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Extending a Compiler Backend for Complete Memory
Error Detection

Norman A. Rink1 Jeronimo Castrillon2

Abstract: Technological advances drive hardware to ever smaller feature sizes, causing devices to
become more vulnerable to faults. Applications can be protected against errors resulting from faults
by adding error detection and recovery measures in software. This is popularly achieved by apply-
ing automatic program transformations. However, transformations applied to intermediate program
representations are fundamentally incapable of protecting against vulnerabilities that are introduced
during compilation. In particular, the compiler backend may introduce additional memory accesses.
This report presents an extended compiler backend that protects these accesses against faults in the
memory system. It is demonstrated that this enables the detection of all single bit flips in memory.
On a subset of SPEC CINT2006 the runtime overhead caused by the extended backend amounts to
1.50x for the 32-bit processor architecture i386, and 1.13x for the 64-bit architecture x86 64.

Keywords: transient hardware faults, soft errors, memory errors, error detection, fault tolerance,
resilience, compiler backend, code generation, intermediate representation (IR), LLVM

1 Introduction

Aggressive technology scaling increases the rates of hardware faults [Sh02, Bo05, Bl06,
Ba05], and faults cause erroneous application behavior with non-negligible probabili-
ties [SPW09, NDO11]. Transient hardware faults, also known as soft errors, are commonly
attributed to cosmic radiation [Ba05]. However, due to shrinking feature sizes, devices are
also becoming more vulnerable to variations in supply voltage and temperature, which
reduces reliability [Bo05, Sh14]. Moreover, the current trends toward lowering energy
consumption and temperature dissipation further reduce reliability [Es11, Ta12, Sh14].

In safety-critical automotive applications, faults that go undetected can pose a danger to
human life. Therefore, software that is designed for applications with strict safety and re-
liability requirements must incorporate measures to tolerate hardware faults [Pa08]. Soft-
ware can be made fault-tolerant by adding integrity checks to programs. When a check
fails, an error has been detected and suitable measures can be taken to recover from it.
To enable checks, and hence error detection, some form of redundancy must be added
to programs. This can be done conveniently by applying automatic program transforma-
tions, such as source-to-source transformations, cf. [Re99, BSS13, KF15, Ka16]. With the
rising popularity of the LLVM framework and intermediate representation (IR) [LA04],
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many fault tolerance schemes have appeared that are implemented as IR transformations,
e.g. [FSS09, Sc10, Fe10, Zh10, Ri15, CNV16]. Operating on IR has the advantages of
target-independence and increased productivity compared with operating on machine in-
structions. However, when transformations are applied to programs at an abstraction level
above machine instructions, the compiler backend may introduce new vulnerabilities to
faults. Specifically, the backend introduces numerous additional memory accesses, cf. Fig-
ure 1, which are then not protected against faults in the memory system.

Fig. 1: Dynamic load operations present in the intermediate repre-
sentation (IR) of programs or inserted by the compiler backend. The
test programs labeled A–L are introduced in Section 4, cf. Table 1.

In this work we present a modified compiler backend that adds error detection measures to
the memory accesses it inserts. By combining this backend with any fault tolerance scheme
that operates on program IR or source code, errors can be detected in all memory accesses
that occur in the final machine code. Our compiler backend implements error detection by
dual modular redundancy (DMR), i.e. data words in memory are duplicated. Whenever
a data word is loaded from memory, the duplicated copies are compared. If disagreement
is found, an error has been detected. Thus, DMR is capable of detecting any number of
flipped bits within a data word. For complete protection of all memory accesses in the final
machine code of programs, the extended compiler backend will be combined with the AN
encoding error detection scheme at the IR level [Br60, Fo89, FSS09, Ri15].

Many fault tolerance schemes circumvent the problem of memory errors by assuming
that memory is protected against faults by hardware measures, such as memory modules
equipped with error correcting codes (ECC) [Re05, YGS09, MPC14, DS16]. This as-
sumption, however, is problematic for two reasons. First, cost and area considerations may
rule out using ECC memory at all levels in the memory hierarchy, especially in on-chip
caches and load-store queues. In fact, the need to protect a processor’s load-store queue
against faults has recently been stressed [DS16]. Second, it has been found that the widely
used single error correcting, double error detecting (SECDED) codes are incapable of
handling large fractions of error patterns that occur in practice [HSS12].

This article is structured as follows. Section 2 introduces memory faults and error detection
schemes, including the AN encoding scheme. Section 3 identifies the memory accesses
that are inserted by the compiler backend and explains how they are equipped with error
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detection measures. Section 4 evaluates our error detection scheme. Section 5 discusses
related work, and Section 6 summarizes and discusses the findings of the present work.

2 Background

Faults in memory are a major cause of erroneous application behavior and service dis-
ruptions [SPW09, HSS12]. Typical faults in memory cells are bit flips caused by ener-
getic particles that originate from cosmic radiation [Ba05]. However, motivated by the
current trend toward reducing energy consumption, it has been suggested that the operat-
ing voltage of SRAM be lowered [Es12], and that refresh cycles of DRAM modules be
extended [Li11, We15]. Both suggestions reduce the capability to retain data and hence
increase the probability of memory faults.

The probability that a data word is corrupted by a fault increases with the time that the
data word spends in memory. When considering fault tolerance measures for the memory
system, main memory is targeted first since this is where the lifetimes of data will generally
be the longest. This also means that when, say, ECC are implemented in hardware, on-chip
memories, such as low cache levels or load-store queues, may not be protected, cf. [DS16].

2.1 DMR-based error detection

Error detection schemes work by maintaining redundant information that is used to check
the integrity of data. This is most evident in error detection schemes based on DMR, where
two copies are kept of each data word. If the two copies disagree, an error must have
occurred. By comparing the two copies, all single bit flips can be detected. Multiple bit
flips can also be detected, provided they do not affect the two copies in identical ways. In
particular, multiple bit flips can always be detected if they occur in only one of the copies.

Note that applying error detection by DMR to multi-threaded applications can be prob-
lematic. If all memory accesses are duplicated non-selectively, care must be taken to avoid
race conditions when different threads access redundant copies of data.

2.2 Error detection by encoding

An alternative approach to error detection is based on encoding data. If the set of valid
code words is a small subset of all possible data words, a fault is likely to produce a data
word that is not a valid code word. Hence, errors can be detected by checking whether data
words are also valid code words. Parity checking is an example of this: in valid code words,
the parity bit equals the parity of the code word. This enables the detection of single bit
flips. ECC memory typically uses more sophisticated codes, which can also correct errors.

When data is encoded, additional bits are required to represent code words. Although these
bits contain redundant information, no data is duplicated explicitly. Therefore, encoding-
based error detection schemes can immediately be applied to multi-threaded applications.
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A simple, yet effective, encoding-based error detection scheme for integer values can be
defined by decreeing that the valid code words are precisely the multiples of a fixed integer
constant A. This is known as AN encoding [Br60, Fo89]. Variants of AN encoding are
popularly used in software-implemented error detection [CRA06, FSS09, Sc10, KF15,
Ri15, Ka16]. While AN encoding has the advantage that its capability to detect complex
error patterns can be adjusted flexibly by varying the encoding constant A, not all values
of A are equally well-suited to error detection [Ho14].

2.3 Memory error detection by AN encoding

We now describe a scheme for detecting errors in memory. The scheme is based on AN
encoding, and the key idea is that only valid code words are kept in memory. To achieve
this, an integer value m must be encoded before being stored:

mencoded = m ·A. (1)

Consequently, whenever a value mencoded is loaded from memory, it must be decoded be-
fore further processing takes place:

m = mencoded/A. (2)

Errors can be detected by evaluating the following boolean expression for a value n that
has been loaded from memory:

n mod A = 0. (3)

In the absence of errors, the value n is a valid code word, and expression (3) evaluates to
TRUE. Hence, if expression (3) evaluates to FALSE, an error must have occurred.

The presented AN encoding scheme has been implemented by instrumenting load and
store instructions in the LLVM IR of programs. Every store instruction is preceded by
a multiplication with the constant A, cf. (1). Following every load instruction there is a
modulo operation for error checking, cf. (3), and a division for decoding, cf. (2). Figure 1
proves that this approach to memory error detection has its limitations since the compiler
backend inserts additional load instructions when lowering the IR to machine code. Errors
in memory that affect these load instructions cannot be detected at the IR level.

3 The Extended Compiler Backend

To overcome the limitations of IR-based error detection, the additional memory accesses
that are inserted by the compiler backend must be protected against faults. Backends for
the C programming language insert memory accesses for the following purposes: to han-
dle register spills (spill); to save and restore callee-saved registers (csr), the frame pointer
(fptr), and the return address (return); to pass function arguments (arg); to access jump
tables (jt). Since all of these memory accesses, apart from jump table accesses, operate
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on the local program stack, duplicating these accesses causes no issues for multi-threaded
applications that use shared memory. Since jump table accesses are read-only, their dupli-
cation is safe too. We have extended the LLVM backend [LA04] for the x86 architecture
to implement DMR-based error detection for backend-inserted memory accesses.

3.1 Register spills

The x86 machine code in Listings 1 and 2 illustrates how DMR-based error detection
works for register spills. Originally, cf. Listing 1, the register eax is spilled to a stack slot
at offset –0x30 from the frame pointer (in register ebp). The extended backend allocates
a second stack slot at offset –0x34, cf. Listing 2. When the register eax is restored, the
values at the two stack slots are compared. If disagreement is found, control is transferred
to an error handler. For the purpose of the present work, error handling consists of exiting
the program with a special exit code that indicates that an error has been detected.

List. 1: Register spill and restore.
mov eax ,−0 x30 ( ebp )

. . .
mov −0x30 ( ebp ) , eax
add eax , e s i

List. 2: Duplicated spill and error checking.
mov eax ,−0 x34 ( ebp )
mov eax ,−0 x30 ( ebp )

. . .
mov −0x30 ( ebp ) , eax
cmp −0x34 ( ebp ) , eax
jne <e r r o r h a n d l e r >
add eax , e s i

3.2 Other stack accesses

The memory accesses csr, fptr, return, and arg are analogous to register spills in that they
also save values to the program stack and later restore these values to registers. DMR-based
error detection is added by duplicating the values on the stack, completely analogously to
Listing 2. Full implementation details of DMR-based error detection for these memory
accesses can be found in the accompanying technical report [RC16]. Here we only discuss
the subtleties of the return and arg accesses.

On the x86 architecture, the return address is always passed on the stack. Thus, given the
possibility of memory faults, it can never be assumed that the return address is correct. To
obtain a copy of the return address that is guaranteed to be correct, the calling convention
has been modified so that the return address is passed in a register. Note that on architec-
tures with a designated return register, e.g. ARM or MIPS, protecting the return address
against memory faults does not require that the calling convention be modified.

To detect errors in function arguments that are passed on the stack, the calling convention
has been modified so that a duplicated copy of the argument sequence is put on the stack
immediately above the original sequence, as in Figure 2. When a function argument is
loaded into a register, error checking is performed by comparing its value with the corre-
sponding value in the duplicated argument sequence.
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Fig. 2: Original and duplicated function arguments on the stack.

The obligation to implement our modified calling convention rests entirely with the caller.
This means that, if a callee chooses not to perform error detection on the return address or
on its stack arguments, this does not break function calls. In particular, library functions
can still be called fully transparently from within protected functions.

3.3 Jump tables

Jump tables are arrays of addresses of basic blocks, and they reside in the program code
segment. To protect jump tables against errors, the extended backend duplicates each jump
table in the code segment. Before transferring control to an address that is stored in a jump
table, error checking is performed by comparing the address with the corresponding entry
in the duplicated jump table.

4 Evaluation

Since faults occur rarely in individual devices, one must actively inject faults into systems
or programs to evaluate the effectiveness of fault tolerance schemes. In this work, the test
programs from Table 1 are used for this purpose. Some of the test programs (C, E, K)
appear in the MiBench suite [Gu01], and similar programs are often used to evaluate fault
tolerance schemes [Re99, OSM02, KF15, Ri15, DS16]. The programs represent typical
algorithmic tasks, such as sorting, tree and graph traversal, manipulation of bit patterns,
and linear algebra. In test program L, a switch statement selects one of the many arguments
of the enclosing function; this test has been included here since it is the only one that passes
function arguments on the stack for the 64-bit calling convention on x86.

Binaries have been generated from the test programs on the i386 architecture (the 32-bit
version of x86) and on x86 64 (the 64-bit version of x86). Figure 3 depicts the work flow
for this. Program IR is generated by the Clang compiler frontend, which is part of the
LLVM infrastructure. Binaries are evaluated on both i386 and x86 64 since these architec-
tures have different numbers of general purpose registers: while x86 64 has sixteen, i386
has only eight. As a consequence, there will be more backend-inserted memory accesses in
i386 binaries. All binaries have been generated at optimization level -O3, and the constant
A = 58659 has been used for AN encoding, cf. [Ho14].
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Fig. 3: Generation of binaries with memory error detection measures.

description

A array reduction
B bubblesort
C cyclic redundancy checker (CRC-32)
D DES encryption algorithm
E Dijkstra’s algorithm (shortest path)

arithmetic expression interpreter
F recursive expression tree evaluation
G token lexer for arithmetic expressions
H arithmetic expression parser
I matrix multiplication
J array copy
K quicksort
L switch

Tab. 1: Suite of test programs.

It should be noted that AN encoding produces incorrect programs if the bit width of the
constant A is so large that not all encoded values fit into the machine data word. This
problem occus on the i386 architecture when high addresses, e.g. addresses in the stack
area, are encoded: multiplying high addresses with the constant A results in a value that
cannot be represented by 32 bits. For this reason, AN encoding of the test programs E, F,
G, H, K fails on the i386 architecture. On x86 64 this is not a problem since pointers are
only 48 bits wide and the chosen constant A = 58659 is represented by 16 bits.

In evaluating error detection schemes, it is common practice to inject single bit flips,
e.g. [YGS09, Fe10, DS16]. To study how programs respond to memory errors, we in-
ject single bit flips into the data words resulting from load operations. This is facilitated
by the Intel Pin tool [Lu05] for dynamic binary instrumentation: during the execution of a
binary, a single load operation is instrumented with an xor-operation that flips one of the
bits in the result of the load. We refer to the execution of a binary with a flipped bit as a
fault injection experiment. The outcome of a fault injection experiment is determined by
the program’s response to the injected bit flip. The following responses can occur:

1. correct: The program terminates normally and produces correct output.

2. hang: The program runs for longer than 10x its normal execution time, and is there-
fore deemed to hang. In practice, especially in safety-critical embedded applications,
a hardware watchdog may terminate and restart long-running programs.

3. crash: The program terminates abnormally, e.g. due to a segmentation fault.

4. sdc: Silent data corruption occurs when the program terminates normally but pro-
duces incorrect output.
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5. encoding: The fault is detected by AN encoding.

6. backend: The fault is detected by the extended backend’s DMR measures.

The fault injection experiments conducted in this work cover all possible patterns in which
single bit flips in memory can affect the binaries generated from the test programs. In the
following, we therefore report absolute numbers of program responses.

a: i386 binaries. b: x86 64 binaries.

Fig. 4: No error detection.

a: i386 binaries. b: x86 64 binaries.

Fig. 5: AN encoding and DMR in the backend.

4.1 No error detection

Figure 4 summarizes the fault injection experiments for the plain binaries generated from
the programs in Table 1, i.e. the binaries without any form of error detection. Only the test
programs for which AN encoding produces correct programs appear in Figure 4a.

While crash responses indicate that something has gone wrong, when sdc occurs in prac-
tice, one has no reason to believe that the computed output is incorrect. Therefore, one
is often particularly interested in the proportion of sdc [Fe10, KF15, DS16]. For the i386
binaries the number of sdc is generally larger than for x86 64. This is to be expected given
that i386 has fewer registers: more data words that are relevant for the program output will,
at least temporarily, reside in memory and hence be vulnerable to faults.

Figure 4 shows that there is indeed a need for error detection schemes. While some faults
do not affect program behavior, thus leading to correct responses, there is always a large
fraction of malignant program responses, i.e. crash, hang, and sdc.

4.2 AN encoding with DMR in the compiler backend

When AN encoding at the IR level is combined with the extended compiler backend, all
single bit flips in memory are detected, as evidenced by Figure 5. For the binaries F and
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H on x86 64 there are a number of correct responses, which occur when faults affect load
operations that are part of a call to the memcpy library function. Although this function call
is present in the IR, it is not protected by our AN encoding scheme since no data is loaded
into the program. The response correct ensues when faults affect only those portions of
the copied data that are subsequently not used and hence not loaded into the program.

While Figure 5a, for the 32-bit binaries, is dominated by backend responses, this is not
the case for Figure 5b. Since x86 64 has more general purpose registers than i386, there
is lower register pressure, causing the backend to insert fewer additional memory accesses
to handle spill, csr etc. Also note that the total numbers of fault injection experiments in
Figure 5a are about twice as high as in Figure 4a. This is due to the dominating backend
responses in Figure 5a and the fact that the extended backend duplicates memory accesses.

Figure 5 proves that our approach to detecting memory errors is effective: no malignant
program responses remain. In particular, DMR-based error detection in the extended com-
piler backend succeeds at removing the vulnerabilities that Figure 1 hints at.

4.3 Runtime overheads

Fault tolerance comes at the price of performance penalties since some form of redundancy
is required. The runtimes of the test programs from Table 1 are depicted in Figure 6, where
geometric means across all test programs are shown. Runtimes have been normalized to
the plain binaries, without any error detection measures.

The largest fraction of overhead is due to AN encoding, which is plausible given the high
latency of integer multiplication, division, and modulo, cf. (1)–(3). In fact, AN encoding is
known to introduce large overheads, cf. [FSS09, Ri15, Ka16]. Given that AN encoding is
responsible for detecting only a small fraction of errors in the i386 binaries, cf. Figure 5a,
the overhead that AN encoding introduces may not be justifiable on i386.

The overhead that the extended backend causes on i386 is dominated by spill, followed
by arg. This is in agreement with the fact that i386 has relatively few registers and uses
a calling convention by which all arguments are passed on the stack. Neither of these
observations apply to the x86 64 architecture, and hence the overhead introduced by the
extended backend is considerably lower.

The runtime overhead introduced by the extended backend has also been evaluated on a
subset of the SPEC CINT2006 suite. The subset consists of those C benchmarks that are
unaffected by our modified calling convention, which are: 400.perlbench, 401.bzip2,
429.mcf, 445.gobmk, 458.sjeng, 462.libquantum. Geometric means across these
benchmarks are shown in Figure 7, where runtimes have again been normalized to the
plain binaries, to which the backend has not applied any DMR-based error detection mea-
sures. Note that the overhead introduced by duplicating function arguments is lower in
Figure 7a than in Figure 6a. An explanation for this is that functions in the SPEC bench-
marks have larger bodies, and hence longer execution times, than in the test programs
from Table 1. Therefore, the overhead introduced by duplicated function arguments car-
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ries less weight. When all DMR measures are applied by the backend, the resulting mean
overheads are 1.50x on i386 and 1.13x on x86 64.

From Figures 6 and 7 it is clear that the handling of register spills is the dominant source of
overhead among the DMR-based measures in the compiler backend. Comparing the results
for the i386 and x86 64 architectures, it can be concluded, perhaps unsurprisingly, that
memory error detection is more efficient on architectures with many registers. It should
also be noted that the overhead of handling return addresses can be reduced, if not entirely
avoided, on architectures that pass the return address in a register, e.g. ARM or MIPS.

All runtime measurements were conducted on an Intel Core i7-4790 CPU (3.6GHz), with
32GB of main memory. The operating system is Ubuntu 16.04.1 LTS, with a 4.4.0 kernel.

a: i386 binaries. b: x86 64 binaries.

Fig. 6: Mean overheads for test programs.

a: i386 binaries. b: x86 64 binaries.

Fig. 7: Mean overheads for SPEC.

5 Related work

Fault tolerance schemes that operate on program source code appeared early, and this
approach is still pursued [Re99, BSS12, BSS13, KF15, Ka16]. Low rates of silent data
corruption can be achieved despite the fact that the compiler backend may introduce new
vulnerabilities after these schemes have been applied. However, a considerable proportion
of faults still lead to program crashes, e.g. [KF15].

With the advent of super-scalar processors it became viable to implement DMR-based
error detection schemes by duplicating machine instructions [OSM02]. Subsequently pro-
posed fault tolerance schemes were also implemented by modifying compiler backends,
e.g. [Re05, YGS09, MPC14, DS16]. Unlike in the present article, these schemes assume
that memory is protected by hardware measures, e.g. ECC, and hence memory opera-
tions are not accompanied by error detection. The only exception to this is the nZDC
scheme [DS16], where memory accesses are duplicated since the processor’s load-store
queue is assumed to be vulnerable to faults. Since the nZDC scheme duplicates all load
operations, and not just those that access local memory, it is limited in handling multi-
threaded applications correctly, as already noted in [DS16].
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The popularity of the LLVM compiler framework and IR [LA04] has led to many IR-
based fault tolerance schemes [FSS09, Sc10, Fe10, Zh10, Ri15, CNV16]. The DMR-based
schemes [Fe10, Zh10, CNV16] assume, once again, that memory is protected against faults
by hardware measures. The encoding-based schemes [FSS09, Sc10, Ri15] do not make this
assumption, but they suffer from the observed shortcoming that the memory accesses that
are introduced by the compiler backend are left unprotected.

That return addresses and frame pointers need protection was already observed in the con-
text of protecting an operating system against hardware faults [BSS13]. The fault tolerance
scheme in [BSS13] was implemented based on aspects [SGSP02]. Conceptually, aspects
operate on program source code, but their implementation requires interaction with the
compiler. Thus, the implementation of aspects may introduce new vulnerabilities.

AN encoding was originally introduced in [Br60] and studied in detail, among other arith-
metic error codes, by [Ga66, Av71]. Protecting processors by AN encoding was suggested
in [Fo89], where the ANB and ANBD schemes were also introduced. IR-based implemen-
tations of AN encoding appeared in [FSS09, Ri15]. As in the present article, other fault
tolerance schemes also combine encoding with DMR [OMM02, CRA06, KF15]. Here we
applied DMR very selectively, only to local memory accesses inserted by the compiler
backend, which has the advantage that duplication is safe in multi-threaded programs.

6 Summary and Discussion

Fault tolerance schemes that are applied to programs at the level of intermediate repre-
sentation (IR) cannot address vulnerabilities resulting from later stages of the compilation
process. Specifically, the compiler backend introduces additional, unprotected memory
accesses to implement, e.g., register spills. In this article we have presented an extended
backend that adds error detection by dual modular redundancy (DMR) to the memory ac-
cesses it inserts. It has been shown that this, combined with an IR-based AN encoding
scheme, succeeds at detecting all errors resulting from single bit flips in memory.

The extended backend introduces an average runtime overhead of 1.50x for binaries from
SPEC CINT2006 running on i386, and 1.13x for the corresponding binaries running on
x86 64. This is in agreement with the expectation that there is less need to protect against
faults in the memory system on machines with more registers, i.e. on x86 64. The reported
runtime overheads are noticeably lower than for the nZDC scheme, which also duplicates
memory accesses [DS16]. This is unsurprising since, in the present work, error detection
has been applied to memory accesses more selectively.

Implementing fault tolerance schemes at the IR level enables target-independence and en-
hances productivity. The latter is particularly important for relaxed fault tolerance schemes,
where some amount of vulnerability is accepted in exchange for reduced overhead [Fe10,
KF15, Ri15]. In quantifying the vulnerabilities of a relaxed scheme, meaningful results
can only be obtained if one is guaranteed that the compilation process following the appli-
cation of the fault tolerance scheme does not introduce new vulnerabilities. The extended
backend we have presented here gives this guarantee.
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Due to strict safety and reliability requirements, automotive applications may not be able
to rely on relaxed fault tolerance schemes. Schemes based on IR transformations only are
also not an option due to the remaining vulnerabilities. The extended compiler backend
overcomes this problem and thus facilitates complete memory error detection.
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