrastructure of large internet companies today relies to a greatextent on microservice-based architectures [DeC+07; Mar+14]. Figure 7.4shows the microservice infrastructure of Amazon circa 2015. It shows mi-croservices as nodes, and how they depend on each other as edges. Thefigure serves to illustrate the complexity of microservice-based architec-tures.

130

https://www.slideshare.net/apigee/i-love-apis-2015-microservices-at-amazon-54487258
https://creativecommons.org/licenses/by/4.0/
http://bit.ly/2zboHTK
http://bit.ly/2zboHTK

In microservices, I/O plays a crucial role in the performance. A microser-vice will commonly send multiple requests to a different microservice,as part of its operation. Each request comes with a significant overheadfrom establishing the connection and sending the data. If the requests donot depend on each other, however, they can instead be sent as a single,batched request for mitigating the overhead.Batching requests is not a novel idea, it is well-established as a tech-nique to optimize I/O. The trade-off comes from the code required towritebatched requests. A developerwriting code for such amicroservice-basedarchitecture needs to take both the functionality and the I/O optimizationsinto account. This makes the code harder to write, read and maintain, asthe optimizations clutter the readability of the functionality. This is un-acceptable in a context where development time is a highly valuable re-source, be it for human-resource costs or because it is important to havea working solution as quick as possible.The situation described is the case for Facebook’s spam-fighting ser-vices [Mar+14]. When fighting spam, a novel filter must not only be ef-fective and perform efficiently, it also should be implemented as fast aspossible without compromising the functionality. An ideal spam-fightingsystem thus allows the developers to focus on the functionality, and op-timizes the implementation without cluttering the code. This is preciselywhat the Haxl system attempts, using the Haskell abstraction of applica-
tive functors. Consider the Haskell code snippet (taken from [Mar+14]) inListing 7:
let numCommonFriends =

length (intersect (friendsOf x) (friendsOf y))

in

if numCommonFriends < 2 && daysRegistered x < 30

then...

else...

Listing 7: An example of a Spam-fighting request to be optimized by Haxl (from[Mar+14]).
The listing shows a code example where, for spam fighting, the numberof common Facebook friends of two users are calculated. This is done bycalling the function friendsOf for both x and y. Code like Listing 7 is easyto read, but unoptimized, it will send to requests to the microservice thathandles the friendsOf function. The solution of Haxl is to use applicativefunctors to compose I/O calls, such as friendsOf, and automatically batchindependent requests this way. Listing 8 shows how this is achieved inHaxl using applicative-do notation.Under the hood, the applicative functor definition for friendsOf in Haxlgathers the arguments x and y and makes a single, batched request. Thisoptimizes the execution with a minimal obfuscation of the code: A devel-

do a <- friendsOf x

b <- friendsOf y

return (length (intersect a b))

Listing 8: The request fromListing 7 batchedusing applicative-do (from [Mar+14]).

131

let numCommonFriends “

fflengthpffintersectp
fffriendsOfpiopxqq, fffriendsOfpiopyqq

qq in . . .

Listing 9: The request from Listing 7 in Ÿauhau.

oper has to switch from a pure functional style to an applicative style, butcan otherwise focus on the semantics of the program.Our central observation is that this I/O optimizations all come “for free”from the exposed concurrency in a dataflow execution. If we define adataflow operator that gathers the inputs and issues a single batched re-quest, we get the composition from the semantics of dataflow. This is themain idea behind Ÿauhau.Ÿauhau is based on the iteration of Ohua embedded in Clojure. It isa language with an explicit annotation for functions which perform I/O.Leveraging these annotations, a semantics-preservig transformation canminimize the number of independent I/O-performing function calls. Wemap the Clojure-based Ohua to an internal expression IR, as is shown inFigure 7.5.
x ÞÑ x (let [x t] t) ÞÑ let x “ t in t

(io x) ÞÑ iopxq (fun [x] t) ” #(t) ÞÑ λx.t

(t t) ÞÑ t t (f x1 ... xn) ÞÑ ff f px1 . . . xnq

(if t t t) ÞÑ ifpt t tq

Figure 7.5: Mapping the terms of the Clojure-based language to an expression IR.Adapted from Figure 9 in [Ert+18].
The expression IR defined in Figure 7.5 is based on λ calculus with a letconstruction for lexical scoping and explicit conditionals (if). The centralinnovations of the language are the two particular terms, ff for foreignfunctions, which is any (possibly stateful) function. The other term is io,which is an explicit annotation that a function does I/O. The premise isto optimize the number of annotated I/O calls leveraging the concurrencyfrom the dataflow semantics derived from this language. The example inListing 9 lists the same request as Listing 7 in Ÿauhau.The I/O optimizations in Ÿauhau come from batching requests. Insteadof calling fffriendsOf(io(x)) and fffriendsOf(io(y)) as two separate I/O re-quests, we can call them as a single batched request, since they are in-dependent. In Ÿauhau we do so by introducing a batched I/O statement,

bio. The bio statement takes a list of arguments and does a batchedcall with this list. In the example, the two statements become a single
fffriendsOf(bio([x,y]).Through semantics-preserving transformations using let floating wecan get independent I/O calls batched this way and transform them todataflow. The explicit concurrency in the dataflow transformation allowsto execute batched I/O calls when they arrive. The details of the transfor-mation [Ert+18] are beyond the scope of this thesis. We discuss how we

132

0

10

20

30

0 5 10 15 20No. of levels

No
.of

I/O
call

s
HaxlMuseSeq.Yauhau

Figure 7.6: Batching I/O with Ÿauhau compared to Haxl and Muse. Adapted fromFigure 11 of [Ert+18].

evaluate the effectiveness of the transformation using the Level Graphsmethodology described in Section 3.3.Figure 7.6 shows a comparison of our framework, Ÿauhau, with the twoother main alternatives in the public domain, Facebook’s Haxl [Mar+14]and Muse [Kac15]. We cannot compare with Twitter’s Scala-based variant,Stitch[Don14], which is neither described in a peer-reviewed publicationnor open-sourced. We do not have a real test workload, like Facebookdoes, to reproduce the evaluation of [Mar+14]. For this reason, we usedsynthetic graphs with a similar structure to compare the approaches. Weproduced random Level Graphs with code annotations as described inSection 3.3. We varied the number of levels between 1 and 20 in the gen-erated graph. An increasing number of levels results in increasingly com-plex applications and interactions. For this baseline comparison we dis-abled sub-functions by letting the probability of labeling a node as a sub-function be 0. For each number of levels, we generated 20 graphs andproduced code for each of the frameworks with the structure of each ofthese twenty graphs. This way, the same workload is evaluated for eachframework, as equivalent versions are produced from a single graph. Thenumber of I/O accesses in each individual graph is random nevertheless,which is why we used 20 graphs for each number of levels considered, toobtain a statistical assessment of the batching effect of each framework.The results of Figure 7.6 show that both Haxl and Muse consistentlybatch I/O calls, improving over a sequential execution in a statistically sig-nificant fashion. The ratio of I/O calls compared to a sequential executionimproves with increasing code complexity, as measured by the numberof levels. Compared to Haxl and Muse, which produce equivalent results,Ÿauhau batches significantly more I/O calls. The reason for Ÿauhau beat-ing the other two frameworks is that it can batch across multiple levels,due to the underlying dataflow representation. Both Haxl andMuse workin rounds, which depend on the code structure. Thus, to fully optimize I/Oin these frameworks, developers need to re-organize their code to maxi-mize batch requests in each round. This partially defeats the purpose ofthe DSL, namely to free developers from performance concerns and letthem focus solely on the functionality.Figure 7.7 shows a second experiment, where concurrency in I/O is en-abled in the dataflow graph. Since Haxl and Muse are equivalent in termsof their batching, we just compare to Haxl in this experiment. We com-

133

0

2000

4000

6000

0 5 10 15 20No. of levels
Ser

vice
late

ncy
[ms

]

HaxlYauhauYauhau(conc. I/O)

Figure 7.7: Concurrent I/O with Ÿauhau compared to Haxl and Muse. Adaptedfrom Figure 12 of [Ert+18].

25

50

75

100

0.1 0.2 0.3 0.4prob. of function/algorithm calls

No
.of

I/O
call

s

HaxlMuseYauhau

Figure 7.8: Concurrent I/O in modular programs with Ÿauhau. Adapted from Fig-ure 13 of [Ert+18].

pare Ÿauhau to a variant which blocks computation when performing I/Oand a concurrent dataflow variant. Again we use level graphs to producebenchmarks tailored to our problem, this time we add a fixed (randomly-chosen) execution time for the computation and I/O nodes in the graph,to simulate the computation time and I/O latency. We see how the concur-rency of the dataflow MoC improves the latency of the service significantlybeyond the additional benefits already provided by the round-free batch-ing.Finally, an important advantage of the dataflow MoC we have not eval-uated is how it also allows us to transcend the function boundaries. Totest this we can again leverage the full control we get from our LevelGraph benchmarkingmethod.We fix the number of levels, controlling thecode complexity, and consequently the average number of I/O requests.Instead of varying the number of levels, we allow sub-functions and varythe probability of generating such a sub-function. The higher the proba-bility, the more nested functions appear in the code. In other words, wecan make code with similar levels of complexity be more or less modular.This allows us to test directly how modularity affects batching.Figure 7.8 shows the results of themodularity experiment. For this case,Haxl and Muse differ, since our Haxl back-end uses applicative-do desug-aring, which allows the compiler to optimize more than in Muse. Most

134

notably however, both Haxl and Muse significantly increase the amountof I/O requests when the program becomesmore nested, while in Ÿauhauthis is not the case. This is because of the underlying dataflow MoC, whichflattens the dependency graph, effectively inlining the sub-function callsand allowing the framework to batch across function boundaries. In par-ticular, thismeans again that the premise ofmaking developers not worryabout performance in the DSL is partially broken by Haxl and Muse, andthis is fixed by Ÿauhau.We have seen how MoC-based design can be useful in a different con-text, besides the CPS applications we focused on in the previous chap-ters. In particular, the Ohua approach can be used to make the modelmore implicit in the computation, which is crucial for developer adoptionin many contexts. Finally, we have seen in this section as well some con-crete advantages of randombenchmarks with a clearly-defined structure,in the concrete example of the Level Graphs from Section 3.3. They al-lowed us to tailor experiments to isolate specific features of our dataflow
MoC-based approach and compare them to the other state-of-the-art ap-proaches, which would not have been possible otherwise.

135

8RELATED WORK

The nature of this thesis is not focused enough for us to discuss relatedwork from a general point of view. Perhaps the closest in spirit to theworkpresented in this thesis is the Ptolemy II project [Pto14]. It is a tool for ex-ploring model-based design and has a strong focus on CPSs. Ptolemy II isvery comprehensive and studies and implements several MoCs discussedin this thesis (cf. Section 6.1). The scope of Ptolemy II is far larger andmoredetailed than this thesis. It is, however, aimed at application developers.In contrast, many methods in this thesis (chapters 4-5) are more focusedon tool developers, for improving themethods enabling model-based de-sign.Instead of discussing related work generally, we will go over on the dif-ferent methods proposed here to improve model-based design, and dis-cuss related work by broader categories. In most chapters and sectionswe discuss related work directly. While we will systematically go over re-lated work here, we refer to the according chapters and sections for dis-cussion.
8.1 Dataflow-based Software Synthesis
There are many tools for software synthesis, as we discuss in Section 2.6.We have mentioned [Lin98] which uses Petri Nets, or [RPM92] basedon SDFs. The flows in [BLM00; Pin+95; BML12] are generally based ondataflow.More recently, there is SystemCoDesigner [Hau+08], which is based onSystemC and targets Field Programmable Gate Arrays (FPGAs). The sameis the case for the dataflow-based CAPH [SBA13] framework. On the soft-ware side, there is the Turnus [Cas+13] flow, which is based on RVC-CAL.Also relevant is the PREESM [Pel+14] flow, which is based on parametrizedextensions of SDFmodels. These flows are all related to MAPS [CLA11], andits spinoff in Silexica, which is the KPN-based software synthesis flow thatwe focus on in this thesis, and describe in Chapter 2. As such, the moreclosely related tools are KPN-based flows, like Sesame [Erb+07], with therelated ESPAM [SDN06] andDaedalus [Nik+08]. Similarly, the DOL [Thi+07]is a closely related KPN-based flow.While we did not propose a new software synthesis flow, the methodsin this thesis and in mocasin are related tomethods implemented in thesediverse flows. To the best of our knowledge, there are no systematic com-parisons of approaches and heuristics in terms of their performance, aswe argue in [Goe+16]. The survey in [Sin+13] is a systematic comparison ofmapping approaches at an abstract level, but it does not execute and com-pare the different heuristics in benchmarks. The work in [Bra+01], doesexecute and compare heuristics, on the other hand, but these are frombefore the multicore era and not as directly related.

137

8.2 Mapping Space Structures
In [TP13], Thompson and Pimentel exploit the mapping space structureexplicitly, exploiting both symmetries of the problem and a kind of met-ric for the mapping space in the form of operators for genetic algorithms.These can both be seen as special cases of the structures in Chapter 4, al-beit for a simpler case with homogeneous architectures. The work fromRichthammer and others [RG18; RFG20] is very similar in nature to the ap-plications discussed in Chapter 5. They also aim to improve DSEmethodsfrom an algorithm-agnostic fashion, although the concrete structure theyexploit is different. Their methods are orthogonal to ours (and could becombined). Less directly related are approaches for pruning the designspace in general settings, outside the mapping problem [WS04].
8.2.1 Symmetries

Symmetries have been explored in software synthesis implicitly in manycases, e.g. in [HT01; Kre+05; Sin+10; Rol+15]. In fact, when researchers ordevelopers just distinguish between core types in architectures with sim-ple memory subsystems they are implicitly considering the symmetriesof the problem. The problem becomes more difficult when the architec-ture topologies are more complex. The authors of [Sch+17] also considersymmetries in DSE, albeit in a more ad-hoc fashion (without the mathe-matical theory of groups or semigroups). In a related idea, in [Wei+16]they also introduce the concept of “shapes”, which are a special case ofthe symmetries exploited in the TETRiSmethod, but is limited tomeshes in
NoCs. For some applications, the symmetries have also been consideredexplicitly [Coh88], but not systematically like we do in this thesis.Methods from group theory have also been used to exploit symmetriesfor problems in computer science and engineering before, in ways thatare very similar to the methods discussed in this thesis [Cra+96; Cla+98].In particular, some of our methods are inspired by the usage of wreathproducts in model checking [DM09].
8.2.2 Distances

Distances between mappings are commonly described in NoC-based sys-tems. For example, the heuristic described in [Sin+10] considersmappingsin NoC systems and uses the number of hops in the topology to find them.This strategy is common in many approaches. In [Wei+14], for example,the authors encode a related notion of distance in the constraints of theiroperating points. To the best of our knowledge, explicit low-distortion em-beddings have not been used in this context before.Robustness in computation is a broad subject andmuchwork has beendone in different aspects of it, albeit most of it does not consider robustmappings explicitly. The work of [ZK11; Zha19] defines mapping migrationstrategies, without focusing on a DSE for robust mappings. A strategy forfinding robustmappings explicitly was proposed in [Che+16], using redun-dancy instead of the geometry of themapping space. This allows formorerobustness but requires more resources. Design centering methods, likethe ones we used to find robust mappings, have also been used in manyother disciplines in engineering, e.g. integrated-circuit design [Che+15].

138

To the best of our knowledge, the only other work defining compact-ness of mappings explicitly is [Yan+10]. However, the quality of this work,including the heuristic and its evaluation, is dubious. The idea behindcompactness of mappings is composability of applications, on the otherhand, which has been seriously researched with other methods. CoMP-SoC [Han+09] or the work in [Kum+08] deal with composability of applica-tions. They do not do so using the geometry of the mappings1, however,but using sophisticated hardware support instead.
8.3 Run-time and hybrid approaches
There are many run-time and hybrid flows related to our TETRiS approach.The flows proposed in [Cas+10; Kan+14; Zhu+16], for example, also pro-pose methods for multi-application mappings. These methods all rely onstatically knowing all applications at compile time and calculating jointmappings, which does not scale nor works in more dynamic systems.The approaches from DAARM [Wei+14] or Spider [Heu+14], or themeth-ods proposed in [MMB07; QP15] are all hybrid approaches. As such, theyall solve the problem with static approaches discussed above, like TETRiSdoes. These rely on different methods for finding the final mappings atrun-time and have different advantages. Most works have the architec-ture model implicit in the flow (cf. Section 2.3), e.g. [Wei+14] which as-sumes regular NoC meshes from its problem formulation or [MMB07]. Adistinct advantage of our symmetries-based approach to hybridmappingis that it uses a general architecture model, which works for arbitrarilycomplex architectures.On the side of run-time adaptivity, the MacQueen gap is generally ig-nored in literature, where KPN are equated with the KMQ blocking-read se-mantics. We were not the first to recognize the gap, however. The twomodels are also treated as separate in [LM09]. There are many otherrelated ways of adapting MoCs at run-time. Models like SADF [The+06] orMulti-Alternative Process Networks [BJC21] do this by modeling the adap-tivity explicitly in the graph. The AdaPNet model [Sch+14] defines morecomprehensive transformations and is very general and flexible.On the side of applications to 5G, mostly the complete field of researchin telecommunications investigates methods for adapting to the dynamicdemands of upcoming applications. Models are common for differentareas of the field, but their use is generally not proposed at a system-level as we do. An example that is proposed at a system-level is the Nu-cleus project [Cas+11], that is based on the MAPS software synthesis flowand KPNs. Since this is work-in-progress, it is not possible to provide a de-tailed examination of advantages and disadvantages of our proposed ap-proach using Reactors, compared to establishedmethods, as we have yetto fully examine and understand these. A good overview of model-basedapproaches in modem design can be found work in [Gat+20].
8.4 Other model-based design tools
The tools above focus on software synthesis in a flow similar to the onedescribed in this thesis, using KPN or dataflowmodels and DSE to find prof-itable mappings for executing applications in modern hardware. There

1 Which is not a good strategy, as we saw in Section 5.1

139

are other tools and languages which are focused more in the model’ssemantics. Besides Ptolemy II [Pto14], these include the CAL [EJ03] lan-guage and the related RVC-CAL compiler. Synchronous languages like LUS-TRE [PHP87] or ESTEREL [BD91], which have discrete-event semantics, arealso relevant. These are languages are related to the Reactors model.Even hardware description languages like VHDL or Verilog, and evenSystemC [Mue+01] can be seen as related, in this case it being HLS, whichis in fact an inspiration for the term software synthesis. Also on the com-mercial side, Signal Processing Work System and Synopsys System Stu-dio both from Synopsis join the LabVIEW Communications SystemDesignSuite or Matlab Simulink [KKM16] as model-based design tools with well-defined MoCs. In Section 7.1.1 we review and discuss many of these toolsand programming languages based on MoCs.
8.5 Random Benchmark Generation and Machine Learning
A prominent example of random code generation is CSmith [Yan+11],used to stress-test compilers. A related approach is the grammar-basedmethod presented in [McK97]. In this thesis we discussed random bench-marking for evaluating optimizations, more so than for testing cornercases. The tools TGFF [DRW98] and SDF3[SGB06], also discussed in Sec-tion 3.1 are more closely related to benchmarking as we investigated it.We used the proposed Level graphs to evaluate language-based trans-formations for I/O optimization. We discussed the main related work forthis in Section 7.3, namely Haxl [Mar+14] and Muse [Kac15], as well as theunpublished Stitch [Don14] from Twitter.The direct connection between benchmarking and machine learningcomes from CLGen [Cum+17a]. Machine learning for code is a broad sub-ject and only a minor part of this thesis. A broader overview can be foundin [All+18], although we will solely discuss work closely related to the con-tributions presented in this thesis. We based our graph-based methodsand the evaluation on the ideas presented in [Cum+17b; BJH18]. Conse-quently, based in part on our graph-basedmethods, thework in [Cum+20;Ye+20] recently proposed some potential improvements to our compiler-based representations.

140

9CONCLUS IONS

Programming computers is notoriously difficult. This thesis certainly willnot change that. More generally, this statement will probably remain truefor a long time. This does not mean, however, that we cannot makeprogress towards easing the process of programming computers.In this thesis we have argued for model-based design of software sys-tems. This is much more common in the hardware world, where modelsare central to design, commonly used for ensuring deterministic behav-ior. The success of this paradigm is what allows us to have programmabledigital computers in the first place.In the software world, where the level of abstraction is higher and theentry barrier lower, models are usually more implicit, less strict, or both.When using well-definedModels of Computation (MoCs) for programming,however, we can reason about software and its performance. Concretely,software synthesis flows and themapping problem result from doing pre-cisely this.In this thesis we studied such MoC-based software synthesis flows, witha focus on Kahn Process Network (KPN). We surveyed multiple dataflow
MoCs, and discussed the advantages and disadvantages of them. The KPN
MoC allows us to express concurrency in computation in a deterministicfashion, while remaining very expressive. Compared to most dataflow
MoCs, it allows for maximally dynamic, data-dependent behavior. We alsodiscussed a semantics gap between the Kahn-MacQueen (KMQ) blocking-reads semantics and KPN, which can be exploited in applicationswith data-parallelism.When lowering KPNs down to be executed in MPSoCs, the mapping prob-lem plays a crucial role, especially for heterogeneous systems. In this the-sis we have discussed this intractable problem at length. A central themeof our discussion has been the structure of the mapping space. We haveseen how the space is large and complex, yet structured.The mapping space is very symmetrical, which concretely means thatmanymappings are equivalent in terms of properties like performance orenergy efficiency. This is due to symmetries in the target hardware archi-tectures and applications. MPSoCs usually have multiple cores with identi-cal microarchitectures and memory subsystems with a regular structure.Data-level parallelism in applications also yield such symmetry. We haveseen how to describe and exploit this symmetry, pruning the mappingspace for Design-Space Exploration (DSE) or for finding equivalent map-pings when some resources are unavailable at run-time.The mapping space also has different geometric interpretations. Wehave seen how to find different embeddings of these geometric inter-pretations and exploit them in DSE meta-heuristics. This also allowed usto design novel heuristics and meta-heuristics, based on the geometricstructure of the space, to find mappings with low communication costsor high robustness. In general, we have seen how the way we repre-sent mappings can expose much of this structure. We believe much workwould benefit from explicitly considering the structure exposed to the al-gorithms.

141

There is little point in exposing complex structures and engineering so-phisticated algorithms if they don’t improve our methods. To assess ifthey do, however, we need to test them, using benchmarks. Given the im-portance of this, we argue for careful consideration as to what and howimprovements are assessed using benchmarks. In this thesis we haveargued for a statistical view of code, seeing improvements on methodsas improvements on the expected value of some property, like the pro-gram’s execution time.Unfortunately, benchmarks are scarce and seldom specialized. Wehave discussed options for is overcoming this issue, using random bench-mark generation and machine learning. In particular, we have seen howour statistical view of code for benchmarking exposes some possible pit-falls of machine learning for benchmark generation, both in theory andin practice.While KPN-based flows have many advantages, they are not well-suitedfor every application domain. For example, KPNs do not have semantics todeal with time, which is important in Cyber-Physical Systems (CPSs). Simi-larly, the KPN graph structure is rigid, which limits the adaptability of themodel. In this thesis we discussed a novel model, Reactors, which ad-dresses these limitations. We focused on the opportunities of this modelin the 5G telecommunications standard.Most of this thesis has focused on the advantages of model-based de-sign, which are plentiful. An important disadvantage, however, is the easeof use of this design process. Exposing models through APIs is not produc-tive, since developers can and usually do end up abandoning the model’sconstraints. We need programming languages and, especially, program-ming models that make MoC-based design accessible to programmers,while enforcing themodel’s constraints. In this thesis we briefly discussedthe Ohua programming model, which derives a dataflow execution im-plicitly from a conventional programming language. We saw how we canuse this to combine the advantages ofMoC-based design with concise pro-gramming, by optimizing I/O in microservice-based infrastructures.
9.1 Future Work
We believe the single most important aspect to drive MoC-based designforward is fostering its adoption. We need tools and environments thatmake it easier for programmers to design applications with a well speci-fied MoC.The Lingua Franca project, which implements Reactors, is a great av-enue for fostering adoption. Its polyglot design allows programmers touse known languages to write reactors1, while still being a coordinationlanguage that can enforce the MoC semantics. The use of known lan-guages has two distinct advantages, as it reduces the learning curve andallows using legacy code. Currently, the compiler does not understandnor does it type-check the target language, leaving that task to the com-piler. In future work we could add a type system to Lingua Franca, rein-forcing the “freedom from choice” it provides.A potential disadvantage from the Lingua Franca project, on the otherhand, could be its coordination language. Explicitly writing the networkscan be confusing for developers. This is exacerbated by the fact that Re-actors is a complex model, difficult to grasp and learn. We believe the

1 This refers to the unit of computation, reactors, as part of the model, Reactors.

142

approach by Ohua of making the network implicit is a great avenue for fu-turework. Another example to follow is the Elm language, a functional lan-guage for the web. Elm started as a language with an explicit FunctionalReactive Programming (FRP) paradigm, which was confusing for users.They made this paradigm implicit2, which translated into a success forthe learning curve and the language’s adoption. This is part of a generalvision, where compilers and languages are thought of as assistants thatmake development easier for programmers, instead of only focussing oncorrectness and performance. We believe we should follow similar pathsfor the design of software using MoCs like Reactors or KPN.On the side of mapping there are also many open avenues for improv-ing our work. In particular, partial symmetries expose a great deal ofthe problem’s structure which we are not exploiting yet. Designing effi-cient methods to detect and exploit them would help navigate the designspace of mappings much better. This would also open up opportunitiesfor using inverse semigroups of non-symmetries, like reducing the num-ber of hops in a communication link. Ourmethodswould also greatly ben-efit from incorporating application symmetrieswhen exploiting data-levelparallelism.The geometry of themapping space also hasmany open questions thatshould improve its usefulness. While we discussed the trade-off betweenthe distortion and dimensionality of embeddings, we did not exploit itin this thesis. More importantly, while the metrics we discussed are agood starting point, we saw that they do not reflect the mapping struc-ture very well yet. Finding better metrics could greatly improve mappingmeta-heuristics, especially those based on some concept of locality in thesearch space.In this thesis we have discussed and shown how provable properties of
MoCs can and do improve the design process. While traditional pen andpaper proofs are a great way of finding and proving these properties, theadvent of powerful theorem proving assistants provides an opportunityto improve upon this. Formally verified proofs of properties of the systemgive us more certainty on their correctness, and some degree of automa-tion. Combining MoC-based design with developments in formal verifica-tion methods can help us to write correct software more frequently inless time.While formal methods can verify properties of our software, theymightnever completely replace testing. Even if they one day do so, that will notbe in the near future. This is why we believe the work on benchmark-ing is an important avenue for future work. We believe advances in ma-chine learning could enable our vision of benchmark generation flows.Informed by statistical models and tailored for a specific use-cases, suchbenchmark generation flows could dramatically change the way we as-sess our compilers.

2 https://elm-lang.org/news/farewell-to-frp

143

https://elm-lang.org/news/farewell-to-frp

AMATHEMAT ICAL SUPPLEMENT

a.1 Groups
Definition A.1.1. Let G be a (finite1) set and ˝ : Gˆ G Ñ G be a mapping.We say that pG, ˝q is a group if the following hold:

• The mapping ˝ : Gˆ G is associative, i.e. for any f , g, h P G we have
f ˝ pg ˝ hq “ p f ˝ gq ˝ h.

• There exists a neutral element e P G with g ˝ e “ e ˝ g “ g for all
g P G.

• For every g P G there is an inverse element g´1 P G such that g ˝
g´1 “ g´1g “ e.

By abuse of notation, we normally identify the structure pG, ˝q with theset G and say G is a group. Similarly, when the operation ˝ is understoodfrom context we commonly abbreviate it as multiplication, without writ-ing it explicitly: g ˝ h “: gh. Groups are ubiquitous in mathematics. Forexample, the natural numbers form a group with addition pN,`q, as dothe reals (without 0) with multiplication pRzt0u, ¨q.An important example of a group is the so-called symmetric group:
Example A.1.2. Let X be a finite set. Then, the set of bijections X Ñ Xfrom X to itself is a group with regard to function composition. Indeed, if
f , g : X Ñ X are bijections, then so is f ˝ g : X Ñ X. The identity function
IdX : x ÞÑ x is the neutral element and the inverse function f´1 is thegroup inverse of f , since f ˝ f´1 “ f´1 f “ IdX . We call the group ofbijections on X the symmetric group on X and write SympXq. If n P N, n ą
0 is a natural number and X “ t1, . . . , nu, then we write Sn to refer to
Sympt1, . . . , nuq.

This is an important example because every finite group can be foundin Sn for some n, as a subgroup, which wewill define shortly. We first wantto introduce cycle notation. A permutation π : t1, . . . , nu Ñ t1, . . . , nu canbe written in different ways. The simplest way to do this is to write it in atwo-row matrix:
˜

1 2 . . . n

πp1q πp2q . . . πpnq

¸

While this is simple to understand, there is a more concise way to writepermutations that has many advantages, including some computationaladvantages. It is called cycle notation. We write a permutation as a prod-uct of cycles pi πpiq πpπpiqq . . . πkpiqq, maximal such that the values don’trepeat. We can do this since n is finite and thus for some k, πk`1piq “ i,and we choose the minimal k with that property. For example, the cy-cle p1, 2, 3q is the permutation 1 ÞÑ 2, 2 ÞÑ 3, 3 ÞÑ 1. From this exampleit perhaps is clearer why they are called cycles, since the last elementmaps to the first one, cyclically. By convention, 1-cycles are not written
1 Groups are not finite by definition, but all groups we discuss in this thesis are.

145

explicitly. The identity mapping can be sometimes be written as pq , butcould equivalently be p1qp2q . . . pnq. For another example, the permutation
1 ÞÑ 2, 2 ÞÑ 1, 3 ÞÑ 3, 4 ÞÑ 5, 5 ÞÑ 4 can be written as p1, 2qp3, 4, 5q.
Definition A.1.3. Let H Ď G be a subset of a group G. We say that H is asubgroup if H is a group with respect to the restriction of the multiplica-tion on G. Equivalently, if e P H and for every g, h P G we have gh´1 P G.
We normally write H ď G to denote that H is a subgroup of G (and

H ă G if, additionally, we know that G ‰ H).In group theory in particular, and in mathematics in general, mappingsthat preserve the structures of the objects being studied are a very pow-erful tool. We proceed to define these mappings for groups.
Definition A.1.4. For two groups G, G1, a mapping ϕ : G Ñ G1 is called agrouphomomorphism (or amorphismof groups) if it respects the group’sstructure, i.e. if ϕpghq “ ϕpgqϕphq for all g, h P G and ϕpeGq “ e1G.
The definition above already implies that ϕpg´1q “ ϕpgq´1. As men-tioned before, these structure-preserving mappings are very importantin the theory of groups, as they are used to relate different mappings. Agroup homomorphism ϕ : G Ñ H is called a monomorphism (or embed-ding) if it is injective, epimorphism if it is surjective and isomorphism if itis bijective. A group isomorphism from a group G to itself, ϕ : G Ñ G iscalled an automorphism. Isomorphisms play a central role inmathematics(e.g. in their more general definition for categories). They define equiva-lence classes of objects, i.e. being isomorphic is an equivalence relation.WeusuallywriteG – H to say thatG and H are isomoprhic, that is to say, ifthere exists an isomoprhism ϕ : G Ñ H. Two objects that are isomorphicare usually consider to be “the same”, since any structural property has tobe an invariant of the isomorphism class. In fact, this indistinguishabilitybetween isomorphic objects is at the center of the univalance axiom inhomotopy type theory as a foundation of mathematics [Uni13].In the case of groups, there is a particular property that most otherstructures in mathematics do not have. The set of isomorphisms, i.e. theset of mappings that preserve the structure of an object and define equiv-alences between objects, is itself a group! Besides group automorphisms,the structure-preserving mappings of other structures are also groups(e.g. homeomoprhisms in topological spaces, graph isomorphisms, in-vertible matrices in vector spaces). In all these cases there is a direct re-lationship between the structure and the structure preserving mappings,as the mappings can transform these structures. This concept is general-ized with group actions.

Definition A.1.5. Let G be a group and X be a set. We say that G acts on Xif there is a group homomorphism G Ñ SympXq from the group G to thesymmetric group on X. Equivalently, if there is an α : Gˆ X Ñ X which isassociative and respects the group operation (in particular αpe, xq “ x forall x P X)2. We also say that X is a G-set.
As an example, consider a regular polygon with n sides, a regular n-gon. Figure A.1 shows this for the example of a square (a square isa regular 4-gon). We name the four corners of the square as 1, 2, 3, 4.This could thus be interpreted as a graph G “ pV “ t1, 2, 3, 4u, E “

tt1, 2u, t2, 3u, t3, 4u, t4, 1uuq.
2 We call this a left action, and a right action similarly β : X ˆ G Ñ X, where we write theaction of the group on the set from the right.

146

1 2

34

Figure A.1: A square.

The group of permutations S4 acts on the graph G by permuting thepoints V “ t1, 2, 3, 4u (and the edges accordingly). We can take any per-mutation π P S4 and apply it on the graph. For example, consider thepermutation p1, 2qwhich swaps the two nodes 1 and 2 and leaves the restas is.
2 1

34

Figure A.2: The action of the permutation p1, 2q on the square.
Figure A.2 shows the example of the action of p1, 2q on the square. Wenote that the square is not a square anymore, it has lost its structure. Anatural question to ask is, what are the permutations that leave a squareas a square, i.e. preserve its structure? We call these the symmetries of thesquare .

2 3

41

Figure A.3: The action of the rotation p1, 2, 3, 4q on the square.
Consider a rotation by 90˝, counter-clockwise. We can write this as thepermutation ρ “ p1, 2, 3, 4q. Figure A.3 depicts the action of ρ on the square,and indeed, it preserves the structure. We can think of two additional ro-tations, by 180˝ and 270˝, which would also preserve the structure of thesquare. It is worth noting that a rotation by 180˝ is the same as rotatingby 90˝ twice, and similarly, ρ3 is the rotation by 270˝. It is also importantto note that a rotation by 360˝ and 0˝ are indistinguishable on the square,they are the identity permutation Idt1,2,3,4u. In fact, these four rotationsform a sub-group C4 ă S4, called a cyclic group. More generally, the rota-

147

tions that preserve the structure of a regular n-gon are a cyclic group oforder n, Cn.
Definition A.1.6. The cyclic group Cn is the group formed by an n-cycle
a “ p1, . . . , nq in Sn, i.e. Cn “ ta, a2, . . . , an “ Idnu.
We have seen that the rotation ρ in the example above is enough to findall elements of the group C4. We say that ρ generates the group C4. Cyclicgroups are characterized by having a single generator 3. Thus, all othergroups havemultiple generators (except the trivial group teuwhich can beconsidered as having 0 generators.) More generally, for a set X Ď G in agroupG, we define xXy ď G to be the smallest subgroup ofG containingX.For the case of finite groups, we can characterize xXy as the set of wordsin G (where we interpret concatenation of words as multiplication in thegroup).

2 1

43

Figure A.4: The action of the reflection p1, 2qp3, 4q on the square.
Rotations are not all the symmetries of the square, we can also havereflections. Figure A.4 shows the action of a reflection along the verticalaxis, namely σ “ p1, 2qp3, 4q, on the square. Reflections are fundamentallydifferent from rotations, no rotation could achieve this transformation.We can also have a reflection along the horizontal axis and both diago-nals, for a total of 4 reflections. It is perhaps not obvious at first, but if wecombine reflections and rotations on the square, we always get a reflec-tion or a rotation. In fact, these 8 transformations form another group D4,with C4 ă D4 ă S4. The dihedral group on four points, D4, in generatedby the rotation ρ and the reflection σ, i.e. D4 “ xρ, σy.In the action of permutations on the graph, the group elements act si-multaneously on both the nodes and edges. If we look at the action onlyon the nodes, the action of C4 (and D4) can take any point to any otherpoint. But if we look at the whole graph, we see that there is no way totake the original square to the square in Figure A.4 with the action of C4.Similarly, we cannot use any group element of D4 to take the shape inFigure A.2, which is not a square anymore. This is precisely the propertythat defines D4 as the symmetry group of the square. These questions,concerning which elements can be taken which others, are common ingroup theory. This is why there is a definition to describe these sets: wecall them orbits .

Definition A.1.7. Let G be a group and X be a G-set. Further, let x P X bean element of X. We define the orbit of x to be the set Gx :“ tgx | g P Gu ofpoints that x can be transfromed into. We further call X{G :“ tGx | x P Xuthe set of orbits of X.
3 Recall that we are only considering finite groups.

148

For example, all squares are precisely the elements in the orbit of D4s,where s is the graph of the square from the examples above. Orbits definea partition on the set X, meaning that any two orbits Gx, Gy are eitherequal or disjoint and X “
Ť

xPX Gx.Finally, we discuss how we can construct other groups from existinggroups. The simplest construction is called the direct product. For groups
G, H, we write GˆH, endowing the Cartesian product with a component-wise multiplication (i.e. pg, hqpg1, h1q “ pgg1, hh1q for all g, g1 P G, h, h1 P H).There is a more general construction called a semi-direct product, whichis a generalization of the direct product. Herewewill only discuss a specialcase of semi-direct products, namely the wreath product G o H.Let G be a group and let H ď Sn for an n P N . We consider the directproduct of n copies of G:

Gn :“ Gˆ . . .ˆ
l jh n

n times
G

Then, the group H acts on these n copies of G by permuting their in-stances. Let pg1, . . . , gnq P Gn, h P H. We define:
h
pg1 . . . , gnq :“ pgh1, . . . , ghnq,

where h permutes the order of the elements in the n-tuple of elements of
Gn. This defines an action of H on Gn. We can use this action to constructthe wreath product G o H on the Cartesian product Gn ˆ H, by definingthe multiplication as:

ppg1, . . . , gnq, hqppg11, . . . , g1nq, h1q

“ ppg1, . . . , gnq
h
pg11, . . . , g1nq, hh1q

“ ppg1, . . . , gnqpg1h1, . . . , g1hnq, hh1q

Intuitively, the wreath product works when we have copies of a sub-structure arranged in a particular larger structure. It applies transforma-tions both at the substructure level and an the level of the larger struc-ture.
a.2 Metric Spaces and Low-Distortion Embeddings
Here we discuss (discrete) metric spaces and low-distortion embeddings.A metric space is the mathematical formalization of distances. We definea metric to be able to measure distances in a particular space.
Definition A.2.1. Let M be a set and let d : MˆM Ñ Rě0 . We say that dis ametric on M and, equivalently, pM, dq is ametric space, if the followinghold:

1. For all m, m1 P M, dpm, m1q “ 0 ô m “ m1.
2. For all m, m1 P M, we have dpm, m1q “ dpm1, mq.
3. For all k, l, m P M we have dpk, mq ď dpk, lq ` dpl, mq

The motivation for these properties is intuitively clear. Property 1 saystwo things, first, that there is no distance from an element to itself, andsecond, that no two equal elements are in the same place (have no dis-tance between them). If we don’t require the second property (i.e. replace

149

ô with ñ in Property 1, we get what is called a pseudo-metric (or a de-generate metric). The second property, Property 2 states that distance issymmetric. Finally, Property 3 is the triangle inequality: it states that theshortest path between two elements is always the direct path, their dis-tance.The canonical metric spaces are Rn with different norms, like the p-norms. A norm is a more restrictive concept than a metric, but we willnot define norms here further.
Example A.2.2. For p ě 1, the function px, yq ÞÑ }x´ y}p : Rn ˆRn Ñ Rě0is a metric, where }px1, . . . , xnq}p :“ p

řn
i“1 |x

p
i |q

1{p is the p-norm.
The case for p “ 2 is thewell-known Euclidean distance in vector spaces.Also well-known is the case of of p “ 1, which is sometimes called the Ma-hattan or Taxi distance, in allusion to the distance when moving throughthe streets of a neighborhood that look like a regular mesh, like in Man-hattan.In this thesis we are particularly interested in the case where M is finite,which we will assume from here on. If M “ tm1, . . . , mnu is finite, we canwrite d as a matrix, such that dpmi, mjq “ Di,j.:

D “

¨

˚

˚

˚

˚

˚

˝

dpm1, m1q dpm1, m2q . . . dpm1, mnq

dpm2, m1q dpm2, m2q . . . dpm2, mnq...
dpmn, m1q dpmn, m2q . . . dpmn, mnq

˛

‹

‹

‹

‹

‹

‚

The structure preserving mappings (moprhisms) of metric spaces arecalled isometries. They have the particular property that they are alwaysinjective, due to Property 1.
Definition A.2.3. Let M, M1 be metric spaces. We say that a mapping ϕ :
M Ñ M1 is an isometry if for all m, m1 P M, dMpm, m1q “ dM1pϕpmq, ϕpm1qq.
An isometry is thus always an embedding (monic), since for any twopoints m, m1 P M with ϕpmq “ ϕpm1q we have 0 “ dM1pϕpmq, ϕpm1qq “

dMpm, m1q.In the case of groups, embeddings into a particular group Sn are use-ful for computing. While we did not discuss it as thoroughly, the basisof all computation we are concerned with in this thesis are these embed-dings into permutation groups Sn
4. The question is, canwe find an equiva-lent method for metric spaces, using isometries to (finite subsets of) Rn?The unfortunate answer is that no, for a finite metric space M there isnot always n, p such that there exists an isometry from M to pRn, } ¨ }pq(see [Mat02] for a proof). Fortunately, however, when dealing with realnumbers we can always look for approximations.

Definition A.2.4. Let M be a metric space and ι : M ãÑ Rn be an embed-ding onto Rn. We say that ι has distortion D ą 0 if
1
D

dpx, yq ď }ιpxq ´ ιpyq} ď dpx, yq

4 In computational group theory there are other branches like matrix groups or black-boxgroups, where embedding into an Sn is infeasible, but we are not concerned with these inthis thesis.

150

While, in general, we cannot find an isometry, we can search for anembedding with a low distortion. There is a particularly useful result inthis context: we can use convex optimization to find an embedding of Monto Rn with the Euclidean (p “ 2) norm [Mat02]. This is unfortunatelyonly the case for this norm, e.g. for p “ 1 finding such an embedding isknown to be NP-complete [Mat02]A problem with the convex optimization method above is that it yieldsan embedding with dimension |M|, which might be very high. The dimen-sion of the vector space strongly affects algorithmic properties of theproblem. It would be ideal to find an embedding into a mapping with alower dimension, without increasing the distortion much. In [JL84], John-son and Lindenstrauss describe this precise problem and its solution asfollows: “Given n points in Euclidean space, what is the smallest k “ kpnqso that these points can be moved into k-dimensional Euclidean spacevia a transformation that expands or contracts all paairwise distancesby a factor of at most 1 ` ε? The answer, that k ď cpεqLog n, is a sim-ple consequence of the isoperimetric inequality for the n-sphere stud-ied in [FLM77].” They proceed to formalize and prove this fact, which wewill not restate here more precisely. This result is known as the Johnson-Lindenstrauss Lemma.An intuitive albeit sometimes misleading interpretation of the proof ofthis lemma is that a projection onto a random subspace will have a lowdistortion with high probability. In practice, the distribution does give avery useful “transform” for dimensionality reduction, simply by projectingonto a random subspace. However, we should be careful when using thisand ideally check the distortion, if possible.

151

REFERENCES

[Chu36] Alonzo Church. “An unsolvable problem of elementary num-ber theory.” In: American journal of mathematics 58.2 (1936),pp. 345–363.
[Kle36] Stephen Cole Kleene. “General recursive functions of natu-ral numbers.” In:Mathematische annalen 112.1 (1936), pp. 727–742.
[Tur37] Alan M Turing. “Computability and λ-definability.” In: The

Journal of Symbolic Logic 2.4 (1937), pp. 153–163.
[ER59] P Erdős and A Réyni. “On random graphs I.” In: Publicationes

Mathematicae 6.290-297 (1959), p. 18.
[Gil59] Edgar N Gilbert. “Random graphs.” In: The Annals of Mathe-

matical Statistics 30.4 (1959), pp. 1141–1144.
[Pet62] Carl Adam Petri. “Kommunikation mit automaten.” In: (1962).
[Moo+65] Gordon E Moore et al. Cramming more components onto inte-

grated circuits. 1965.
[Sco70] Dana Scott. Outline of a mathematical theory of computation.Oxford University Computing Laboratory, Programming Re-search Group Oxford, 1970.
[Kar72] Richard M Karp. “Reducibility among combinatorial prob-lems.” In: Complexity of computer computations. Springer,1972, pp. 85–103.
[HBS73] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. “AUniversal Modular ACTOR Formalism for Artificial Intelli-gence.” In: Proceedings of the 3rd International Joint Conference

on Artificial Intelligence. Standford, CA, USA, August 20-23, 1973.1973, pp. 235–245.
[Den74] Jack B Dennis. “First version of a data flow procedure lan-guage.” In: Programming Symposium. Springer. 1974, pp. 362–376.
[Kah74] Gilles Kahn. “The semantics of a simple language for parallelprogramming.” In: Information processing 74 (1974), pp. 471–475.
[KM76] Gilles Kahn and David MacQueen. Coroutines and Networks

of Parallel Processes. Research Report. 1976, p. 20. url: https:
//hal.inria.fr/inria-00306565.

[FLM77] Tadeusz Figiel, Joram Lindenstrauss, and Vitali D Milman.“The dimension of almost spherical sections of convex bod-ies.” In: Acta Mathematica 139.1 (1977), pp. 53–94.
[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a

Distributed System. 1978.
[JL84] William B Johnson and Joram Lindenstrauss. “Extensions ofLipschitz mappings into a Hilbert space.” In: Contemporary

mathematics 26.189-206 (1984), p. 1.

153

https://hal.inria.fr/inria-00306565
https://hal.inria.fr/inria-00306565

[HP85] David Harel and Amir Pnueli. “On the development of re-active systems.” In: Logics and models of concurrent systems.Springer, 1985, pp. 477–498.
[Hue85] Gérard Huet. “Cartesian closed categories and lambda-calculus.” In: LITP Spring School on Theoretical Computer Sci-

ence. Springer. 1985, pp. 123–135.
[Agh86] Gul Agha. ACTORS: A Model of Concurrent Computation in Dis-

tributed Systems. TheMIT Press Series in Artificial Intelligence.Cambridge, MA: MIT Press, 1986.
[Den86] Jack B Dennis. “Data flow computation.” In: Control Flow

and Data Flow: concepts of distributed programming. Springer,1986, pp. 345–398.
[FW86] Philip J Fleming and John JWallace. “How not to lie with statis-tics: the correct way to summarize benchmark results.” In:

Communications of the ACM 29.3 (1986), pp. 218–221.
[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.“Learning representations by back-propagating errors.” In:

nature 323.6088 (1986), pp. 533–536.
[LM87] Edward A Lee and David G Messerschmitt. “Synchronousdata flow.” In: Proceedings of the IEEE 75.9 (1987), pp. 1235–1245.
[PHP87] Daniel Pilaud, N Halbwachs, and JA Plaice. “LUSTRE: A declar-ative language for programming synchronous systems.” In:

Proceedings of the 14th Annual ACM Symposium on Principles
of Programming Languages (14th POPL 1987). ACM, New York,
NY. Vol. 178. 1987, p. 188.

[BB88] Jonathan Barzilai and Jonathan M Borwein. “Two-point stepsize gradient methods.” In: IMA journal of numerical analysis8.1 (1988), pp. 141–148.
[Coh88] Harvey A Cohen. “Symmetry considerations applied to hard-ware convolvers for image filtering.” In: Proceedings of the

1988 IEEE International Conference on Systems, Man, and Cyber-
netics. Vol. 2. IEEE. 1988, pp. 1128–1131.

[Run89] Colin Runciman. “What about the natural numbers?” In: Com-
puter Languages 14.3 (1989), pp. 181–191.

[BD91] Frédéric Boussinot and Robert De Simone. “The ESTEREL lan-guage.” In: Proceedings of the IEEE 79.9 (1991), pp. 1293–1304.
[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. “Prom timedto hybrid systems.” In: Workshop/School/Symposium of the

REX Project (Research and Education in Concurrent Systems).Springer. 1991, pp. 447–484.
[Gun92] Carl A Gunter. Semantics of programming languages: struc-

tures and techniques. MIT press, 1992.
[RPM92] Sebastian Ritz, Matthias Pankert, and Heinrich Meyr. “Highlevel software synthesis for signal processing systems.” In:

Proceedings of the international conference on application spe-
cific array processors. IEEE Computer Society. 1992, pp. 679–680.

154

[Abb+93] Ben Abbott, Ted Bapty, Csaba Biegl, Gabor Karsai, and JanosSztipanovits. “Model-based software synthesis.” In: IEEE Soft-
ware 10.3 (1993), pp. 42–52.

[DR95] Volker Diekert and Grzegorz Rozenberg. The book of traces.World scientific, 1995.
[LP95] Edward A Lee and Thomas M Parks. “Dataflow process net-works.” In: Proceedings of the IEEE 83.5 (1995), pp. 773–801.
[Maz95] Antoni W Mazurkiewicz. Introduction to Trace Theory. 1995.
[Par95] Thomas M. Parks. “Bounded Scheduling of Process Net-works.” PhD thesis. EECS Department, University of Califor-nia, Berkeley, Dec. 1995. url: http://www2.eecs.berkeley.

edu/Pubs/TechRpts/1995/2926.html.
[Pin+95] José Luis Pino, Soonhoi Ha, Edward A Lee, and Joseph T Buck.“Software synthesis for DSP using Ptolemy.” In: Journal of VLSI

signal processing systems for signal, image and video technol-
ogy 9.1-2 (1995), pp. 7–21.

[Bil+96] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peper-straete. “Cycle-static dataflow.” In: IEEE Transactions on signal
processing 44.2 (1996), pp. 397–408.

[Cra+96] James Crawford, Matthew Ginsberg, Eugene Luks, andAmitabha Roy. “Symmetry-breaking predicates for searchproblems.” In: KR 96.1996 (1996), pp. 148–159.
[Nag+96] Wolfgang E Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl Solchenbach. “VAMPIR: Visualiza-tion and analysis of MPI resources.” In: (1996).
[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-termmemory.” In: Neural computation 9.8 (1997), pp. 1735–1780.
[McK97] Bruce McKenzie. “Generating strings at random from a con-text free grammar.” In: (1997).
[CDT98] G Calafiore, F Dabbene, and R Tempo. “Uniform sample gen-eration in l/sub p/balls for probabilistic robustness analysis.”In: Proceedings of the 37th IEEE Conference on Decision and Con-

trol (Cat. No. 98CH36171). Vol. 3. IEEE. 1998, pp. 3335–3340.
[Cla+98] Edmund M Clarke, E Allen Emerson, Somesh Jha, and APrasad Sistla. “Symmetry reductions in model checking.”In: International Conference on Computer Aided Verification.Springer. 1998, pp. 147–158.
[DRW98] Robert P Dick, David L Rhodes, and Wayne Wolf. “TGFF: taskgraphs for free.” In: Proceedings of the Sixth International

Workshop on Hardware/Software Codesign.(CODES/CASHE’98).IEEE. 1998, pp. 97–101.
[Law98] Mark V Lawson. Inverse semigroups: the theory of partial sym-

metries. World Scientific, 1998.
[Lin98] Bill Lin. “Software synthesis of process-based concurrentprograms.” In: Proceedings of the 35th annual Design Automa-

tion Conference. 1998, pp. 502–505.

155

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1995/2926.html

[BLM00] SS Bhartacharyya, Ranier Leupers, and Peter Marwedel.“Software synthesis and code generation for signal process-ing systems.” In: IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing 47.9 (2000), pp. 849–875.

[Koc+00] Erwin A de Kock, WJM Smits, Pieter van der Wolf, J-Y Brunel,WM Kruijtzer, Paul Lieverse, Kees A Vissers, and Gerben Es-sink. “YAPI: Application modeling for signal processing sys-tems.” In: Proceedings of the 37th Annual Design Automation
Conference. 2000, pp. 402–405.

[Bra+01] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau LBölöni, Muthucumaru Maheswaran, Albert I Reuther, JamesP Robertson, Mitchell D Theys, Bin Yao, Debra Hensgen, et al.“A comparison of eleven static heuristics for mapping a classof independent tasks onto heterogeneous distributed com-puting systems.” In: Journal of Parallel and Distributed comput-
ing 61.6 (2001), pp. 810–837.

[HT01] Frank Hannig and Jürgen Teich. “Design space explorationformassively parallel processor arrays.” In: International Con-
ference on Parallel Computing Technologies. Springer. 2001,pp. 51–65.

[Kie+01] Bart Kienhuis, Ed F Deprettere, Pieter Van derWolf, and KeesVissers. “A methodology to design programmable embed-ded systems.” In: International Workshop on Embedded Com-
puter Systems. Springer. 2001, pp. 18–37.

[Mue+01] Wolfgang Mueller, Juergen Ruf, Dirk Hoffmann, Joachim Ger-lach, Thomas Kropf, and Wolfgang Rosenstiehl. “The simula-tion semantics of SystemC.” In: Proceedings Design, Automa-
tion and Test in Europe. Conference and Exhibition 2001. IEEE.2001, pp. 64–70.

[Mat02] Jiří Matoušek. Lectures on discrete geometry. Vol. 212. SpringerScience & Business Media, 2002.
[EJ03] Johan Eker and J Janneck. CAL language report: Specification of

the CAL actor language. 2003.
[Ser03] Ákos Seress. Permutation group algorithms. Vol. 152. Cam-bridge University Press, 2003.
[SD03] Todor Stefanov and Ed Deprettere. “Deriving process net-works from weakly dynamic applications in system-level de-sign.” In: Proceedings of the 1st IEEE/ACM/IFIP international con-

ference on Hardware/software codesign and system synthesis.2003, pp. 90–96.
[Sir04] Marjan Sirjani. “Formal specification and verification of con-current and reactive systems.” In: PhD thesis (2004).
[WS04] G Gary Wang and Songqing Shan. “Design space reductionfor multi-objective optimization and robust design optimiza-tion problems.” In: SAE transactions (2004), pp. 101–110.
[AGL05] James Ahrens, Berk Geveci, and Charles Law. “Paraview: Anend-user tool for large data visualization.” In: The visualiza-

tion handbook 717.8 (2005).
[Hol05] Derek F. Holt. Handbook of Computational Group Theory. CRCPress, 2005.

156

[Kre+05] Marcio Kreutz, César A Marcon, Luigi Carro, Flavio Wagner,and Altamiro A Susin. “Design space exploration compar-ing homogeneous and heterogeneous network-on-chip ar-chitectures.” In: Proceedings of the 18th annual symposium on
Integrated circuits and system design. 2005, pp. 190–195.

[ECP06] Cagkan Erbas, Selin Cerav-Erbas, and Andy D Pimentel. “Mul-tiobjective optimization and evolutionary algorithms for theapplication mapping problem in multiprocessor system-on-chip design.” In: IEEE Transactions on Evolutionary Computa-
tion 10.3 (2006), pp. 358–374.

[Kan+06] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen,Marko Hännikäinen, Timo D Hämäläinen, Jouni Riihimäki,and Kimmo Kuusilinna. “UML-based multiprocessor SoC de-sign framework.” In: ACM Transactions on Embedded Comput-
ing Systems (TECS) 5.2 (2006), pp. 281–320.

[Lee06] Edward A Lee. “The problemwith threads.” In: Computer 39.5(2006), pp. 33–42.
[PEP06] Andy D Pimentel, Cagkan Erbas, and Simon Polstra. “A sys-tematic approach to exploring embedded system architec-tures at multiple abstraction levels.” In: IEEE Transactions on

Computers 55.2 (2006), pp. 99–112.
[SDN06] Todor Stefanov, Ed Deprettere, and Hristo Nikolov. “Multi-processor system design with ESPAM.” In: Proceedings of the

4th International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ ISSS’06). IEEE. 2006, pp. 211–216.

[SGB06] S. Stuijk, M.C.W. Geilen, and T. Basten. “SDF3: SDF For Free.”In: Application of Concurrency to System Design, 6th Interna-
tional Conference, ACSD 2006, Proceedings. Turku, Finland:IEEE Computer Society Press, Los Alamitos, CA, USA, June2006, pp. 276–278. doi: 10.1109/ACSD.2006.23. url: http:
//www.es.ele.tue.nl/sdf3.

[The+06] Bart D Theelen, Marc CW Geilen, Twan Basten, Jeroen PMVoeten, Stefan Valentin Gheorghita, and Sander Stuijk. “Ascenario-aware data flow model for combined long-run av-erage and worst-case performance analysis.” In: Fourth ACM
and IEEE International Conference on Formal Methods and
Models for Co-Design, 2006. MEMOCODE’06. Proceedings. IEEE.2006, pp. 185–194.

[DeC+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,Swaminathan Sivasubramanian, Peter Vosshall, and WernerVogels. “Dynamo: amazon’s highly available key-value store.”In: ACM SIGOPS operating systems review 41.6 (2007), pp. 205–220.
[EL07] Stephen A Edwards and Edward A Lee. “The case for the pre-cision timed (PRET) machine.” In: Proceedings of the 44th an-

nual Design Automation Conference. 2007, pp. 264–265.
[Erb+07] Cagkan Erbas, AndyD Pimentel, Mark Thompson, and SimonPolstra. “A framework for system-level modeling and simula-tion of embedded systems architectures.” In: EURASIP Journal

on Embedded Systems 2007 (2007), pp. 1–11.

157

https://doi.org/10.1109/ACSD.2006.23
http://www.es.ele.tue.nl/sdf3
http://www.es.ele.tue.nl/sdf3

[MMB07] Orlando Moreira, Jacob Jan-David Mol, and Marco Bekooij.“Online resource management in a multiprocessor with anetwork-on-chip.” In: Proceedings of the 2007 ACM symposium
on Applied computing. 2007, pp. 1557–1564.

[Ors+07] Heikki Orsila, Tero Kangas, Erno Salminen, Timo D. Hämäläi-nen, and Marko Hännikäinen. “Automated memory-awareapplication distribution for multi-processor system-on-chips.” In: J. of Sys. Arch. 53.11 (2007), pp. 795–815.
[San07] Alberto Sangiovanni-Vincentelli. “Quo vadis, SLD? Reasoningabout the trends and challenges of system level design.” In:

Proceedings of the IEEE 95.3 (2007), pp. 467–506.
[Thi+07] Lothar Thiele, Iuliana Bacivarov, Wolfgang Haid, and KaiHuang. “Mapping applications to tiled multiprocessor em-bedded systems.” In: Seventh International Conference on Ap-

plication of Concurrency to System Design (ACSD 2007). IEEE.2007, pp. 29–40.
[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model

checking. MIT press, 2008.
[Dic08] Robert Dick. Embedded Systems Synthesis Benchmark Suite

(e3s). 2008. url: http://ziyang.eecs.umich.edu/%5C~%7B%
7Ddickrp/e3s/.

[Hau+08] Christian Haubelt, Thomas Schlichter, Joachim Keinert, andMikeMeredith. “SystemCoDesigner: automatic design spaceexploration and rapid prototyping from behavioral models.”In: Proceedings of the 45th annual Design Automation Confer-
ence. 2008, pp. 580–585.

[Kum+08] Akash Kumar, Bart Mesman, Bart Theelen, Henk Corporaal,and Yajun Ha. “Analyzing composability of applications onMPSoC platforms.” In: Journal of Systems Architecture 54.3-4(2008), pp. 369–383.
[MH08] Laurens van der Maaten and Geoffrey Hinton. “Visualizingdata using t-SNE.” In: Journal of machine learning research9.Nov (2008), pp. 2579–2605.
[MEP08] Sorin Manolache, Petru Eles, and Zebo Peng. “Task mappingand priority assignment for soft real-time applications underdeadline miss ratio constraints.” In: ACM Transactions on Em-

bedded Computing Systems (TECS) 7.2 (2008), pp. 1–35.
[Nik+08] Hristo Nikolov, Mark Thompson, Todor Stefanov, Andy Pi-mentel, Simon Polstra, Raj Bose, Claudiu Zissulescu, and EdDeprettere. “Daedalus: toward composable multimedia MP-SoC design.” In: Proceedings of the 45th annual Design Automa-

tion Conference. 2008, pp. 574–579.
[DM09] Alastair F Donaldson and Alice Miller. “On the constructiveorbit problem.” In: Annals of mathematics and artificial intelli-

gence 57.1 (2009), pp. 1–35.
[EMD09] Wolfgang Ecker, Wolfgang Müller, and Rainer Dömer.“Hardware-dependent software.” In: Hardware-dependent

Software. Springer, 2009, pp. 1–13.

158

http://ziyang.eecs.umich.edu/%5C~%7B%7Ddickrp/e3s/
http://ziyang.eecs.umich.edu/%5C~%7B%7Ddickrp/e3s/

[HPP09] Mary Hall, David Padua, and Keshav Pingali. “Compiler re-search: the next 50 years.” In: Communications of the ACM52.2 (2009), pp. 60–67.
[Han+09] Andreas Hansson, Kees Goossens, Marco Bekooij, and JosHuisken. “CoMPSoC: A template for composable and pre-dictable multi-processor system on chips.” In: ACM Transac-

tions on Design Automation of Electronic Systems (TODAES) 14.1(2009), pp. 1–24.
[Lee09] Edward A Lee. “Computing needs time.” In: Communications

of the ACM 52.5 (2009), pp. 70–79.
[LM09] Edward A Lee and Eleftherios Matsikoudis. “The semanticsof dataflow with firing.” In: G. Huet, G. Plotkin, J.-J. Lévy, and Y.

Bertot, editors, From Semantics to Computer Science: Essays in
Honour of Gilles Kahn (2009), pp. 71–94.

[Cas+10] Jeronimo Castrillon, Ricardo Velasquez, Anastasia Stulova,Weihua Sheng, Jianjiang Ceng, Rainer Leupers, Gerd Ascheid,and Heinrich Meyr. “Trace-based KPN composability analy-sis for mapping simultaneous applications to MPSoC plat-forms.” In: 2010 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE 2010). IEEE. 2010, pp. 753–758.

[Sin+10] Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar,and Wu Jigang. “Communication-aware heuristics for run-time taskmapping onNoC-basedMPSoC platforms.” In: Jour-
nal of Systems Architecture 56.7 (2010), pp. 242–255.

[SGB10] Sander Stuijk, Marc Geilen, and Twan Basten. “A predictablemultiprocessor design flow for streaming applications withdynamic behaviour.” In: 2010 13th Euromicro Conference on
Digital System Design: Architectures, Methods and Tools. IEEE.2010, pp. 548–555.

[Yan+10] Bo Yang, Liang Guang, Thomas Canhao Xu, Tero Säntti,and Juna Plosila. “Multi-application mapping algorithm fornetwork-on-chip platforms.” In: 2010 IEEE 26-th Convention
of Electrical and Electronics Engineers in Israel. IEEE. 2010,pp. 000540–000544.

[Bha+11] Shuvra S Bhattacharyya, Johan Eker, Jörn W Janneck,Christophe Lucarz, Marco Mattavelli, and Mickaël Raulet.“Overview of the MPEG reconfigurable video coding frame-work.” In: Journal of Signal Processing Systems 63.2 (2011),pp. 251–263.
[CLA11] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid.“MAPS: Mapping concurrent dataflow applications to hetero-geneousMPSoCs.” In: IEEE Transactions on Industrial Informat-

ics 9.1 (2011), pp. 527–545.
[Cas+11] Jeronimo Castrillon, Stefan Schürmans, Anastasia Stulova,Weihua Sheng, Torsten Kempf, Rainer Leupers, Gerd As-cheid, and Heinrich Meyr. “Component-based waveform de-velopment: the Nucleus tool flow for efficient and portablesoftware defined radio.” In: Analog Integrated Circuits and Sig-

nal Processing 69.2 (2011), pp. 173–190.

159

[CSL11] Jeronimo Castrillon, Weihua Sheng, and Rainer Leupers.“Trends in embedded software synthesis.” In: 2011 Interna-
tional Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation. IEEE. 2011, pp. 347–354.

[Mar+11] Peter Marwedel, Iuliana Bacivarov, Chanhee Lee, Jürgen Te-ich, Lothar Thiele, Qiang Xu, Georgia Kouveli, Soonhoi Ha,and Lin Huang. “Mapping of applications to MPSoCs.” In:
2011 Proceedings of the Ninth IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS). IEEE. 2011, pp. 109–118.

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Findingand understanding bugs in C compilers.” In: ACM SIGPLANNo-
tices. Vol. 46. 6. ACM. 2011, pp. 283–294.

[ZK11] Xiao Zhang and Hans G Kerkhoff. “A dependability solutionfor homogeneous MPSoCs.” In: 2011 IEEE 17th Pacific Rim In-
ternational Symposium on Dependable Computing. IEEE. 2011,pp. 53–62.

[BML12] Shuvra S Bhattacharyya, Praveen K Murthy, and EdwardA Lee. Software synthesis from dataflow graphs. Vol. 360.Springer Science & Business Media, 2012.
[Cas+12] Jeronimo Castrillon, Andreas Tretter, Rainer Leupers, andGerd Ascheid. “Communication-aware mapping of KPN ap-plications onto heterogeneous MPSoCs.” In: DAC Design Au-

tomation Conference 2012. IEEE. 2012, pp. 1262–1267.
[Cza12] Evan Czaplicki. “Elm: Concurrent FRP for Functional GUIs.” In:

Senior thesis, Harvard University 30 (2012).
[Gaj+12] Daniel D Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerst-lauer, and Shuqing Zhao. SpecC: Specification language and

methodology. Springer Science & Business Media, 2012.
[Cas+13] Simone Casale-Brunet, Claudio Alberti, Marco Mattavelli,and JornW Janneck. “Turnus: a unified dataflowdesign spaceexploration framework for heterogeneous parallel systems.”In: 2013 Conference on Design and Architectures for Signal and

Image Processing. IEEE. 2013, pp. 47–54.
[Des+13] Karol Desnos, Maxime Pelcat, Jean-François Nezan, ShuvraS Bhattacharyya, and Slaheddine Aridhi. “Pimm: Parameter-ized and interfaced dataflow meta-model for mpsocs run-time reconfiguration.” In: 2013 International Conference on Em-

bedded Computer Systems: Architectures, Modeling, and Simu-
lation (SAMOS). IEEE. 2013, pp. 41–48.

[OWG13] Michael FP O’Boyle, Zheng Wang, and Dominik Grewe.“Portable mapping of data parallel programs to OpenCL forheterogeneous systems.” In: Proceedings of the 2013 IEEE/ACM
International Symposiumon CodeGeneration andOptimization
(CGO). IEEE Computer Society. 2013, pp. 1–10.

[Ode+13] Maximilian Odendahl, Jeronimo Castrillon, Vitaliy Volevach,Rainer Leupers, and Gerd Ascheid. “Split-cost communica-tion model for improved MPSoC application mapping.” In:
2013 International Symposium on System on Chip (SoC). IEEE.2013, pp. 1–8.

160

[SBA13] Jocelyn Sérot, François Berry, and Sameer Ahmed. “CAPH: alanguage for implementing stream-processing applicationson FPGAs.” In: Embedded Systems Design with FPGAs. Springer,2013, pp. 201–224.
[Sin+13] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, andJörg Henkel. “Mapping on multi/many-core systems: surveyof current and emerging trends.” In: 2013 50th ACM/EDAC/IEEE

Design Automation Conference (DAC). IEEE. 2013, pp. 1–10.
[TDJ13] Samira Tasharofi, Peter Dinges, and Ralph E Johnson. “Whydo scala developers mix the actor model with other concur-rency models?” In: European Conference on Object-Oriented

Programming. Springer. 2013, pp. 302–326.
[TP13] Mark Thompson and Andy D Pimentel. “Exploiting do-main knowledge in system-level MPSoC design space explo-ration.” In: Journal of Systems Architecture 59.7 (2013), pp. 351–360.
[Uni13] The Univalent Foundations Program. Homotopy Type Theory:

Univalent Foundations of Mathematics. Institute for AdvancedStudy: https://homotopytypetheory.org/book, 2013.
[Vap13] Vladimir Vapnik. The nature of statistical learning theory.Springer science & business media, 2013.
[Zhe+13] Qi Zheng, Yajing Chen, Ronald Dreslinski, ChaitaliChakrabarti, Achilleas Anastasopoulos, Scott Mahlke, andTrevor Mudge. “WiBench: An open source kernel suite forbenchmarking wireless systems.” In: 2013 IEEE international

symposium on workload characterization (IISWC). IEEE. 2013,pp. 123–132.
[CL14] Jerónimo Castrillón Mazo and Rainer Leupers. “Program-ming heterogeneous mpsocs: Tool flows to close the soft-ware productivity gap.” In: (2014).
[Don14] Jake Donham. Introducing Stitch. Tech. rep. [Online; accessed4-May-2017]. 2014. url: https://www.youtube.com/watch?v=

VVpmMfT8aYw.
[Eus+14] Juan Fernando Eusse, Christopher Williams, Luis GabrielMurillo, Rainer Leupers, and Gerd Ascheid. “Pre-architectural performance estimation for ASIP designbased on abstract processor models.” In: 2014 International

Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV). IEEE. 2014, pp. 133–140.

[Heu+14] Julien Heulot, Maxime Pelcat, Karol Desnos, Jean-FrancoisNezan, and Slaheddine Aridhi. “Spider: A synchronous pa-rameterized and interfaced dataflow-based rtos for multi-core dsps.” In: 2014 6th European Embedded Design in Educa-
tion and Research Conference (EDERC). IEEE. 2014, pp. 167–171.

[Kan+14] Shin-haeng Kang, Hoeseok Yang, Sungchan Kim, Iuliana Baci-varov, Soonhoi Ha, and Lothar Thiele. “Static mapping ofmixed-critical applications for fault-tolerant MPSoCs.” In:
Proceedings of the 51st annual design automation conference.2014, pp. 1–6.

161

https://homotopytypetheory.org/book
https://www.youtube.com/watch?v=VVpmMfT8aYw
https://www.youtube.com/watch?v=VVpmMfT8aYw

[Mar+14] SimonMarlow, Louis Brandy, Jonathan Coens, and Jon Purdy.“There is no fork: An abstraction for efficient, concurrent,and concise data access.” In: Proceedings of the 19th ACM
SIGPLAN international conference on Functional programming.2014, pp. 325–337.

[MP14] Brendan D. McKay and Adolfo Piperno. “Practical graph iso-morphism, {II}.” In: Journal of Symbolic Computation 60.0(2014), pp. 94–112. issn: 0747-7171. doi: http://doi.org/10.
1016/j.jsc.2013.09.003. url: http://www.sciencedirect.
com/science/article/pii/S0747717113001193.

[Mur+14] Luis Gabriel Murillo, Simon Wawroschek, Jeronimo Castril-lon, Rainer Leupers, and Gerd Ascheid. “Automatic detectionof concurrency bugs through event ordering constraints.” In:
2014 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE). IEEE. 2014, pp. 1–6.

[Noe+14] Benedikt Noethen, Oliver Arnold, Esther Perez Adeva, TobiasSeifert, Erik Fischer, Steffen Kunze, Emil Matúš, Gerhard Fet-tweis, Holger Eisenreich, Georg Ellguth, et al. “10.7 A 105GOPS36mm 2 heterogeneous SDR MPSoC with energy-aware dy-namic scheduling and iterative detection-decoding for 4Gin 65nm CMOS.” In: 2014 IEEE International Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC). IEEE. 2014,pp. 188–189.

[Pel+14] Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy,Jean-François Nezan, and Slaheddine Aridhi. “Preesm: Adataflow-based rapid prototyping framework for simplifyingmulticore dsp programming.” In: 2014 6th european embed-
ded design in education and research conference (EDERC). IEEE.2014, pp. 36–40.

[Pto14] Claudius Ptolemaeus, ed. System Design, Modeling, and Simu-
lation using Ptolemy II. Ptolemy.org, 2014. url: http://ptolemy.
org/books/Systems.

[QP14] Wei Quan and Andy D Pimentel. “Towards exploring vastmp-soc mapping design spaces using a bias-elitist evolutionaryapproach.” In: 2014 17th Euromicro Conference on Digital Sys-
tem Design. IEEE. 2014, pp. 655–658.

[Sch+14] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and LotharThiele. “AdaPNet: Adapting process networks in response toresource variations.” In: Proceedings of the 2014 International
Conference on Compilers, Architecture and Synthesis for Embed-
ded Systems. 2014, pp. 1–10.

[She+14] Weihua Sheng, Stefan Schürmans, Maximilian Odendahl,Mark Bertsch, Vitaliy Volevach, Rainer Leupers, and Gerd As-cheid. “A compiler infrastructure for embedded heteroge-neous MPSoCs.” English. In: Parallel Computing. Vol. 40. 2. El-sevier, Feb. 2014, pp. 51–68. doi: http://dx.doi.org/10.
1016/j.parco.2013.11.007.

162

https://doi.org/http://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/http://doi.org/10.1016/j.jsc.2013.09.003
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
https://doi.org/http://dx.doi.org/10.1016/j.parco.2013.11.007
https://doi.org/http://dx.doi.org/10.1016/j.parco.2013.11.007

[Wei+14] Andreas Weichslgartner, Deepak Gangadharan, Stefan Wil-dermann, Michael Glaß, and Jürgen Teich. “DAARM: Design-time application analysis and run-time mapping for pre-dictable execution in many-core systems.” In: 2014 Interna-
tional Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS). IEEE. 2014, pp. 1–10.

[Cat+15] Vincenzo Catania, Andrea Mineo, Salvatore Monteleone,Maurizio Palesi, and Davide Patti. “Noxim: An open, exten-sible and cycle-accurate network on chip simulator.” In: 2015
IEEE 26th international conference on application-specific sys-
tems, architectures and processors (ASAP). IEEE. 2015, pp. 162–163.

[Che+15] Shuang Chen, Xue Lin, Alireza Shafaei, Yanzhi Wang, andMassoud Pedram. “Analysis of deeply scaled multi-gate de-vices with design centering acrossmultiple voltage regimes.”In: 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology
Unified Conference (S3S). IEEE. 2015, pp. 1–2.

[Kac15] Alexey Kachayev. Reinventing Haxl: Efficient, Concurrent and
Concise Data Access. Tech. rep. [Online; accessed 4-May-2017].2015. url: https://www.youtube.com/watch?v=T-oekV8Pwv8.

[Li+15] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and RichardZemel. “Gated graph sequence neural networks.” In: arXiv
preprint arXiv:1511.05493 (2015).

[Mel15a] Mellanox Technologies. TILE-Gx36 Processor. [Online; ac-cessed 2019-05-22]. Mellanox Technologies. 2015. (Visited on05/22/2019).
[Mel15b] Mellanox Technologies. TILE-Gx72 Processor. [Online; ac-cessed 2019-05-22]. Mellanox Technologies. 2015. (Visited on05/22/2019).
[Mou+15] Leonardo deMoura, Soonho Kong, Jeremy Avigad, Floris VanDoorn, and Jakob von Raumer. “The Lean theorem prover(system description).” In: International Conference on Auto-

mated Deduction. Springer. 2015, pp. 378–388.
[Pel+15] Maxime Pelcat, Karol Desnos, Luca Maggiani, Yanzhou Liu,Julien Heulot, Jean-François Nezan, and Shuvra S Bhat-tacharyya. “Models of architecture.” In: (2015).
[QP15] Wei Quan and Andy D Pimentel. “A hybrid task mapping al-gorithm for heterogeneousMPSoCs.” In: ACMTransactions on

Embedded Computing Systems (TECS) 14.1 (2015), pp. 1–25.
[Rol+15] Sascha Roloff, David Schafhauser, Frank Hannig, and JürgenTeich. “Execution-driven parallel simulation of PGAS appli-cations on heterogeneous tiled architectures.” In: 2015 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE.2015, pp. 1–6.
[The15] The Multicore Association, Inc. Software-Hardware Interface

for Multi-Many-Core (SHIM) Specification, V1.0. The MulticoreAssociation, Inc. Jan. 2015.
[Wad15] Philip Wadler. “Propositions as types.” In: Communications of

the ACM 58.12 (2015), pp. 75–84.

163

https://www.youtube.com/watch?v=T-oekV8Pwv8

[Bab16] László Babai. “Graph isomorphism in quasipolynomial time.”In: Proceedings of the forty-eighth annual ACM symposium on
Theory of Computing. 2016, pp. 684–697.

[Bal+16] Jonathan Balkind, Michael McKeown, Yaosheng Fu, TriNguyen, Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad,Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew Matl, andDavid Wentzlaff. “OpenPiton: An Open Source Manycore Re-search Framework.” In: Proceedings of the Twenty-First Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’16. Atlanta, Geor-gia, USA: ACM, 2016, pp. 217–232. isbn: 978-1-4503-4091-5. doi:
10.1145/2872362.2872414. url: https://doi.org/10.1145/
2872362.2872414.

[Che+16] Kuan-Hsun Chen, Jian-Jia Chen, Florian Kriebel, SemeenRehman, Muhammad Shafique, and Jörg Henkel. “Task map-ping for redundant multithreading in multi-cores with relia-bility and performance heterogeneity.” In: IEEE Transactions
on Computers 65.11 (2016), pp. 3441–3455.

[KKM16] Enagnon Cedric Klikpo, Jad Khatib, and Alix Munier-Kordon.“Modeling multi-periodic simulink systems by synchronousdataflow graphs.” In: 2016 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS). IEEE. 2016, pp. 1–10.

[Olo16] Andreas Olofsson. “Epiphany-V: A 1024 processor 64-bit riscsystem-on-chip.” In: arXiv preprint arXiv:1610.01832 (2016).
[Sha16] Christopher Shaver. “On the Representation of DistributedBehavior.” PhD thesis. EECS Department, University of Cali-fornia, Berkeley, Dec. 2016. url: http://www2.eecs.berkeley.

edu/Pubs/TechRpts/2016/EECS-2016-206.html.
[Sod+16] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S.Chinthamani, S. Hutsell, R. Agarwal, and Y. Liu. “Knights Land-ing: Second-Generation Intel Xeon Phi Product.” In: IEEE Mi-

cro 36.2 (Mar. 2016), pp. 34–46. issn: 0272-1732. doi: 10.1109/
MM.2016.25. url: https://doi.org/10.1109/MM.2016.25.

[Wei+16] Andreas Weichslgartner, Stefan Wildermann, JohannesGötzfried, Felix Freiling, Michael Glaß, and Jürgen Teich.“Design-time/run-time mapping of security-critical applica-tions in heterogeneous mpsocs.” In: Proceedings of the 19th
International Workshop on Software and Compilers for Embed-
ded Systems. 2016, pp. 153–162.

[Zhu+16] Di Zhu, Lizhong Chen, Siyu Yue, Timothy M Pinkston, andMassoud Pedram. “Providing balanced mapping for multi-ple applications in many-core chip multiprocessors.” In: IEEE
Transactions on Computers 65.10 (2016), pp. 3122–3135.

[ABK17] Miltiadis Allamanis, Marc Brockschmidt, and MahmoudKhademi. “Learning to represent programs with graphs.” In:
arXiv preprint arXiv:1711.00740 (2017).

[AMS17] Josefine Asmus, Christian L Müller, and Ivo F Sbalzarini. “Lp-Adaptation: Simultaneous Design Centering and RobustnessEstimation of Electronic and Biological Systems.” In: Scientific
reports 7.1 (2017), pp. 1–12.

164

https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/2872362.2872414
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-206.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-206.html
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1109/MM.2016.25

[Cum+17a] Chris Cummins, Pavlos Petoumenos, ZhengWang, andHughLeather. “Synthesizing benchmarks for predictivemodeling.”In: 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE. 2017, pp. 86–99.

[Cum+17b] Christopher Cummins, Pavlos Petoumenos, Zheng Wang,and Hugh Leather. “End-to-end Deep Learning of Optimiza-tion Heuristics.” In: Proceedings of the International Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT 2017). Portland, Oregon, US, Sept. 2017.

[Kra17] Sebastian Krammer. “Isomorphism-Classes of Subgraphs viaSemigroups.” Bachelor’s Thesis. RWTH Aachen, 2017.
[Lee17] Edward A Lee. Plato and the Nerd: The Creative Partnership of

Humans and Technology. MIT Press, 2017.
[Sch+17] Tobias Schwarzer, Andreas Weichslgartner, MichaelGlaß, Stefan Wildermann, Peter Brand, and Jürgen Te-ich. “Symmetry-eliminating design space exploration forhybrid application mapping on many-core architectures.”In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 37.2 (2017), pp. 297–310.
[All+18] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, andCharles Sutton. “A survey of machine learning for big codeand naturalness.” In: ACM Computing Surveys (CSUR) 51.4(2018), pp. 1–37.
[BJH18] Tal Ben-Nun, Alice Shoshana Jakobovits, and TorstenHoefler.“Neural code comprehension: a learnable representation ofcode semantics.” In: Advances in Neural Information Process-

ing Systems. 2018, pp. 3585–3597.
[Chi18] David Chisnall. “C is not a low-level language.” In: Communi-

cations of the ACM 61.7 (2018), pp. 44–48.
[EAC18] Sebastian Ertel, Justus Adam, and Jeronimo Castrillon. “Sup-porting Fine-grained Dataflow Parallelism in Big Data Sys-tems.” In: Proceedings of the 9th International Workshop

on Programming Models and Applications for Multicores and
Manycores (PMAM). PMAM’18. Vienna, Austria: ACM, Feb. 2018,pp. 41–50. isbn: 978-1-4503-5645-9. doi: 10.1145/3178442.
3178447. url: http : / / doi . acm . org / 10 . 1145 / 3178442 .
3178447.

[Li+18a] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and TomGoldstein. “Visualizing the Loss Landscape of Neural Nets.”In: Neural Information Processing Systems. 2018.
[Li+18b] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and PeterBattaglia. “Learning deep generative models of graphs.” In:

arXiv preprint arXiv:1803.03324 (2018).
[RG18] Valentina Richthammer andMichael Glaß. “On Search-SpaceRestriction for Design Space Exploration of Multi-/Many-Core Systems.” In: MBMV. 2018.

165

https://doi.org/10.1145/3178442.3178447
https://doi.org/10.1145/3178442.3178447
http://doi.acm.org/10.1145/3178442.3178447
http://doi.acm.org/10.1145/3178442.3178447

[Tam+18] S. M. Tam, H. Muljono, M. Huang, S. Iyer, K. Royneogi, N.Satti, R. Qureshi, W. Chen, T. Wang, H. Hsieh, S. Vora, andE. Wang. “SkyLake-SP: A 14nm 28-Core xeon® processor.” In:
2018 IEEE International Solid - State Circuits Conference - (ISSCC).Feb. 2018, pp. 34–36. doi: 10.1109/ISSCC.2018.8310170. url:
https://doi.org/10.1109/ISSCC.2018.8310170.

[Bec19] Micah Beck. “On the Hourglass Model.” In: Commun. ACM62.7 (June 2019), pp. 48–57. issn: 0001-0782. doi: 10.1145/
3274770. url: https://doi.org/10.1145/3274770.

[BCJ19] Hasna Bouraoui, Jeronimo Castrillon, and Chadlia Jerad.“Comparing dataflow and openmp programming forspeaker recognition applications.” In: Proceedings of the
10th and 8th Workshop on Parallel Programming and Run-
Time Management Techniques for Many-core Architectures
and Design Tools and Architectures for Multicore Embedded
Computing Platforms. 2019, pp. 1–6.

[Eas+19] James East, Attila Egri-Nagy, James D Mitchell, and YannPéresse. “Computing finite semigroups.” In: Journal of Sym-
bolic Computation 92 (2019), pp. 110–155.

[Ert19] Sebastian Ertel. “Towards Implicit Parallel Programming forSystems.” PhD thesis. Dresden, Germany: TU Dresden, Dec.2019, 121pp.
[Fet+19] Gerhard Fettweis, Meik Dörpinghaus, Jeronimo Castrillon,Akash Kumar, Christel Baier, Karlheinz Bock, Frank Ellinger,Andreas Fery, Frank H. P. Fitzek, Hermann Härtig, Kam-biz Jamshidi, Thomas Kissinger, Wolfgang Lehner, MichaelMertig, Wolfgang E. Nagel, Giang T. Nguyen, Dirk Plette-meier, Michael Schröter, and Thorsten Strufe. “Architectureand Advanced Electronics Pathways Toward Highly Adap-tive Energy-Efficient Computing.” In: Proceedings of the IEEE107.1 (Jan. 2019), pp. 204–231. issn: 0018-9219. doi: 10.1109/

JPROC.2018.2874895. url: https://ieeexplore.ieee.org/
document/8565890.

[Lee19] Edward A Lee. “Freedom FromChoice and the Power ofMod-els: in Honor of Alberto Sangiovanni-Vincentelli.” In: Proceed-
ings of the 2019 International Symposium on Physical Design.2019, pp. 126–126.

[LL19] Marten Lohstroh and Edward A Lee. “Deterministic actors.”In: 2019 Forum for Specification and Design Languages (FDL).IEEE. 2019, pp. 1–8.
[Tew19] Felix Teweleitt. “A logic language for IoT mappings.” Studien-arbeit. TU Dresden, 2019.
[Web19] Matthew Weber. “Context and Interaction in the Internet ofThings.” PhD thesis. EECS Department, University of Califor-nia, Berkeley, Aug. 2019. url: http://www2.eecs.berkeley.

edu/Pubs/TechRpts/2019/EECS-2019-114.html.
[WAL19] Matthew Weber, Ravi Akella, and Edward A Lee. “ServiceDiscovery for the Connected Car with Semantic Accessors.”In: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE. 2019,pp. 2417–2422.

166

https://doi.org/10.1109/ISSCC.2018.8310170
https://doi.org/10.1109/ISSCC.2018.8310170
https://doi.org/10.1145/3274770
https://doi.org/10.1145/3274770
https://doi.org/10.1145/3274770
https://doi.org/10.1109/JPROC.2018.2874895
https://doi.org/10.1109/JPROC.2018.2874895
https://ieeexplore.ieee.org/document/8565890
https://ieeexplore.ieee.org/document/8565890
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-114.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-114.html

[Yad19] Omry Yadan. Hydra - A framework for elegantly configuring
complex applications. Github. 2019. url: https://github.com/
facebookresearch/hydra.

[Zha19] Yong Zhao. “Health monitoring and life-time prognostics toenable dependable many-processor S0Cs.” PhD thesis. Uni-versity of Twente, 2019.
[Bra20] Alexander Brauckmann. “Investigating Input Representa-tions and Representation Models of Source Code for Ma-chine Learning.” MA thesis. TU Dresden, Feb. 2020.
[BCM20] Nishant Budhdev, Mun Choon Chan, and Tulika Mitra. Iso-

RAN: Isolation and Scaling for 5G RANvia User-Level Data Plane
Virtualization. 2020. arXiv: 2003.01841 [cs.NI].

[CDA20] C/DA - Design Automation. “IEEE Standard for Software-Hardware Interface for Multi-Many-Core.” In: IEEE Std 2804-
2019 (Jan. 2020), pp. 1–84. doi: 10 . 1109 / IEEESTD . 2020 .

8985663. url: https://standards.ieee.org/standard/2804-
2019.html.

[Cum+20] Chris Cummins, Zacharias Fisches, Tal Ben-Nun, TorstenHoefler, Hugh Leather, and Michael O’Boyle. “Pro-gram Graphs for Machine Learning.” In: arXiv preprint
arXiv:2003.10536 (2020).

[Gat+20] Alan Gatherer, Ashish Shrivastava, Hao Luan, AsheeshKashyap, ZhenguoGu, andMiguel Dajer. “Towards aDomainSpecific Solution for aNewGeneration ofWirelessModems.”In: arXiv preprint arXiv:2012.02890 (2020).
[inc20] Kalray inc. Kalray MPPA3 Coolidge Anouncement. 2020. url:

https : / / www . kalrayinc . com / release - of - third -

generation-mppa-processor-coolidge/.
[KC20] Robert Khasanov and Jeronimo Castrillon. “Energy-efficientRuntime Resource Management for Adaptable Multi-application Mapping.” In: Proceedings of the 2020 Design,

Automation and Test in Europe Conference (DATE). DATE’20. Grenoble, France: IEEE, Mar. 2020, pp. 909–914. isbn:978-3-9819263-4-7. doi: 10.23919/DATE48585.2020.9116381.url: https://ieeexplore.ieee.org/document/9116381.
[LC20] Hugh Leather and Chris Cummins. “Machine learning in com-pilers: Past, present and future.” In: 2020 Forum for Specifica-

tion and Design Languages (FDL). IEEE. 2020, pp. 1–8.
[Loh20] Marten Lohstroh. “Reactors: A Deterministic Model of Con-current Computation for Reactive Systems.” PhD thesis. UCBerkeley, 2020.
[Loh+20a] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten, Matthew Weber, Jeronimo Castrillon, and Ed-ward A Lee. “A Language for Deterministic CoordinationAcross Multiple Timelines.” In: 2020 Forum for Specification

and Design Languages (FDL). IEEE. 2020, pp. 1–8.

167

https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://arxiv.org/abs/2003.01841
https://doi.org/10.1109/IEEESTD.2020.8985663
https://doi.org/10.1109/IEEESTD.2020.8985663
https://standards.ieee.org/standard/2804-2019.html
https://standards.ieee.org/standard/2804-2019.html
https://www.kalrayinc.com/release-of-third-generation-mppa-processor-coolidge/
https://www.kalrayinc.com/release-of-third-generation-mppa-processor-coolidge/
https://doi.org/10.23919/DATE48585.2020.9116381
https://ieeexplore.ieee.org/document/9116381

[Loh+20b] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten, Matthew Weber, Jeronimo Castrillon, and Ed-ward A Lee. “A Language for Deterministic CoordinationAcross Multiple Timelines.” In: 2020 Forum for Specification
and Design Languages (FDL). IEEE. 2020, pp. 1–8.

[Nic20] Timo Nicolai. “Faster MPSoC Task Mapping via Symmetry Re-duction.” Studienarbeit. TU Dresden, 2020.
[Pal+20] Aditya Paliwal, Sarah M Loos, Markus N Rabe, Kshitij Bansal,and Christian Szegedy. “Graph Representations for Higher-Order Logic and Theorem Proving.” In: AAAI. 2020, pp. 2967–2974.
[RFG20] Valentina Richthammer, Fabian Fassnacht, andMichael Glaß.“Search-space Decomposition for System-level Design SpaceExploration of Embedded Systems.” In: ACM Transactions on

Design Automation of Electronic Systems (TODAES) 25.2 (2020),pp. 1–32.
[Rup20] Karl Rupp. Microprocessor Trend Data. https://github.com/

karlrupp/microprocessor-trend-data. 2020.
[Thi20] Alexander Thierfelder. “A Domain-Specific GenerativeModelof Code for LLVM.” MA thesis. TU Dresden, Feb. 2020.
[Ye+20] Guixin Ye, Zhanyong Tang, Huanting Wang, Dingyi Fang, Jian-bin Fang, SongfangHuang, and ZhengWang. “Deep ProgramStructure Modeling Through Multi-Relational Graph-basedLearning.” In: Proceedings of the ACM International Conference

on Parallel Architectures and Compilation Techniques. 2020,pp. 111–123.
[BJC21] Hasna Bouraoui, Chadlia Jerad, and Jeronimo Castrillon.“Towards Adaptive multi-Alternative Process Network.” In:

Proceedings of the 12th Workshop and 10th Workshop on
Parallel Programming and RunTime Management Techniques
for Manycore Architectures and Design Tools and Architec-
tures for Multicore Embedded Computing Platforms (PARMA-
DITAM’21), co-located with 16th International Conference on
High-Performance and Embedded Architectures and Compilers
(HiPEAC). PARMA-DITAM 2021. Budapest, Hungary: SchlossDagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publish-ing, Jan. 2021.

[GAP20] The GAP Group. GAP – Groups, Algorithms, and Programming,
Version 4.11.0. The GAP Group. 2020. url: %5Curl%7Bhttps://
www.gap-system.org%7D.

168

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
%5Curl%7Bhttps://www.gap-system.org%7D
%5Curl%7Bhttps://www.gap-system.org%7D

L I S T OF F IGURES

Figure 1.1 Chip trends as obtained from [Rup20]. The linespresent the exponential growth prediction if con-sidering data up until the year 2000. 2Figure 1.2 The HAEC architecture [Fet+19] has multiple levelsof hierarchy: on-chip, intra-board (optical links) andinter-board (wireless). 3Figure 1.3 A flow for MoC-based Software Synthesis. The mainabstractions colored in green are the ones we dealwith in this thesis. 6Figure 1.4 An example of the mapping space for a simple two-task application. 7Figure 1.5 Dependencies of chapters and sections of this thesis. 10Figure 2.1 The audio filter application as a KPN graph 15Figure 2.2 Different possible sequential executions of the au-dio filter KPN. 16Figure 2.3 Different levels of abstraction in architectures . . . 18Figure 2.4 Multiple Levels of Abstraction in the Y-Chart Ap-proach (Inspired by Figure 6 in [Kie+01]). 19Figure 2.5 The Odroid-XU4 Architecture. 20Figure 2.6 An Example of an Architecture Graph for theOdroid-XU4 Architecture. 21Figure 2.7 Comparison of the Architecture and TopologyGraphs for a 4ˆ 4-Mesh NoC-based Architecture. . 21Figure 2.8 An example of a mapping as a diagram (left) and asa morphism of graphs (right). 23Figure 2.9 An example of the mapping space for a simple two-task application. 24Figure 2.10 The Software Synthesis Flow from Figure 1.3. MAPSimplements all steps in the flow, which are there-fore all depicted in green. 28Figure 2.11 Mapping and simulating KPN Applications in mocasin. 30Figure 3.1 An illustration of probabilities in code space 33Figure 3.2 An illustration of different types of benchmarks . . 34Figure 3.3 The KPN graph of the speaker recognition application. 37Figure 3.4 An example of a Level Graph. Adapted from Figure 1of [Goe+18]. 39Figure 3.5 An illustration of generative models in the Fischer-Wald setting. 41Figure 3.6 The flow of CLGen and our re-evaluation. Adaptedfrom Figure 1 in [Goe+19]. 42Figure 3.7 Accuracy obtained by the heuristic for the differ-ent datasets in the setup. Adapted from Figure 2of [Goe+19]. 43Figure 3.8 Smoothed relative frequencies of kernels as func-tion of the first principal component. Adapted fromFigure 6 of [Goe+19]. 43

169

Figure 3.9 A comparison of the accuracy of multiple machinelearning methods for the CPU/GPU classification ofOpenCL kernels. Adapted from Figure 12 of [Bra+20]. 45Figure 4.1 Examples of transformations in the Odroid-XU4 ar-chitecture. 48Figure 4.2 The communication topology affects symmetries inarchitectures. 48Figure 4.3 The topology of the Kalray MPPA3 Coolidge. 49Figure 4.4 A symmetry transformation of the audio filter ap-plication. 50Figure 4.5 Group actions on mappings. 51Figure 4.6 Measurements of four equivalent mapings for theaudio filter application on the Odroid-XU3 architec-ture. 52Figure 4.7 A comparison of the two different-sized meshesand the intuitive notion of their symmetries. 56Figure 4.8 An example of a local symmetry that is not a globalsymmetry of a 4ˆ 4 mesh. 57Figure 4.9 The transformation of Figure 4.8 as a partial permu-tation. 58Figure 4.10 An intuitive example of distance between mappings. 62Figure 4.11 An example of a problem with the orthogonal-sumconstruction of the distancemetric for themappingspace. 65Figure 4.12 A visualization of a random projection of the map-ping space . 66Figure 4.13 Comparison of multiple distance metrics on theOdroid XU4 platform. 68Figure 4.14 Comparison of multiple distance metrics as pre-dictors of the maximal run-time difference on theOdroid XU4 platform. 69Figure 4.15 Comparison of multiple distance metrics on theMPPA3 Coolidge platform. 69Figure 4.16 Comparison of multiple distance metrics as pre-dictors of the maximal run-time difference on theMPPA3 Coolidge platform. 70Figure 4.17 Comparison of the predictive power ofmultiple dis-tance metrics. 70Figure 4.18 A visualization of the mapping space of Figure 2.9in the Symmetries representation. 71Figure 4.19 A visualization of the mapping space of Fig-ure 1.4 in the MetricSpaceEmbedding (left) and
SymmetryEmbedding (right) representations. 72Figure 4.20 An overview of all four representations discussedin the example of the mapping space for a simpletwo-task application from Figure 1.4. 73Figure 5.1 Equivalent mappings of two applications, one be-ing compact and the other one not. Adapted fromFigure 1 in [GMC19]. 75Figure 5.2 Comparison of latencies between compact, non-compact and randommappings. Adapted from Fig-ure 2 in [GMC19]. 77

170

Figure 5.3 Comparison between compact, non-compact andrandom mappings running isolation or with an-other 9 applications. Adapted from Figure 4in [GMC19]. 78Figure 5.4 Two equivalent mappings that yield good perfor-mance. Adapted from Figure 5 in [GMC19]. 78Figure 5.5 Visualization of the design space for multiplethresholds . 80Figure 5.6 Examples of possible neighborhoods around de-sign centers in two-dimensional random projec-tions of the design space for the audio filter ap-plication on the Odroid XU4. 81Figure 5.7 Design centering and perturbation stability formul-tiple threshold levels in the Odroid XU4 platform. . 81Figure 5.8 Design centering and perturbation stability formul-tiple threshold levels in theMPPA3 Coolidge platform. 82Figure 5.9 Comparison of multiple mapping heuristics andmetaheuristics on the E3S benchmarks, relative tothe results of the genetic algorithms. 84Figure 5.10 The effect of a symmetry-aware cache on multi-ple architecture topologies as evaluated on the E3Sbenchmarks. 86Figure 5.11 The effect of symmetry-pruning of the DSEby chang-ing the operations in algorithms to consider sym-metry. Evaluated on multiple architecture topolo-gies on the E3S benchmarks. 87Figure 5.12 The effect of a pruning via symmetries on theMPPA3 Coolidge as a function of the number oftasks in the application as evaluated on the E3Sbenchmarks. 88Figure 5.13 The effect of embedding-based representations inmetaheuristics that leverage the geometry on theMPPA3 Coolidge platform. 89Figure 5.14 Visualization of the same design space of the audiofilter benchmark on the MPPA3 Coolidge platformin two different representations. 90Figure 5.15 Comparison of the effects of multiple representa-tions on the Odroid XU4 platform. 91Figure 5.16 Comparison of the effects of multiple representa-tions on the MPPA3 Coolidge platform. 92Figure 5.17 The actual mapping space of a GSM-based two-taskapplication from E3S on the Odroid XU4 that in-spired Figure 1.4. 93Figure 5.18 An illustration of Pareto points in the mapping space. 96Figure 5.19 Variant selection in TETRiS. 96Figure 5.20 The TETRiS flow. 97Figure 5.21 Comparison of the TETRiS systemwith Linux’ CFS ex-ecuting four instances of the audio filter benchmarksimultaneously an Odroid XU4. Adapted from Fig-ure 9 in [Goe+17]. 98Figure 6.1 Overview of different models of computation.Color-filled nodes refer to concrete models, dottedones are abstract properties. 102

171

Figure 6.2 Relationships between different dataflow modelsof computation. 104Figure 6.3 An example of a KPN which admits non-blocking-read semantics. 106Figure 6.4 Examples of Gantt Charts corresponding to imple-mentations of the Kahn Function f 107Figure 6.5 A counterexample of the equivalence of Kahn-MacQueen and Kahn processes. 107Figure 6.6 An example of data-parallelism exploiting the Mac-Queen gap. 109Figure 6.7 Simplified model of a basestation uplink modem.Adapted from Figure 2 of [Wit+20] 118Figure 6.8 Different parameter combinations and their effectson the requirements on computation in LTE. “No.RB” denotes the number of resource blocks. 118Figure 6.9 Possible configurations in a resource-constrained
LTE environment. The number of UEs are depictedwith a meaningless random jitter for visibility.Adapted from Figure 2 in [Wit+20]. 119Figure 6.10 The Reactor network of the modified WiBenchbenchmark in Lingua Franca. 120Figure 7.1 An audio filter in SDF semantics in Ptolemy II 124Figure 7.2 The audio filter example in Lingua Franca 125Figure 7.3 Dependencies of (map (f . g . h) inputs).Adapted from Figure 5 in [Ert+19b] 128Figure 7.4 Microservices at Amazon. 130Figure 7.5 Mapping the terms of the Clojure-based languageto an expression IR. Adapted from Figure 9 in [Ert+18].132Figure 7.6 Batching I/O with Ÿauhau compared to Haxl andMuse. Adapted from Figure 11 of [Ert+18]. 133Figure 7.7 Concurrent I/O with Ÿauhau compared to Haxl andMuse. Adapted from Figure 12 of [Ert+18]. 134Figure 7.8 Concurrent I/O in modular programs with Ÿauhau.Adapted from Figure 13 of [Ert+18]. 134Figure A.1 A square. 147Figure A.2 The action of the permutation p1, 2q on the square. 147Figure A.3 The action of the rotation p1, 2, 3, 4q on the square. . 147Figure A.4 The action of the reflection p1, 2qp3, 4q on the square. 148

172

I NDEX

Lp adaptation, 79
Sn, 145
AutSemi, 60
ω-complete partial order, 100(greatest) lower bound, 100(least) upper bound, 100Ÿauhau, 130Ÿauhauio, 132integer linear programming, 47race-track memory, 47
SDF3, 29
BSGS, 54
CPN, 14
CSDF, 104
DDF, 103
DPN, 103
RVC-CAL, 124
SADF, 104
TETRiScanonical mapping, 96rotations, 97
scc, 60
map function, 5
absent value, 103actor model, 101, 109applicative functor, 131architecture graph, 20audio filter, 14automorphism, 49average network delay, 77
batched I/O, 132bio-inspired design centering, 79
code distribution, 34communication primitive, 20compact mappings, 75complete semilattice, 100curse of dimensionality, 67
DataflowDennis, 102SDF, 103dependency, 16design center, 79directed set, 100discrete-event simulator, 30

dominated, 95
elementary history, 17emerging memory technologies,47Erlang, 124
firing, 103firing rules, 103fuzzing benchmark, 35
generating set, 148genetic algorithm, 83group, 145group action, 146group automorphism, 146group homomoprhism, 146group isomorphism, 146group membership problem, 55
Haxl, 131hierarchical topologies, 32higher-order function, 5HOG, 37Hydra, 32
idempotent, 60implicit abstractions, 126independency, 16invariants, 51isometry, 150
Johnson-Lindenstrauss lemma,65, 151Johnson-Lindenstrauss reduc-tion, 67
Kleene closure, 16Kleene star, 100KPNchannel, 13graph, 15process, 13
level graph, 40lexicographical ordering, 55locality in code, 39logical time, 109low-distortion embeddings, 67

173

mappingdefinition, 22problem, 23mapping layer, 19mapping perturbations, 79mapping similarities, 62, 68meta-heuristics, 83
Ohua, 126Ohuastateful functions, 127ontologies, 92orbit, 148
Pareto point, 95performance islands, 89perturbations (of mappings), 81Petri nets, 101physical time, 109platform designer, 30Process Calculi, 101Process CalculiCSP, 101Pi-Calculus, 101process segments, 28product monoid, 17Ptolemy II, 124
random walk, 83Reactors, 109Reactorsactions, 114effects , 112mutation, 110reaction, 111reactor , 112sources , 112time, 113timeless network, 113triggers , 112Rebeca, 124representative coverage bench-mark, 34robust mappings, 79
Schreier-Sims Algorithm, 54Scottcontinuity, 101monotone function, 101topology, 101sequences, 100simulated annealing, 83software productivity gap, 3software synthesis, 6

speaker recognition, 37state thread, 129stricly order-preserving generat-ing set, 56superdense time, 113symmetric group, 145symmetry group, 147symmetry-aware cache, 85
tabu search, 83task graphs, 104tgff, 29thresholds, 79topology graph, 20trace monoid, 16
wreath product, 149

174

L I S T OF ACRONYMS

ALU Arithmetic Logic Unit
ANOVA Analysis of Variance
AP Adaptive Platform
API Application Programming Interface
AST abstract syntax tree
BNF Backus-Naur Form
BSGS base and strong generating set
CDFG control- and data-flow graph
cfaed Center for Advancing Electronics Dresden
CAS computer algebra system
CFS Completely Fair Scheduler
CGO International Symposium on Code Generation and Optimization
CPN C for Process Networks
CPU Central Processing Unit
CPS Cyber-Physical System
CSDF Cyclo-Static Data Flow
CSP Communicating Sequential Process
DDF Dynamic Data Flow
DLP data-level parallelism
DMA Direct Memory Access
DPN Dataflow Process Networks
DOL Distributed Operation Layer
DSE Design-Space Exploration
DSL Domain-Specific Language
HAEC Highly-Adaptive Energy-Efficient Computing
E3S Embedded System Synthesis Benchmarks Suite
EDA Electronic Design Automation
FFT Fast Fourier Transform
FIFO first in - first out
FPGA Field Programmable Gate Array

175

FRP Functional Reactive Programming
GAP Groups Algorithms Programming
GBM Group Based Mapping
GGNN Gated Graph Sequence Neural Network
GPU Graphics Processing Unit
GSM Global System for Mobile Communications
GUI Graphical User Interface
HLS High-Level Synthesis
HOG Histogram of Oriented Gradients
HSDF Homogeneous SDF
IDE Integrated Development Environment
IFFT inverse FFT
i.i.d. independent and identically distributed
ILP integer linear programming
IoT Internet of Things
IP intellectual property
IR intermediate representation
ISA Instruction-Set Architecture
I/O Input/Output
KPN Kahn Process Network
KMQ Kahn-MacQueen
LSTM Long Short-Term Memory
LTE Long Term Evolution
NoC Network on Chip
NVM non-volatile memory
MAPS MPSoC Application Programming Studio
MoC Model of Computation
MPSoC Multi-Processor System-on-Chip
OOP object-oriented programming
OS operating system
PCB printed circuit board
pdf probability density function
PACT International Conference on Parallel Architectures and CompilationTechniques

176

PE processing element
PHY physical layer
poset partially-ordered set
PRET Precision Timed
pthread POSIX thread
RNTI Radio Network Temporary Identifier
RTM race-track memory
RVC Reconfigurable Video Coding
SADF Scenario-Aware Data Flow
scc strongly connected component
SDF Synchronous Data Flow
SDF3 SDF For Free
TETRiS Transitive Efficient Template Run-time System
TGFF task graph for free
UE User Equipment
XML Extensible Markup Language

177

	Dedication
	Preamble
	1 Introduction
	1.1 The Multicore Era
	1.2 Programming Multicores
	1.3 Software Synthesis
	1.3.1 Problems

	1.4 Contribution
	1.4.1 A Note on Originality

	2 Mapping KPNs to Heterogenous MPSoCs
	2.1 Kahn Process Networks
	2.2 Execution Traces
	2.3 Architecture Models
	2.4 The Mapping Problem
	2.5 Simulating Mappings
	2.5.1 Simulating the Execution of Kahn Process Networks

	2.6 Software Synthesis Flows
	2.6.1 The MAPS flow

	2.7 The mocasin tool

	3 Benchmarking
	3.1 Representative Benchmarks
	3.1.1 Sample use cases

	3.2 KPN Benchmarks
	3.2.1 CPN Benchmarks
	3.2.2 The E3S Benchmarks

	3.3 Random Benchmarks and Level Graphs
	3.4 Machine Learning for Benchmarking
	3.4.1 Generative models
	3.4.2 Potential Problems
	3.4.3 Models of Code

	4 Mathematical Structures in Mappings
	4.1 Symmetries
	4.1.1 Architectures and Applications
	4.1.2 Mappings
	4.1.3 Calculating Symmetries
	4.1.4 Partial Symmetries

	4.2 Metric Spaces
	4.2.1 Architectures
	4.2.2 Mappings
	4.2.3 Low-distortion Embeddings

	4.3 Representations

	5 Applications of Mathematical Structures in Mappings
	5.1 Compact Mappings
	5.2 Robust Mappings
	5.3 Design Space Exploration
	5.3.1 Heuristics and Metaheuristics
	5.3.2 Leveraging Symmetries
	5.3.3 Leveraging Metric Spaces

	5.4 A Vision of IoT Mappings
	5.5 Run-time applications: TETRiS

	6 Beyond KPN: Models of Computation
	6.1 An overview of Models of Computation
	6.1.1 Partial Computation: Scott Domains
	6.1.2 Concurrent Computation
	6.1.3 Dataflow Models of Computation

	6.2 The MacQueen Gap
	6.2.1 The MacQueen Gap
	6.2.2 Exploiting the Gap

	6.3 Reactors
	6.3.1 Applications in 5G

	7 Programming Languages
	7.1 Freedom from Choice
	7.1.1 Dataflow, Actors and Discrete Events
	7.1.2 Implicit Dataflow
	7.1.3 Stateful Functions

	7.2 Stateful Parallelism
	7.3 Concise code and Efficient I/O

	8 Related Work
	8.1 Dataflow-based Software Synthesis
	8.2 Mapping Space Structures
	8.2.1 Symmetries
	8.2.2 Distances

	8.3 Run-time and hybrid approaches
	8.4 Other model-based design tools
	8.5 Random Benchmark Generation and Machine Learning

	9 Conclusions
	9.1 Future Work

	A Mathematical Supplement
	A.1 Groups
	A.2 Metric Spaces and Low-Distortion Embeddings

