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Abstract
Many numerical algorithms are naturally expressed as op-
erations on tensors (i.e. multi-dimensional arrays). Hence,
tensor expressions occur in a wide range of application do-
mains, e.g. quantum chemistry and physics; big data analysis
and machine learning; and computational �uid dynamics.
Each domain, typically, has developed its own strategies for
e�ciently generating optimized code, supported by tools
such as domain-speci�c languages, compilers, and libraries.
However, strategies and tools are rarely portable between
domains, and generic solutions typically act as “black boxes”
that o�er little control over code generation and optimiza-
tion. As a consequence, there are application domains with-
out adequate support for easily generating optimized code,
e.g. computational �uid dynamics. In this paper we propose
a generic and easily extensible intermediate language for
expressing tensor computations and code transformations in
a modular and generative fashion. Beyond being an interme-
diate language, our solution also o�ers meta-programming
capabilities for experts in code optimization. While applica-
tions from the domain of computational �uid dynamics serve
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to illustrate our proposed solution, we believe that our gen-
eral approach can help unify research in tensor optimizations
and make solutions more portable between domains.
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1 Introduction
Many numerical applications spend a large fraction of their
runtime evaluating complex tensor expressions. Developers,
therefore, spend a lot of time optimizing code that evaluates
tensor expressions. A number of domain-speci�c languages
and libraries exist to assist developers and domain-experts
[4, 6, 7]. However, such tools do not usually generalize well
from one application domain to another. More generic solu-
tions, on the other hand, may not provide adequate program
transformations [3, 15, 16, 23]. This forces experts frommany
di�erent domains to painstakingly hand-optimize the key
loop nests in their numerical applications.
In this work, we consider examples from the domain of

computational �uid dynamics (CFD), which is the study of
�uid �ows using numerical methods. Fluid �ows are gov-
erned by the Navier-Stokes equations (NSE), solutions of
which can be obtained by solving a succession of so-called
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Helmholtz equations. Hence, in implementing fast and e�-
cient NSE solvers, it is crucial to focus on the Helmholtz op-
erator. Using a tensor-based representation of the Helmholtz
operator enables algebraic transformations that lead to con-
siderably lower execution runtime when coupled with a well
established CFD-related technique [13, 14, 19].
In a typical CFD application, the volume of interest is di-

vided into thousands of mesh points. At each point of the
mesh, successive computations are performed over small
and dense tensors. Computations combine tensor contrac-
tions, entry-wise multiplications, and outer products. Since
the solution process is iterative, computations are repeated
for hundreds of thousands of time steps, leading to execu-
tion times of several weeks, even when parallelized across
thousands of cores. This makes approaches such as iterative
compilation [17] useful to �nd the best program variant.
Tensor contraction is also the central operation in quan-

tum chemistry simulations. Machine learning applications,
however, rely more on entry-wise operations, and contrac-
tions are usually limited to matrix-matrix or matrix-vector
multiplication. While frameworks and libraries exist for han-
dling tensor expressions in both domains [4, 6, 7], to the best
of our knowledge, no such tools are available in the CFD
domain. Thus, we see a general need for convenient ways
to describe, manipulate, and optimize tensor expressions for
the CFD domain and beyond.
We envision a programming �ow as in Figure 1, where

di�erent languages are lowered to a tensor intermediate
language. At this level, expressions can be easily manipu-
lated and transformed by optimization experts using meta-
programming techniques. Alternatively, a compiler can per-
form an iterative search for bene�cial transformations.

Contribution. Building upon previous work [25], we pro-
pose a generative and extensible intermediate language with
meta-programming capabilities. The language provides ex-
pressivity for describing (a) di�erent types of tensor compu-
tations (Section 2) and (b) modular transformations that can
be easily composed (Section 3). Inspired by approaches such
as [9–11, 20], we separate the manipulation of data layouts,
memory placements, access functions for tensors, and itera-
tion domains (i.e. loop bounds). We can therefore modify, for
instance, data layouts without impacting the entire program,
apply transformations without increasing code complexity,
and easily generate di�erent program variants (Sections 4
and 5).

2 Tensor Operations and Expressions
This section introduces the relevant tensor operations and

their representation in our intermediate language.

2.1 Tensor Operations
The data structure that underlies a tensor is anN -dimensional
array. The array becomes a tensor when it is accompanied

Meta-programming

Intermediate
language

Source �le
(C or DSL) Optimized C

Iterative search

Figure 1. Envisioned tool �ow.

by certain algebraic operations. A 1-dimensional tensor is a
vector, and a 2-dimensional tensor is a matrix; matrix-vector
and matrix-matrix multiplication are special cases of the
more general tensor contraction operation discussed below.
In this paper, we use code examples and formulae from

CFD applications, which typically describe phenomena in
3-dimensional space. Therefore, the following operations are
introduced using 3-dimensional tensors A and B.

Contraction. If, say, the 3rd dimension of A and the 1st
dimension of B have the same size d , a contraction along
these dimensions is

Ci jlm =

dX

k=1
Ai jk · Bklm . (1)

The resulting tensor C is 4-dimensional. From (1) it is clear
that contraction generalizes matrix-matrix multiplication.
Note, however, that one can contract along any pair of di-
mensions of A and B, not only the last and �rst respectively,
as long as the contracted dimensions have the same size.

Outer product. The outer product of A and B produces a
6-dimensional tensor C such that

Ci jklmn = Ai jk · Blmn . (2)

Entry-wise multiplication. The entry-wise tensor multi-
plication of A and B produces a 3-dimensional tensor C:

Ci jk = Ai jk · Bi jk . (3)

For matrices, entry-wise multiplication is also known as the
Hadamard product. Although not needed in this work, all
arithmetic operations have entry-wise extensions to tensors.

2.2 Expressing Tensor Computations
Our intermediate language purposefully relies on high-level
constructs to facilitate its use for meta-programming.

A tensor T is declared as a multi-dimensional array:
. T = array(N, dtype, [size1, ..., sizeN ]) ,

where N is the number of dimensions, dtype is the data type
of the array elements, and [size1, ..., sizeN ] are the
sizes of the dimensions.
Complex tensor expressions are typically composed of

the previously introduced operations, i.e. contraction, outer
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A = array(2, double, [N, N])
u = array(3, double, [N, N, N])

tmp1 = contract(A, u, [[2, 1]])
tmp2 = contract(A, tmp1, [[2, 2]])
v = contract(A, tmp2, [[2, 3]])

Figure 2. Intermediate language code
for Equation (5).

A = array(2, double, [N, N])
u = array(3, double, [N, N, N])

tmp1 = outerproduct(A, A)
tmp2 = contract(A, u, [2, 1])
v = contract(tmp1, tmp2, [[2, 3],

[4, 2]])

Figure 3. Intermediate language code
for Equation (6).

A = array(2, double, [N, N])
u = array(3, double, [N, N, N])

tmp1 = outerproduct(A, A)
tmp2 = contract(tmp1, u, [[2, 2],

[4, 1]])
v = contract(A, tmp2, [[2, 3]])

Figure 4. Intermediate language code
for Equation (7).

product, and entry-wise arithmetic. Therefore, these opera-
tions are mapped directly to the following constructs in our
intermediate language:
. outerproduct(tensor1, tensor2),
. contract(tensor1, tensor2, [[rank11, rank21],
..., [rank1n, rank2n]]),
. entrywise(tensor1, tensor2),

where, in the context of this paper, entrywise refers to mul-
tiplication. Supporting other arithmetic operations in the
intermediate language is straightforward.
The semantics of contract and its arguments are as fol-

lows. The last argument is a list of pairs, in which each pair
[rank1i , rank2i ] speci�es that the dimension rank1i of
tensor1 and rank2i of tensor2 are contracted together. If
tensor1 is N -dimensional, then rank1i can take numerical
values ranging from 1 to N , and analogously for tensor2.
Note in particular that the order of the �rst two arguments
of contract matters since the ranks in the last argument
are tied to either tensor1 or tensor2.

Simple, yet non-trivial, code examples in our intermediate
language can be derived from Interpolation, a tensor expres-
sion that appears in CFD applications:

�i jk =
X

l,m,n

Akn · Ajm · Ail · ulmn . (4)

Interpolation is used, for example, to facilitate a change of
basis or low-pass �ltering in numerical applications that
utilize spectral element methods [12]. Adding parentheses to
(4) enforces di�erent evaluation orders:

�i jk =
X

l,m,n

(Akn · (Ajm · (Ail · ulmn )) , (5)

�i jk =
X

l,m,n

(Akn · Ajm ) · (Ail · ulmn ) , (6)

�i jk =
X

l,m,n

(Akn · ((Ajm · Ail ) · ulmn )) . (7)

Figures 2–4 show the intermediate language code for Equa-
tions (5)–(7) respectively. Equations (6) and (7) each contain
a term (A · A) that does not involve a contraction and there-
fore gives rise to the outerproduct in Figures 3 and 4 re-
spectively. The di�erent evaluation schemes in Figures 2–4
result in di�erent performance characteristics of generated

code. This is a general problem that we address by adding
composable transformations to the intermediate language
in Section 3.

2.3 Memory Model and Transpositions
The physical layout of a tensor in memory may di�er from
its logical structure determined by the ordering of its di-
mensions. In particular, new logical tensors can be created
by transposing the dimensions of a tensor, which merely
changes the order in which elements of the tensor are ac-
cessed and, hence, does not require that additional memory
be allocated in the generated code. Transpositions appear
frequently in tensor expressions, and whether it is bene�cial
to allocate memory for a transposed tensor depends on the
speci�c memory access patterns for that tensor. Our inter-
mediate language supports transposition into both physical
and virtual tensors, where new memory is allocated only for
physical tensors:
. transpose(T, rank1, rank2) for transposing the
physical or virtual tensor T into a physical tensor,
. vtranspose(T, rank1, rank2) for transposing the
physical or virtual tensor T into a virtual tensor.

Both operations produce a new tensor object in the interme-
diate language by swapping the dimensions rank1 and rank2
of tensor T . Note that neither operation has any side-e�ects
on the original object T .
The transposition of a matrix A is expressed in the inter-

mediate language by
B = transpose(A, 1, 2)

which creates a new physical matrix B that is backed by
memory. For a more complex example, assume that A is
a 4-dimensional tensor. The intermediate language state-
ments
A1 = transpose(A, 1, 3)
B = transpose(A1, 2, 4)

express the permutation {1$ 3,2$ 4} of the dimensions
of A. The result of this permutation is stored in the physical
tensor B.

Since virtual tensors are not backed by memory, they are
views of physical tensors that can be inserted at zero cost.
Their main purpose is to insert a layer of abstraction before
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physical indexing, e�ectively decoupling access functions
from the physical memory layout of tensors. This, in turn,
enables independent reasoning and transformation of access
functions, data layout, and iteration domains.

2.4 Iterators
The tensor operations contraction, outer product, and entry-
wise multiplication implicitly de�ne loops over the dimen-
sions of the tensors involved in these operations. To enable
transformations of iteration domains, one requires handles
on the iteration domains of the implicitly de�ned loops. To
this end, one �rst de�nes an iterator
i = iterator(0, N, 1)

which, in this case, ranges from 0 to N � 1 (inclusive), at a
step size of 1. Then, the iterators involved in the iteration
domain over an N -dimensional tensor T are made explicit:
. build(T, [iterator1, ..., iteratorN ])

Figure 5 shows a speci�c example of how the relevant itera-
tors and iteration domain are de�ned for the �rst contraction
from Figure 2.

tmp1 = contract(A, u, [[2, 1]])

i = iterator(0, N, 1)
m = iterator(0, N, 1)
n = iterator(0, N, 1)
l = iterator(0, N, 1)

build(tmp1, [i, m, n, l])

Figure 5. Iteration domain for a contraction.

The �rst three iterators i, m, n span the dimensions of
the tensor tmp1 that results from the contraction. The last
iterator l corresponds to the contracted dimensions.

In our intermediate language, transformations can act on
iteration domains that are de�ned by sets of iterators. See
examples in Section 3.

3 Compositions of Transformations
Having described the relevant tensor operations and how
they are represented in our intermediate language, we now
turn to the composition of transformations.

3.1 Transformations
The loops that are implicitly de�ned by the tensor operations
from Section 2.2 can be transformed by operating on declared
iterators. Recall from Section 2.4 that iterators are tied to
tensors through the build directive. In our intermediate
language, loop transformations are applied by a statement
of the following form:
. transformation_name(iterator1 [, iterator2,
..., iteratorN ][, param1, ..., paramN ])

A transformation can either involve a single or multiple iter-
ators, and additional parameters (e.g. unroll factor), which
are optional. In contrast to tensor operations, transforma-
tions do not return new iterators, which would unnecessarily
increase the di�culty of loop management when consider-
ing transformations such as loop distribution and fusion.
Instead, transformations have side-e�ects on their iterator
arguments. Side-e�ects can consist of modifying

1. an iterator’s loop bounds,
2. an iterator’s parallel speci�cation,
3. statements in which the iterator is used, and
4. the validity of the iterator, if the iterator is deleted by

the applied transformation, e.g. by loop fusion.
Loop interchange, fusion, and parallelization are transforma-
tions that are frequently used in improving the performance
of CFD applications. As an example, consider two loop nests
each of which consists of two loops. Let the iterators i1 and
i2 de�ne the iteration domain of the �rst loop nest, and let
iterators i3 and i4 de�ne the second loop nest. By stating
interchange(i1, i2)
fuse(i2, i3)
fuse(i1, i4)
parallelize(i2, THRD, None, [i1])

in the intermediate language, code generation is directed to
1. swap the loops in the �rst loop nest (i.e. the loops

associated with i1 and i2),
2. completely fuse both loop nests, and
3. parallelize the resulting outer loop (traversed by i2)

using threads.
The parameter None of parallelize implies that no thread
scheduling is de�ned. (Other policies could be passed, for
instance, to the OpenMP clause schedule.) The last parame-
ter, [i1], indicates that i1 is the only private variable. Since
the loop fusions have merged i3 into i2 and i4 into i1, no
further transformations involving i3 and i4 can be applied.
Sometimes it is bene�cial to replace a tensor with, say, its
virtual transpose. This is achieved by the transformation
. replace_array(iterator, old, new)

which replaces the tensor old with the tensor new in the
statement enclosed by a loop over iterator.

3.2 Implementation and Code Generation
In lowering intermediate language programs to C code, trans-
formations are applied in their order of appearance. To this
end, an intermediate language program is �rst translated
into a data structure holding lists of tensors, iterators, loops,
and transformations, each with respective attributes. More
precisely:

1. tensors are classi�ed as either physical or virtual;
2. iterators are built according to their speci�cation;
3. transformations are identi�ed and added to a list in

their strict order of appearance in the program.
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When the data structure is fully formed, transformations in
the list are successively applied. This may modify iterator
speci�cations and access functions andmay create new loops.
Code is then generated by simply translating the resulting,
modi�ed data structure into its C equivalent.

4 Step-by-step Example
In this section we implement the Inverse Helmholtz operator
in our intermediate language, and we de�ne transforma-
tions to optimize loop orders and array accesses. Inverse
Helmholtz is a CFD kernel that consists of contractions with
transposed accesses, an entry-wise multiplication, and con-
tractions without transposed accesses:

ti jk =
X

l,m,n

ATkn · ATjm · ATil · ulmn (8)

pi jk = Di jk · ti jk (9)

�i jk =
X

l,m,n

Akn · Ajm · Ail · plmn (10)

Step 1: Declaration of tensors. We declareA,u, and D.
A = array(2, double, [N, N])
u = array(3, double, [N, N, N])
D = array(3, double, [N, N, N])

We prepare the transposed view of A using a virtual trans-
position to express AT .
At = vtranspose(A, 1, 2)

Having declared the arrays, we proceed with the tensor com-
putation. The contractions are decomposed as in Equation
(5). We also express the entry-wise multiplication between
D and tmp3 (see Equation (9)), where tmp3 is the last inter-
mediate value of the �rst set of contractions.
tmp1 = contract(At, u, [2, 1])
tmp2 = contract(At, tmp1, [2, 2])
tmp3 = contract(At, tmp2, [2, 3])
tmp4 = entrywise(D, tmp3)
tmp5 = contract(A, tmp4, [2, 1])
tmp6 = contract(A, tmp5, [2, 2])
v = contract(A, tmp6, [2, 3])

Later we might want to apply transpositions to the �rst set
of contractions, which would lead to transposed accesses
of D. Therefore, we already declare a tensor Dt that is a
transposed version of D.
Dt = transpose(D, 1, 3)

The overhead resulting from copying D into Dt can poten-
tially be reduced by loop fusion.

Step 2: Declaring iterators. To be able to build all loops,
we declare 30 unique iterators:

1. td1, td2, td3 for the transposition of D into Dt ;
2. i1, i2, i3, i4 for the contraction into tmp1;
3. j1, j2, j3, j4 for the contraction into tmp2;
4. k1, k2, k3, k4 for the contraction into tmp3;

5. l1, l2, l3 for the entry-wise multiplication into tmp4;
6. i12, i22, i32, i42 for the contraction into tmp5;
7. j12, j22, j32, j42 for the contraction into tmp6;
8. k12, k22, k32, k42 for the contraction into � ;

i1 = iterator(0, N, 1)
i2 = iterator(0, N, 1)
# ... other iterator declarations

Step 3: Expressing the loops. We then build the loops cor-
responding to the computations.

build(Dt, [td1, td2, td3])
build(tmp1, [i1, i2, i3, i4])
## Also applies to tmp2, ..., tmp6
build(v, [k12, k22, k32, k42])

Step 4: Applying transformations. We now apply trans-
formations. Several dimensions can be interchanged in the
loops computing tmp1, tmp2, tmp3, tmp4, and tmp5. In ad-
dition, vtranspose transforms the access functions of tmp2,
tmp3, tmp4, and tmp5. Using replace_array, the resulting
virtual tensors (i.e. tmp2t , tmp3t , tmp4t , and tmp5t ) replace
their un-transposed counterparts where desired.

interchange(i4, i3)
interchange(i4, i2)
interchange(j2, j1)
interchange(j1, j4)
tmp2t = vtranspose(tmp2, 1, 2)
replace_array(j3, tmp2, tmp2t)
replace_array(k4, tmp2, tmp2t)
tmp3t = vtranspose(tmp3, 1, 3)
replace_array(k4, tmp3, tmp3t)
interchange(k3, k2)
interchange(k1, k3)
interchange(k1, k2)
interchange(k1, k4)
replace_array(l3, D, Dt)
replace_array(l3, tmp3, tmp3t)
tmp4t = vtranspose(tmp4, 1, 3)
replace_array(l3, tmp4, tmp4t)
interchange(l3, l1)
replace_array(i42, tmp4, tmp4t)
tmp5t = vtranspose(tmp5, 2, 3)
interchange(i32, i22)
replace_array(j42, tmp5, tmp5t)
# ... parallelizations

5 Assessing Optimization Variants
We now assess di�erent optimization variants of the Interpo-
lation and Inverse Helmholtz operators. Since Interpolation
appears as a core kernel inside Inverse Helmholtz, we study
variants of Interpolation �rst. Programs are executed on a 24-
core Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz (Haswell)
using the Intel C compiler (version 13.0.1). Compilation op-
tions are -O3 -march=native -openmp, and vectorization
is also enabled.
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Interpolation. Startingwith a naive evaluation of the tensor
contractions, i.e. without any smart reordering of operations
to reduce the algorithmic complexity, parallelization of the
mesh loop across 24 cores leads to a speed-up of 20⇥. In the
following, this parallelized naive evaluation serves as our
baseline. Figure 6a shows the relative speed-ups compared
to this baseline for parallelized implementations of the three
Interpolation variants from Section 2.2. E1, E2, E3 respectively
correspond to Equations (5), (6), and (7).

We attempted to reduce the execution times of E2 and E3
using additional loop fusions and permutations, producing
the variants E2t and E3t. However, E1 remains the best CPU-
based variant as it best minimizes the algorithmic complexity.
A study on other architectures is a matter of future work.

Inverse Helmholtz. Based on the observations in the pre-
vious paragraph, we evaluate the contractions in Inverse
Helmholtz according to Equation (5). The sequential version
of this serves as our baseline, and we assess the speed-ups
for three strategies for dealing with column-major accesses:

1. L1 relies exclusively on loop interchanges. This is not
su�cient to discard all existing column-major accesses,
but it does not introduce additional copies.

2. L2 relies mainly on loop interchanges and introduces
an additional copy for transposing AT . This is also not
su�cient to discard all column-major accesses.

3. L3 combines the previous strategy with implicit trans-
positions (i.e. not requiring additional loops) to com-
pletely discard all column-major accesses. This corre-
sponds to the implementation presented in Section 4.

Figure 6b shows the relative speed-ups. Loop interchanges
and implicit transpositions in L3 yield big enough perfor-
mance gains to ameliorate the cost of explicitly copying D.

E1 E2 E3 E2t E3t
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(a) Interpolation: speed-ups of
code variants compared to
naive evaluation (13.27s).
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(b) Inverse Helmholtz: speed-
ups compared to sequential ex-
ecution (3.32s).

Figure 6. Speed-ups for Interpolation and Inverse Helmholtz.
Mesh size = 750, data size = 33.

6 Related Work
In the present work, CFD applications served as examples
to illustrate our intermediate language. The Firedrake [21]

framework for CFD simulations allows high-level speci�ca-
tion of partial di�erential equations and hides the details
of e�cient compilation from the user. By contrast, our pro-
posed intermediate language is domain-agnostic and can
thus be used to build abstractions for tensor optimizations
into frameworks for di�erent application domains.
Previous work [5, 8, 10, 11, 18, 22, 24] shows the need

for approaches that ease the exploration of optimization
search spaces. More speci�cally, Cohen et al. [10, 11] ad-
vocate the clear separation between the transformations
of loop bounds, schedules, and access functions. Similarly,
Halide [20] separates the manipulation of algorithms from
that of schedules. Inspired by these approaches, we have
provided the building blocks for �exibly composing compu-
tations and transformations, including memory placement
modi�cations if needed [25]. This �exibility di�erentiates
the presented work from existing solutions for optimizing
tensor algebra. Whether generic or domain-speci�c, existing
solutions are mainly black-boxes with little control over how
transformations are applied [3, 4, 6, 7, 15, 16, 23].

The frameworks Theano, TensorFlow, and Numpy [1, 4, 7]
provide a tensordot operator and thus also some �exibil-
ity in composing tensor computations. While the popular
TensorFlow framework eases the implementation of full ma-
chine learning applications, it does not o�er the kind of
optimizations we seek. The XLA compiler intends to address
this, but it is still in an experimental state [2]. The �exibility
provided by our intermediate language also distinguishes
our approach from the Tensor Contraction Engine (TCE) [6].
In TCE, which is designed for optimizing quantum chem-
istry applications, the search for the optimal decomposition
of tensor computations is performed at the algebraic level
before loop transformations are applied. Our approach o�ers
the opportunity to assess the e�ects of loop transformations
resulting from di�erent decomposition strategies.

7 Conclusion
We have proposed an intermediate language for optimizing
tensor computations. The language treats tensor computa-
tions and optimizations as modular building blocks. This en-
ables easy assessment of code variants generated by compos-
ing di�erent optimizations. We have demonstrated support
for a class of applications in computational �uid dynamics
for which existing solutions do not lead to satisfactory opti-
mization results. However, we believe that the intermediate
abstraction level makes our contribution suitable for tensor
optimization across a wide range of domains. We intend to
study the wider applicability of our approach, e.g. in the
domain of machine learning. Another subject of future work
is the automated search for good compositions of transfor-
mations and evaluation orders, and improving such a search
by relying on domain-speci�c knowledge.
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