
A Case Study on Machine Learning for Synthesizing
Benchmarks

Andrés Goens
TU Dresden, Germany

andres.goens@tu-dresden.de

Alexander Brauckmann
TU Dresden, Germany

alexander.brauckmann@tu-
dresden.de

Sebastian Ertel
TU Dresden, Germany

sebastian.ertel@tu-dresden.de

Chris Cummins
University of Edinburgh, UK
c.cummins@inf.ed.ac.uk

Hugh Leather
University of Edinburgh, UK

hleather@inf.ed.ac.uk

Jeronimo Castrillon
TU Dresden, Germany

jeronimo.castrillon@tu-dresden.de

Abstract
Good benchmarks are hard to find because they require a
substantial effort to keep them representative for the con-
stantly changing challenges of a particular field. Synthetic
benchmarks are a common approach to deal with this, and
methods from machine learning are natural candidates for
synthetic benchmark generation. In this paper we investigate
the usefulness of machine learning in the prominent CLgen
benchmark generator. We re-evaluate CLgen by comparing
the benchmarks generated by the model with the raw data
used to train it. This re-evaluation indicates that, for the use
case considered, machine learning did not yield additional
benefit over a simpler method using the raw data. We inves-
tigate the reasons for this and provide further insights into
the challenges the problem could pose for potential future
generators.

CCSConcepts •Computingmethodologies→Machine
learning; • Software and its engineering→ Automatic
programming.

Keywords Machine Learning, Benchmarking, Synthetic
program generation, CLGen, Generative models

ACM Reference Format:
Andrés Goens, Alexander Brauckmann, Sebastian Ertel, Chris Cum-
mins, Hugh Leather, and Jeronimo Castrillon. 2019. A Case Study
on Machine Learning for Synthesizing Benchmarks. In Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learn-
ing and Programming Languages (MAPL ’19), June 22, 2019, Phoenix,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MAPL ’19, June 22, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6719-6/19/06. . . $15.00
https://doi.org/10.1145/3315508.3329976

AZ, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3315508.3329976

1 Introduction
Benchmark programs are instrumental for the evolution of
new compiler technology, hardware architectures and run-
time systems. Established benchmark suites cannot be up
to date and cover every domain, which is why many ap-
proaches resort to synthetic benchmarks [3, 7, 8, 13]. The
last years have seen developments in machine learning (ML)
that have proven to be very successful in tasks like image
processing, natural language processing [28] and have even
had some success in tasks related to programming languages
and source code [1]. These methods from ML are an evi-
dent candidate to tackle the problem of synthetic benchmark
generation.
Recently, Cummins et al. [5] proposed to use a genera-

tive model of code based on LSTM [9] to produce synthetic
benchmarks. With a framework for mining code samples
from open source repositories in the Github platform and a
driver to produce pertinent input data, they gathered thou-
sands of kernels to train an LSTM model and produce code
that looked and behaved like the human-written kernels.
This is an innovative use of machine learning for generating
synthetic benchmarks, and to the best of our knowledge,
no other similar approaches have been proposed. However,
while the authors assessed their synthetic benchmarks as
means to enhance traditional benchmark suites, they did not
show that a generative model was necessary in this case. In
particular, the authors missed a comparison between these
synthetic kernels and the original mined kernels they used
to train the generative model.
In this paper we use the published artifacts of [5] to re-

evaluate CLgen (Section 2). Apart from comparing the perfor-
mance of the different benchmark sets for tuning a heuristic,
as done in the CLgen paper, we look into the datasets them-
selves to gain more insight into the nature of the problem
(Section 3). Our results show that the dataset derived from
the mined github kernels yields better results than the syn-
thetic one. This casts a doubt on whether the use of machine
learning, concretely the generative model in CLgen, was

https://doi.org/10.1145/3315508.3329976
https://doi.org/10.1145/3315508.3329976
https://doi.org/10.1145/3315508.3329976

MAPL ’19, June 22, 2019, Phoenix, AZ, USA A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather and J. Castrillon

Generative
model

Grewe et al.
Heuristic

Github
(mined)

Synthetic
(generated)

Benchmark
Suites

CLgen setup
Our setup Random

selection

Kernel
driver

discard

Figure 1. The experimental setup used in [5] and our
changes.

useful in this particular case. We discuss the results and pose
hypotheses of what could be the reason for them, in terms
of the heuristic being trained, the objective for assessing the
performance of the heuristic, and the generative model of
code (Section 4). We also analyze use cases from recent pa-
pers in prominent conferences to confirm how most uses of
benchmarking in the programming languages and compiler
domain follow similar goals as those from CLgen.

2 Case study: CLGen
In this section we describe CLgen [5] and re-evaluate its use
of machine learning, specifically generative models.

In heterogeneous systems, the problem of deciding where
to execute a computation is far from trivial, even in the single
CPU-GPU case. Independent of the solution approach, to test
how good a solution is we need a representative benchmark
set. A common solution strategy is to tune heuristics [4, 27],
which require rich benchmarking as well.

In [5], the authors usedOpenCL kernelsmined fromGithub
and used them to train a generativemodel based on a character-
level representation of code, using a neural network based
on the LSTM architecture [9]. Kernels must compile and
require input data to execute, which is needed to evaluate
performance. To execute a generated kernel, a kernel dri-
ver was designed which rejects kernels if it cannot compile
and generate data for them to run. The authors use the ker-
nels synthesized by this generative model to enhance the
benchmarks used to train the heuristic from [27], training
the heuristic with both, the benchmarks and their synthetic
kernels. Figure 1 shows a high-level view of this process.

2.1 Experimental Evaluation
To test the usefulness of generative models on the CLgen
use case, we compared the original setup used by [5] with
an equivalent setup using the training data set mined from
Github, as shown in Figure 1. We first compare how well
both data sets, the training set (Github) and the benchmarks
synthesized by CLgen (Synthesized), fare at the task they

Table 1. Experimental Environment

Intel CPU NVIDIA GPU

Model Core i7-7700K GeForce GTX 1080 Ti
Frequency 4.20 GHz 1544 MHz

No. of cores 4 3584
Memory 16 GB 11 GB

Enhanced Benchmarks Isolation

Bench.
+ GH.

Bench.
+ Synth.

Bench. GitHub Synthesized
0.00

0.25

0.50

0.75

1.00

A
cc
ur
ac
y

Figure 2. The accuracy of the heuristic with different setups.
On top of the box-plots, the actual points are overlayed with
a (random) horizontal jitter for improving the visualization.

were needed for, i.e., training the heuristic presented in [27].
Since the hand-written benchmarks can cover many cases
that will make the difference between these two data sets,
including them in the training set will impede the compar-
ison of the two sets. Thus, we isolate the effects of both
code sets by removing the hand-written benchmarks from
the setup and testing the heuristic only trained with the
github/synthesized data sets. We also replicate the full ex-
periment from [5], which includes the benchmark suites
enhanced with synthetic kernels, and compare that to the
benchmark set enhanced with a random selection of the
Github kernels instead.
As in [5], we divide the benchmarks into the same (dis-

joint) training and test sets. We measure their execution
using two different compute devices, further described in
Table 1. For the synthetic data set we use the same 1000
kernels produced in [5], as provided in the corresponding
artifact. For the Github data set we used a random selec-
tion of the same size, 1000 kernels, out of the ≈ 1500 mined
and automatically executable Github kernels. Since this in-
cludes randomness in the selection of the kernels from the
Github set, we repeated the experiments 100 times and report
the results of the experiment run with the median accuracy
obtained with this random process. This is also important
for further analysis of the data, since we can analyze the
selection of kernels that yielded the median results.

Figure 2 shows a box plot of the accuracy obtained by the
heuristic, trained with the different data sets, both the Github
and synthetic sets in isolation (without the benchmarks), as

A Case Study on Machine Learning for Synthesizing Benchmarks MAPL ’19, June 22, 2019, Phoenix, AZ, USA

well as the benchmark set enhanced with each of the two,
and the benchmark set alone. The accuracy is calculated by
comparing how many times the heuristic correctly identifies
the right device for execution of a kernel, compared to the
ground truth, i.e., on which device it actually executes faster.
We see that, in isolation, the heuristic is unmistakably trained
better with the original training set than with the kernels
synthesized by the generative model. In fact, as can be seen,
themedian accuracy of themodel trained only with synthetic
kernels is 0%. This means that for more than half the data
points from the test set it got the prediction wrong. Thus,
in isolation, the data set is a better benchmark set than the
synthesized benchmarks, at least as measured by how well it
trains the heuristic from [27] as tested with the benchmarks
used in [5].

The intended use case for CLgen, however, is to enhance
the benchmark suites, not to replace them. To asses this we
can compare the results of the enhanced benchmark set in
Figure 2. It shows that using the kernels mined from Github
we also obtain better results than with the benchmarks syn-
thesized by the generative model. It shows an even more
interesting phenomenon, however: By enhancing the data
set with the synthesized kernels, the heuristic actually got
worse. We will discuss this further in Sections 3 and 4.
While for the learning aspect the accuracy with which

the right device is predicted is interesting, it is not the most
relevant aspect for a practical assessment of the heuristic. It
is much more important for the heuristic to predict the right
device when the difference in execution times is significant
between CPU and GPU, whereas for kernels with negligible
differences, making the right prediction is not as important.
For this, we can take a look at the overall speedup of selecting
the application with the heuristic vs executing all kernels in
the device that is fastest for most of them. Figure 3 shows a
comparison of the overall speedup of the two setups enhanc-
ing the benchmarks with the synthetic and GitHub kernels,
respectively. Each bar shows the average speedup for all data
points in that benchmark. The figure shows that for many
benchmarks this setup brings an overall slowdown. This is
also confirmed by the average speedup overall, or slowdown
rather. The set enhanced with synthetic benchmarks fares
worse than with the github set, in line with the results from
the accuracy analysis.
Finally, we discuss one advantage that the generative

model has over the Github set, as well as the hand-crafted
benchmarks, namely that the generative model can produce
an arbitrary amount of kernels. Indeed, while the kernels
produced by the generative model should all be similar, it is
plausible that if given the chance to produce enough kernels,
the model can generalize and produce kernels with more
interesting feature vectors that enrich the generated set. To
test the effect of the number of kernels produced, we varied
the number of kernels given to enhance the benchmark set in
the same setup as above (see Figure 1). The results of this can

be seen in Figure 4. The tendency is pretty clear, and statisti-
cally significant, since for more than 50 additional samples,
the hinges do not overlap [26]. It shows that using the Github
set as training data seems to produce better results than the
synthetic set with any number of samples. More importantly
however, the figure shows how the speedup worsens when
adding more kernels, which indicates that the advantage of
being able to produce an arbitrary amount of kernels does
not provide much benefit in this concrete use case. It is
important to note that the heuristic has only a handful of pa-
rameters and it probably will not benefit from more training
data as much as other, more complex models would. This
probably explains why more data lead to worse results. This
issue will be discussed further in the following sections. It is
important to mention at this stage, however, as it the results
from experiment from Figure 4 might be very different with
more complex models, effectively limiting the generality of
this result.

3 Analysis of the Data Sets
In this section we investigate the data points used in the last
section. The goal of this section is to understand some of the
limitations of the approach and gain insight into the problem
itself.
We consider the feature spaces of the different data sets

as defined by the features from [27]. For this, we calculate
the principal components as for the join of all three sets,
namely Github, Synthesized and the original benchmarks.
Figure 5 depicts the ground truth for the decision space,
evaluated for all the points from all considered sets. The
decision considered is the one being made by the heuristic:
whether to execute a kernel in the CPU or the GPU. Even
with the logarithmic scale it is clear that several points with
the same coordinates have different values. What this shows
is that it is a poor model to consider the decision as a smooth
and regular function GPU(x). Not only is it very irregular
(and actually discrete), it is not even a function because it has
different values on the same coordinates. This also holds true
in the full four-dimensional space, which is hard to visualize
in a plot.
Obviously this is an artifact of the features considered:

they are not sufficient to decide whether to map a computa-
tion to a CPU or a GPU. However, it also serves to explain
why more training data does not necessarily improve the
heuristic. This provides a model that could explain what hap-
pens in Figure 4, where the additional synthetic examples
actually worsen the heuristic for the benchmarks used for
testing. Since the space is irregular and not easily dividable
into decision regions, some of the additional points could be
serving as noise and skew the heuristic in a direction that
makes it worse for the code we are interested in improving.
Consider Figure 6, which shows the relative frequencies

of the (joint) first principal component, i.e. with the highest

MAPL ’19, June 22, 2019, Phoenix, AZ, USA A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather and J. Castrillon

2.5
BT

.A

BT
.B

BT
.S

BT
.W

CG
.A

CG
.B

CG
.C

CG
.S

CG
.W

EP
.A

EP
.B

EP
.C

EP
.W

FT
.A

FT
.B

FT
.S

FT
.W

LU
.A

LU
.B

LU
.C

LU
.S

LU
.W

M
G
.A

M
G
.B

M
G
.C

M
G
.S

M
G
.W

SP
.A

SP
.B

SP
.C

SP
.S

SP
.W

G
m
ea
n

0.0

0.5

1.0

1.5

Sp
ee
du

p

Benchmarks + Synthesized
Benchmarks + GitHub

Figure 3. The speedup obtained with the trained heuristic for the individual benchmarks.

Eigenvalue, for the three data sets. Instead of a histogram, it
shows the kernel density estimate, which is a smoothened
version of the histogram, making the visualization clearer.
While this is merely a one-dimensional projection onto a
relevant linear combination of the features, it serves to make
an intuitive assessment of the relation between the distri-
butions of the data sets. We see how the benchmark set has
code with features not present in the Github set, whereas the
Synthesized set seems to be a proper subset of the Github
set, in terms of this principal component.

A final interesting insight from analyzing the data can be
seen in Figure 7. It shows again a histogram of the relative

0.8

0.9

1.0

0 250 500 750 1000
Number of additional samples

Sp
ee
du

p

GitHub Synthetic

Figure 4. The average speedup as function of the number
of kernels selected from the set. The plot shows notched
box-plots (see [26]) for 100 repetitions with different random
selections for each measured number of samples.

-10

0

10
20

0 10 20 30
Principal Component 1 (asinh)

Pr
in
ci
pa
lC

om
po

ne
nt

2
(a
si
nh

)

CPU GPU

Figure 5. The ideal mapping for all points considered.

frequencies of kernels in all three data sets. This time, how-
ever, instead of considering the principal component, we
characterize them by the depth of the abstract syntax tree
(AST). We use this as a metric to approximate the overall size
and complexity of the kernel. It is interesting to note that
the benchmark suite contained significantly more kernels
with a deeper AST. This opens up an interesting discussion
about the usefulness of benchmark suites as a whole, which
we will briefly retake in Section 4. However, an in-depth
discussion is a matter of future work.

A Case Study on Machine Learning for Synthesizing Benchmarks MAPL ’19, June 22, 2019, Phoenix, AZ, USA

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Principal Component 1 (asinh)

Re
la
tiv

e
fr
eq
ue
nc
y

Benchmarks GitHub Synthesized

Figure 6. Smoothened estimations of density with respect to Principal Component 1 of the code spaces of all three data sets.

Benchmarks Github Synthesized

10 30 100 10 30 100 10 30 100
0.00

0.25

0.50

0.75

1.00

Max AST depth (log)

Re
la
tiv

e
fr
eq
ue
nc
y

Benchmarks Github Synthesized

Figure 7. Relative frequencies of code by maximal AST depth.

Similarly interesting in Figure 7 is that the synthesized
code tends to be shorter than the original Github programs.
We will also discuss this further in Section 4.

4 Discussion
With our experimental evaluation and analysis of the datasets,
we have pointed at issues with the state-of-the-art generative
model presented in CLgen for benchmark generation, as it
pertains to training the heuristic fromGrewe et al. [27]. Since
several aspects play a role, we can only partially speculate
the specific reasons for the different effects seen in the previ-
ous sections. In this section we will consider three concrete
aspects, namely the Grewe et al. heuristic, the objective how
the goodness of the heuristic is measured, and the generative
model itself.

4.1 The Heuristic
About the heuristic we can draw a clear conclusion from
Figure 5. As it was pointed out, this space is not only very
irregular, but we cannot even model the decision where to
place a computation as amathematical function in the feature
space. This is because there are points that share the same
feature vectors, where the decision of placing onto the CPU
or GPU is different. Similarly, the lack of clustered regions
in the decision space shows that the features considered are

insufficient for separating the space properly into regions,
which is necessary for the heuristic to work well.

An analysis as the one we presented from Figure 5 can
be very useful to asses the goodness of manually designed
features. For this, having a generator that can produce a vir-
tually unlimited number of data points could be very useful
for exploring the space, especially if conditional generation
can be used to steer the generation towards particular points
in the feature space. However, it is important to point out a
potential caveat with this. All points produced by a generator
with the same feature vector can have the same value for
some function (e.g. the CPU or GPU decision). Even then, it
does not mean that no examples exist where the value of the
function is different but the feature vector identical. These
values can just be extremely unlikely to be produced by the
generator.
Finally, many issues found with manually-designed fea-

ture spaces like the one from the Grewe et al. heuristic
are solved by using methods from deep learning [18]. In-
deed, for this particular problem and some related ones, a
deep-learning based approach was shown to outperform the
heuristic [4].

4.2 The Objective
In Figure 2, it seems that both the Synthesized and Github
sets, on their own, perform poorly as a training set for the

MAPL ’19, June 22, 2019, Phoenix, AZ, USA A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather and J. Castrillon

heuristic. As explained with Figure 5, this likely results from
a poor coverage of the feature set, as indicated by the princi-
pal component analysis. However, we can take a different
perspective on this fact. The reason why the heuristic trained
with these two sets performs poorly is that the sets (of fea-
ture vectors) differ significantly from the benchmarks used
to asses the goodness of the trained heuristic. However, we
could question if the problem lies in the latter instead, namely
using these benchmarks used to asses the goodness of the
trained heuristic.

Consider the following scenario. An open source project,
say the Freedesktop project, knows it has several OpenCL
kernels as part of their project and wants to optimize it.
The developers know of a compiler with an optimization
that can estimate where to best execute their kernels by
analyzing static features of the source code (the heuristic
from this case study) and decide to give it a try. In what
case will the compiler yield the best results for them, if it
was trained using the standard benchmarks, or if it was
trained used the mined training set from github? Clearly, not
everyone using an OpenCL optimization is an open source
project developer publishing to Github, but we argue that
this scenario is still worth a closer look. To this end, we repeat
the setup investigated in the experiments of Section 2 (see
Figure 1) to compare the Github dataset with the Benchmarks.
This time, however, we exclude all mined kernels from the
Freedesktop project from the training set (concretely, 91
OpenCL kernels) and use them as test set instead of using
the benchmarks.
A summary of the results of this can bee seen in Table 2.

It shows that indeed, the model trained with the benchmark
set performs worse than with the Github set when evalu-
ated on their performance on sources from an actual (open-
source) project, instead of on other benchmarks. This is a
sign that there might be issues with using traditional bench-
mark suites. Mining source code from online repositories
could be a viable alternative. Note however, that the bench-
mark suites performed better when tested on the mined set
than the mined set on its own when tested on benchmarks.
This is especially clear when comparing the speedups in
Table 2, where the average speedup is just slightly higher
(6%) for the heuristic trained with the kernels mined from
Github than with the traditional benchmarks. A systematic
investigation, far beyond our setup here, would be required
to understand these issues well.

Table 2. The Grewe et al. heuristic as tested on the Freedesk-
top kernels

Dataset Accuracy (avg) Speedup (avg)

Github 0.73 1.06
Benchmarks 0.48 1.00

Besides the potential issue with traditional benchmarks,
the experiment above sheds light on another point. Bench-
marking plays two distinct roles in this case study, and the
usefulness of the different datasets for those two roles seems
to differ as well. On the one hand, the benchmarks are used
as input data for tuning the heuristic proposed by Grewe
et al. On the other hand, the benchmarks are also used to
characterize the improvement yielded by this heuristic. It
is easier to asses how good a set of benchmarks performs as
input to the heuristic than it does as a test set to characterize
the performance. This is clearly the case because how good
a set of benchmarks is for characterizing something like
performance depends on the use case and its objectives, i.e,
what is being characterized. In particular, to asses how good
a benchmark is for the characterization of a property we first
need to answer what that means precisely. In the following
we propose a concrete formalization of what we mean for a
benchmark to be good at characterizing a property.
Let P be a property of code, like the speedup obtained

from using the heuristic. There is an implicit probability
density function p over all possible programs, describing the
probability of the code to be used as input to the compiler
using the heuristic1. To test the speedup, we want to cal-
culate the expected value E[P] over this implicit pdf p. For
testing, we argue that we want a representative benchmark.
Ideally, we would get a set of programs x1, . . . , xl ∼ p i.i.d.,
where p is the implicit probability density function of code
been written. The expected value E[P] can thus be approx-
imated arbitrarily well with growing sample size l . We do
this because, in the example, we assume that the users of the
compiler will also draw from this distribution p, and thus
E[speedup] tells us what speedup the users can expect to get
out of the optimization.
We believe the distinction between the usage of bench-

marks is important, and researchers could benefit from a
differentiated approach to the usage of benchmarking, de-
pending on how the benchmarks are being used. This is
especially true in ML-enabled methods, which are bound
to increase the amount of benchmarks being used as input.
Many people are already looking at these two problems in a
differentiated matter. To show how this is the case, we clas-
sified papers using GPU benchmarks from two prominent
conferences, Code Generation and Optimization (CGO) and
Parallel Architectures and Compilation Techniques (PACT),
between 2013 and 2016 that used GPU benchmarks. Table 3
shows a table summarizing the results from this classification.
The table shows, in particular, that the scenario of charac-
terizing a property is indeed a very common use case for
benchmarks. Incidentally, for all papers that did not fit these
two scenarios, i.e. classified as “Other”, could be grouped

1A compelling case can be made that in some cases it is the “dynamic” prop-
erty of the probability that a piece of code will be executed, not necessarily
written or used as input to the compiler, that is most interesting here.

A Case Study on Machine Learning for Synthesizing Benchmarks MAPL ’19, June 22, 2019, Phoenix, AZ, USA

Table 3. Analysis of 20 research papers from 2013–2016 CGO/PACT papers and their respective use of benchmarks in their
evaluation. The column “Arch” refers to the type of architecture used, and the column “Type” gives a synopsis of what the
benchmarks were used for. The column “Classification” tries to classify the usage of the benchmarks in the two described
above, as an Input (e.g. to train or tune some heuristic), or to characterize a property. The properties being characterized are
listed under the “Metrics” column.

Paper Arch Type Benchmarks Metrics Classification
Margiolas et al. compiler, Fairness Improvement
(accelOS) [25] GPU runtime system Parboil Throughput Speedup Characterization

Anantpur et al.
GPU warp scheduler

Rodinia Mean
Characterization(VTW) [2] Parboil Performance

Improvement
Wu et al. OpenCL compiler Rodinia, Compilation Speedup

(gpucc) [31] GPGPU for CUDA SHOC, Tensor Runtime Speedup Characterization

Kim et al. [17] CPU code analysis for locality- Rodinia Runtime Speedup Characterizationcentric scheduling Parboil Cache Misses
compiler-driven Rodinia Performance SpeedupLi et al. [22] GPGPU automatic data placement CUDA SDK Optimality Input

Fauzia et al. [6] GPU uncoalesced data Rodinia Performance Speedup Characterizationaccess optimization Polybench Optimality
portable host-device Rodinia Performance Speedup CharacterizationMargiolas et al. [24] GPGPU communication opt. Parboil Allocation Overhead Other

Wang et al. [29] GPGPU
analysis of Rodinia Normalized Energy,

Otherhybrid memory CUDA SDK Miss Rates, IPC
Avg Access Latency

Kayiran et al. optimization for Rodinia IPC Improvement
(DYNCTA) [15] thread-level CUDA SDK Core Utilization ImprovementGPGPU

parallelism Parboil Fetch Latency Improvement
Characterization

Lee et al. CPU/GPU CPU-GPU AMD SDK Performance Speedup Characterization(SKMD) [20] collaboration NVIDIA SDK
Jia et al. statistical Rodinia Prediction Accuracy Input

(Starchart) [12] GPU auto-tuning NVIDIA SDK Power/Performance Trade-off Other
Ji et al. CPU/GPU software virtual AMD SDK Problem Size Cap Characterization(RSVM) [11] memory for CPU-GPU NVIDIA SDK Algorithm Performance

adaptive CPU-GPU TBB, ParsecKaleem et al. [14] CPU/GPU scheduling Rodinia Performance Speedup Characterization

Jablin et.al. [10] GPU adaptive trace- Rodinia Performance Speedup Characterizationscheduling for GPUs
Lee et al. criticality-aware Rodinia Performance Speedup

(CAWS) [21] GPU scheduling Parboil Prediction Accuracy Characterization

Xu et al. GPGPU branch divergence-aware Rodinia Common Divergence Patterns Other
(PATS) [32] warp scheduler Parboil, ISPASS Performance Impact Characterization
Lee et al. automatic GPU virtual Performance Speedup

(VAST) [19] GPU memory management NVIDIA SDK Page Lookup Overhead Characterization

Magni et al. [23] GPU
ML-based AMD SDK Speedup Distribution Otherthread coarsening NVIDIA SDK Coarsening optimality likelihood

Parboil Performance Speedup Characterization
Wang et al. memory occlusion- Rodinia, SHOC Normalized IPC Performance Characterization
(OAWS) [30] GPU aware warp scheduler PolyBench, Mars Load instruction percentage Other

Kim et al. [16] GPGPU
Automatic pipeline- NVIDIA SDK Performance Speedup Characterization

parallelism for Rodinia, Parboil, Sensitivity Study Other
dependent kernels PolyBench

into a third scenario. Instead of obtaining the expected value
of a property E[P] the papers are interested in a characteri-
zation of this property P over different points in the space
of possible programs. In most cases this served to guide the

works towards cases where the property being investigated
was particularly interesting and concentrate on those.

MAPL ’19, June 22, 2019, Phoenix, AZ, USA A. Goens, A. Brauckmann, S. Ertel, C. Cummins, H. Leather and J. Castrillon

4.3 The Generative Model
Finally, the results seen in this paper are probably also in
part due to the concrete generative model itself. For example,
the generator seems to be biased towards generating shorter
kernels, as was discussed and can be seen in Figure 7. In
particular, this effect seems to change the distribution in
comparison to the Github kernels, and fixing it could plausi-
bly improve the results.

Little can be said in general since, to the best of our knowl-
edge, no other benchmark generators based on machine-
learning exist that we could compare to. More and different
models should be proposed and compared to CLgen if we
want to improve generative models of code and understand
their limitations. For example, as CLgen is based on LSTM, it
understands and represents code by nature as a sequence (in
this case of characters). It produces a large amount of invalid
kernels, that will not compile, which could in part be attrib-
uted to this. An argument can be made that the structure of
code is best described as a graph, as graphs capture logical
dependencies better than one-dimensional representations
from sequences. Proposing a generator using a graph-based
representation on code and comparing it to CLgen would
provide insight into the effects of this to code generation, if
any.

5 Conclusions
In this paper we have re-evaluated the use of machine learn-
ing in CLgen, a method for mining OpenCL kernels from
Github and training a generative model from them to pro-
duce OpenCL benchmarks. In our re-evaluation we consid-
ered the question, for the use case from the original CLgen
paper, if using the generative model for synthesizing bench-
marks provided advantages over the data used to train said
generative model. The in-depth analysis in this re-evaluation
indicates that for this concrete use case, the generative model
was not useful. The synthesized benchmarks produced re-
sults that were consistently similar to, and slightly worse
than, those produced from using the mined kernels instead.

An analysis of the heuristic that used the benchmarks for
tuning, as well as its problem space, show that a significant
amount of limitations can be attributed to the heuristic itself.
Similarly, the generative model used, or the hand-crafted
benchmarks used for testing the heuristic present issues of
their own. Each of these issues requires additional attention
in order to understand its role in the results we found in
this case study, and should be addressed in future work. We
believe that the analysis presented in this paper may help
other researchers inform their decisions when considering
benchmarks to test their own hypotheses.

Acknowledgments
We thank Gil Lederman and the rest of the participants of the
Spring 2018 CS 294-147 seminar at UC Berkeley for valuable

discussions on this subject. This work was supported in part
by the Center for Advancing Electronics Dresden (cfaed),
the German Academic Exchange Service (DAAD) and the
Studienstiftung des deutschen Volkes.

References
[1] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of

machine learning for big code and naturalness. ACM Computing
Surveys (CSUR), 51(4):81, 2018.

[2] J. Anantpur and R. Govindarajan. Taming warp divergence. In Pro-
ceedings of the 2017 International Symposium on Code Generation and
Optimization, CGO ’17, pages 50–60, Piscataway, NJ, USA, 2017. IEEE
Press.

[3] A. Chiu, J. Garvey, and T. S. Abdelrahman. A language and prepro-
cessor for user-controlled generation of synthetic programs. Scientific
Programming, 2017, 2017.

[4] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-to-end
deep learning of optimization heuristics. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 219–232. IEEE, 2017.

[5] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. Synthesizing
benchmarks for predictive modeling. In Code Generation and Opti-
mization (CGO), 2017 IEEE/ACM International Symposium on, pages
86–99. IEEE, 2017.

[6] N. Fauzia, L.-N. Pouchet, and P. Sadayappan. Characterizing and
enhancing global memory data coalescing on gpus. In Proceedings of
the 13th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’15, pages 12–22, Washington, DC, USA, 2015.
IEEE Computer Society.

[7] A. Goens, S. Ertel, J. Adam, and J. Castrillon. Level graphs: Gener-
ating benchmarks for concurrency optimizations in compilers. In
Proceedings of the 11th International Workshop on Programmability
and Architectures for Heterogeneous Multicores (MULTIPROG’2018), co-
located with 13th International Conference on High-Performance and
Embedded Architectures and Compilers (HiPEAC), Jan. 2018.

[8] T. D. Han and T. S. Abdelrahman. Use of synthetic benchmarks for
machine-learning-based performance auto-tuning. In 2017 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1350–1361. IEEE, 2017.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[10] J. A. Jablin, T. B. Jablin, O. Mutlu, and M. Herlihy. Warp-aware trace
scheduling for gpus. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT ’14, pages 163–174,
New York, NY, USA, 2014. ACM.

[11] F. Ji, H. Lin, and X. Ma. Rsvm: A region-based software virtual memory
for gpu. In Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques, PACT ’13, pages 269–278,
Piscataway, NJ, USA, 2013. IEEE Press.

[12] W. Jia, K. A. Shaw, andM.Martonosi. Starchart: Hardware and software
optimization using recursive partitioning regression trees. In Proceed-
ings of the 22Nd International Conference on Parallel Architectures and
Compilation Techniques, PACT ’13, pages 257–268, Piscataway, NJ,
USA, 2013. IEEE Press.

[13] A. Joshi, L. Eeckhout, and L. John. The return of synthetic benchmarks.
In 2008 SPEC Benchmark Workshop, pages 1–11, 2008.

[14] R. Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C. Hu, and K. Pingali.
Adaptive heterogeneous scheduling for integrated gpus. In Proceed-
ings of the 23rd International Conference on Parallel Architectures and
Compilation, PACT ’14, pages 151–162, New York, NY, USA, 2014.
ACM.

[15] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither more nor less:
Optimizing thread-level parallelism for gpgpus. In Proceedings of the

A Case Study on Machine Learning for Synthesizing Benchmarks MAPL ’19, June 22, 2019, Phoenix, AZ, USA

22Nd International Conference on Parallel Architectures and Compilation
Techniques, PACT ’13, pages 157–166, Piscataway, NJ, USA, 2013. IEEE
Press.

[16] G. Kim, J. Jeong, J. Kim, and M. Stephenson. Automatically exploit-
ing implicit pipeline parallelism from multiple dependent kernels for
gpus. In Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, PACT ’16, pages 341–352, New York,
NY, USA, 2016. ACM.

[17] H.-S. Kim, I. El Hajj, J. Stratton, S. Lumetta, and W.-M. Hwu. Locality-
centric thread scheduling for bulk-synchronous programming models
on cpu architectures. In Proceedings of the 13th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization, CGO ’15,
pages 257–268, Washington, DC, USA, 2015. IEEE Computer Society.

[18] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436, 2015.

[19] J. Lee, M. Samadi, and S. Mahlke. Vast: The illusion of a large memory
space for gpus. In Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14, pages 443–454, New
York, NY, USA, 2014. ACM.

[20] J. Lee, M. Samadi, Y. Park, and S. Mahlke. Transparent cpu-gpu col-
laboration for data-parallel kernels on heterogeneous systems. In Pro-
ceedings of the 22Nd International Conference on Parallel Architectures
and Compilation Techniques, PACT ’13, pages 245–256, Piscataway, NJ,
USA, 2013. IEEE Press.

[21] S.-Y. Lee and C.-J. Wu. Caws: Criticality-aware warp scheduling for
gpgpu workloads. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT ’14, pages 175–186,
New York, NY, USA, 2014. ACM.

[22] C. Li, Y. Yang, Z. Lin, and H. Zhou. Automatic data placement into gpu
on-chipmemory resources. In Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’15, pages 23–33, Washington, DC, USA, 2015. IEEE Computer Society.

[23] A. Magni, C. Dubach, and M. O’Boyle. Automatic optimization of
thread-coarsening for graphics processors. In Proceedings of the 23rd In-
ternational Conference on Parallel Architectures and Compilation, PACT
’14, pages 455–466, New York, NY, USA, 2014. ACM.

[24] C.Margiolas andM. F. P. O’Boyle. Portable and transparent host-device
communication optimization for gpgpu environments. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’14, pages 55:55–55:65, New York, NY, USA, 2014.
ACM.

[25] C. Margiolas and M. F. P. O’Boyle. Portable and transparent software
managed scheduling on accelerators for fair resource sharing. In
Proceedings of the 2016 International Symposium on Code Generation
and Optimization, CGO ’16, pages 82–93, New York, NY, USA, 2016.
ACM.

[26] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The
American Statistician, 32(1):12–16, 1978.

[27] M. F. O’Boyle, Z. Wang, and D. Grewe. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 1–10. IEEE Computer Society, 2013.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language models are unsupervised multitask learners. Technical
report, Technical report, OpenAi, 2019.

[29] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. S. Vetter. Exploring
hybrid memory for gpu energy efficiency through software-hardware
co-design. In Proceedings of the 22Nd International Conference on
Parallel Architectures and Compilation Techniques, PACT ’13, pages
93–102, Piscataway, NJ, USA, 2013. IEEE Press.

[30] B. Wang, Y. Zhu, and W. Yu. Oaws: Memory occlusion aware warp
scheduling. In Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation, PACT ’16, pages 45–55, New
York, NY, USA, 2016. ACM.

[31] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar,
B. Roune, R. Springer, X. Weng, and R. Hundt. Gpucc: An open-source
gpgpu compiler. In Proceedings of the 2016 International Symposium
on Code Generation and Optimization, CGO ’16, pages 105–116, New
York, NY, USA, 2016. ACM.

[32] Q. Xu and M. Annavaram. Pats: Pattern aware scheduling and power
gating for gpgpus. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT ’14, pages 225–236,
New York, NY, USA, 2014. ACM.

	Abstract
	1 Introduction
	2 Case study: CLGen
	2.1 Experimental Evaluation

	3 Analysis of the Data Sets
	4 Discussion
	4.1 The Heuristic
	4.2 The Objective
	4.3 The Generative Model

	5 Conclusions
	Acknowledgments
	References

