
Efficient Dispatch of Multi-object Polymorphic Call Sites in
Contextual Role-Oriented Programming Languages

Lars Schütze
Technische Universität Dresden

Dresden, Germany
lars.schuetze@tu-dresden.de

Jeronimo Castrillon
Technische Universität Dresden

Dresden, Germany
jeronimo.castrillon@tu-dresden.de

ABSTRACT
Adaptive software becomes more and more important as comput-
ing is increasingly context-dependent. Runtime adaptability can be
achieved by dynamically selecting and applying context-specific
code. Role-oriented programming has been proposed as a paradigm
to enable runtime adaptive software by design. Roles change the
objects’ behavior at runtime, thus adapting the software to a given
context. The cost of adaptivity is however a high runtime overhead
stemming from executing compositions of behavior-modifying
code. It has been shown that the overhead can be reduced by op-
timizing dispatch plans at runtime when contexts do not change,
but no method exists to reduce the overhead in cases with high
context variability. This paper presents a novel approach to im-
plement polymorphic role dispatch, taking advantage of run-time
information to effectively guard abstractions and enable reuse even
in the presence of variable contexts. The concept of polymorphic
inline caches is extended to role invocations. We evaluate the im-
plementation with a benchmark for role-oriented programming
languages achieving a geometric mean speedup of 4.0× (3.8× up
to 4.5×) with static contexts, and close to no overhead in the case
of varying contexts over the current implementation of contextual
roles in Object Teams.

CCS CONCEPTS
• Software and its engineering→ Software performance;Com-
pilers; Context specific languages.

KEYWORDS
roles, context, dispatch, dynamic languages

ACM Reference Format:
Lars Schütze and Jeronimo Castrillon. 2020. Efficient Dispatch of Multi-
object Polymorphic Call Sites in Contextual Role-Oriented Programming
Languages. In Proceedings of the 17th International Conference on Managed
Programming Languages and Runtimes (MPLR ’20), November 4–6, 2020,
Virtual, UK. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3426182.3426186

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MPLR ’20, November 4–6, 2020, Virtual, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8853-5/20/11. . . $15.00
https://doi.org/10.1145/3426182.3426186

1 INTRODUCTION
Separation of concerns is the main technique to conquer complexity
as it allows decomposing a system into different smaller compo-
nents. Decomposition is typically dominant, e.g., by object or func-
tion, and is predefined by the underlying programming language.
However, different concerns often overlap and interact with one
another, requiring different decompositions if treated on its own.
Multi-dimensional Separation of Concerns (MDSoC) allows decom-
posing a system into multiple eventually overlapping concerns [38],
which may be composed in different ways to reduce development
complexity.

Composing methods (i.e., adaptations) out of decompositions
and their execution violates assumptions common language imple-
mentations hold about lookup resulting in inefficient code imple-
menting the dispatch. Optimizations such as polymorphic inline
caches (PIC) [27], caching results of lookups of potentially poly-
morphic sites, or analyses to inline code of call targets at a call
site do not improve performance in the same way they do for
regular object-oriented programs [44]. For language implementa-
tions, such as the Java Virtual Machine (JVM), it is important to
understand where potential variability is relevant at run time. Thus,
research on MDSoC approaches such as aspect-oriented program-
ming (AOP) [29], context-oriented programming (COP) [25], and
role-oriented programming (ROP) [32, 46] mainly concentrated on
improving run-time performance especially by improving lookup
or the code generated to implement dispatch. However, there is still
no solution to cope with the dynamism inherent to these concepts.
In all approaches, compositions can be switched on or off invalidat-
ing generated code. The resulting impact on run-time performance
can be of several orders of magnitude, depending on the language
implementation [44].

Adaptations that happen on a per-object basis require the lan-
guage runtime to treat every object separately. Due to the nature
of cross-cutting aspects a rare case in AOP, it is the common case
in contextual role-oriented programming, where objects may adapt
their behavior by assuming and discarding roles bound to contexts
at run time. The roles implement the specific context-dependent
behavior and state. Hence, late binding in ROP has to ensure that
every object, depending on its assumed roles, may have a different
implementation of a method when invoked at a polymorphic refer-
ence. An object that reappears at the same call site to be dispatched
may also assume different roles then before. In a single dispatched
language this requires multiple steps where the language runtime
might not observe the connection between functions.

It has been shown that the overhead can be reduced by optimiz-
ing dispatch plans at run time for static cases, but no method exists
to reduce the overhead in cases with high variability. A static case

https://doi.org/10.1145/3426182.3426186
https://doi.org/10.1145/3426182.3426186
https://doi.org/10.1145/3426182.3426186

MPLR ’20, November 4–6, 2020, Virtual, UK Lars Schütze and Jeronimo Castrillon

is reached if there is no contextual adaptation for some period of
time so the same code is repeatedly executed. Variability emerges
when contextual adaptations are applied changing the executed
code.

This paper presents a novel approach to implement polymorphic
role dispatch. By taking advantage of run-time information and a
new lookup mechanism to link to actual role function implementa-
tions the overhead can be eliminated. The run-time generated call
graphs are guarded by requiring a structural equivalent runtime
state to be executed again. To minimize the overhead of repeatedly
recalculating call graphs, call sites can deoptimize into a generic
state reusing the original calling convention. The approach is im-
plemented into the language Object Teams [21] that implements
contextual roles, providing most of the features that nearly four
decades of research have ascribed to role-oriented implementa-
tions [32, 46].

We evaluate the implementation with a benchmark for role-
oriented programming languages achieving a geometricmean speed-
up of 4.0× (3.8× up to 4.5×) in the static case, and close to no
overhead in the dynamic case over the current implementation of
contextual roles in Object Teams.

2 BACKGROUND
During the last decades multiple concepts have been introduced
that not only allow to decompose a system along different dimen-
sions, but also to change components dynamically at runtime. This
introduces runtime overhead especially at the points in the system
where dimensions are merged, i.e., call sites. This section intro-
duces concepts related to Multi-Dimensional Separation of Con-
cerns and gives an overview of their applicability to implement
context-dependent adaptations. recent research in optimizing the
inherent runtime overhead of these approaches. Furthermore, it in-
troduces techniques that can be applied by language implementers
to resolve additional variability at call sites to enable optimizations
by the runtime environments.

2.1 Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) increases modularity by en-
abling decomposition of cross-cutting concerns, i.e., logging. These
concerns are encapsulated into aspects that provide expressions
to define interceptors, class extensions (inter-type declarations)
and properties [10]. An aspect can adapt the behavior of parts of a
program, called base classes or methods, by applying advices which
define the additional behavior. These advices are applied at specific
points in the base program called join points, e.g., function calls or
property accesses. Pointcuts provide predicates that quantify over
the set of join points and choose a set of join points where the
execution of the advice is desired. Context-sensitive adaptations
have to be implemented into the predicates of the pointcut. Aspects
are compiled by special compilers called weavers as advice invoca-
tion code is woven into the application code. Locations in the code
where advices might be woven are called join point shadows [24].

A compiler of an aspect-oriented language consists of a module
for evaluating pointcuts and a weaver, beside traditional elements
of a compiler. After evaluating a pointcut, the join point shadows
are forwarded to the weaver. The weaver, however, may not always

1 public aspect BankAspect {

2 private final float FEE = 1.1;

3 pointcut callWithdraw(float amount ,

4 Account acc) :

5 call(void Account.withdraw(float)) &&

6 args(amount) && target(acc) && within(

Bank);

7 void around(float amount , Account acc) :

8 callWithdraw(amount , acc) {

9 proceed(amount * FEE , acc);

10 }

11 }

Figure 1: An aspect definition in AspectJ, defining a pointcut
that applies to Account.withdraw and an around advice that
adds the fee before proceeding to the original method.

decide at compile-time whether a pointcut apply at a join point
shadow or not. Thus, for some join points advice invocation logic
and guards are compiled into the application and are called residuals.

In Figure 1 an aspect-oriented example implemented with As-
pectJ [28] is shown. The aspect encapsulates all behavioral varia-
tions. The pointcut enables different behavior for Accounts whose
withdraw method is called inside the Bank. The advice is woven
around the identified joinpoints and will proceed with calling the
original method. While AOP excels at defining cross-cutting behav-
ior it also allows to integrate context-dependent adaptations using
the within statement. However, it is not designed to easily imple-
ment object-specific adaptations, i.e., that apply only to specific
Account instances.

2.2 Context-Oriented Programming
Context-Oriented Programming (COP) aims at adapting the behav-
ior of an application to a known context by providing contextual
variations. In contrast to AOP, contexts are first-class citizens with
dedicated language support. Similar to AOP the base program can
be altered at join points at method-level granularity. To achieve
contextual variation, layers implement context-dependent behav-
ior in partial methods. Variations can replace the original function,
be executed before and after, or use the mechanism of proceed to
delegate to the next active layer. The activation and deactivation of
layers drive contextual adaptation. This process is called side-way
composition [26] as the original inheritance mechanism is extended
by a dynamic, orthogonal extension at run time.

In an object-oriented execution model, function invocation is
understood as a two-dimensional message sent to the receiver ob-
ject consisting of the name of the function to be executed and a
list of parameters. In COP, however, this message is extended to
four dimensions, adding the sender object and the context of the
actual message [25]. Thus, COP resembles multiple dispatch which
takes any argument into account for the dispatch. Modern object-
oriented programming languages use single dispatch, only taking
into account the first argument, i.e., the run-time type of the re-
ceiver. While there have been implementations of multiple dispatch

Efficient Dispatch of Multi-object Polymorphic Call Sites in Contextual Role-Oriented Programming Languages MPLR ’20, November 4–6, 2020, Virtual, UK

1 public layer SavingsAccount {

2 private final static float FEE = 0.1;

3 public void Account.withdraw(float amount){

4 proceed(FEE * amount);

5 }

6 }

7
8 public class Bank {

9 public void transaction(Account source ,

10 Account target , float amount) {

11 with(SavingsAccount) {

12 source.withdraw(amount);

13 target.deposit(amount);

14 }

15 }

16 }

Figure 2: JCOP uses layers to define different behavior when
withdrawing money for a savings account. The changed be-
havior is scoped by the with statement.

in single dispatched languages like Java [49], context-aware execu-
tion semantics is often implemented using imperative control flow
and libraries [43].

Figure 2 is an example of such a context-oriented implementa-
tion using imperative control flow with the JCOP programming
language [4]. Behavioral variations can be defined as classes with
layers. A layer can define extensions to methods of other classes.
The with statement defines the scope and order in which layers are
active. However, there is no language concept to define the context
and constraints whether to apply behavioral variations. Because
there is also no cross-cutting semantics all possible control flow
paths that must lead to behavioral variations have to be identified
and guarded.

2.3 Role-Oriented Programming
The successful adoptions of roles in software analysis and con-
ceptual modeling [2, 40, 41, 46] led to a demand for programming
language support. First approaches hid the concept in the imple-
mentation with design patterns [7, 13].

Role-oriented programming distinguishes between the base en-
tities themselves and the roles they play in a collaboration. This
provides explicit support for object collaboration in a way not nor-
mally supported by language features. Base classes can be adapted
by implementing the behavioral adaptations in roles which work
at method-level granularity while also encapsulating role specific
state.

In contextual role-oriented programming, objectified compart-
ments (contexts) encapsulate roles to capture the context-dependent
relationship of behavior. Objects may adapt their behavior by as-
suming and discarding roles bound to contexts. Hence, role-oriented
programming can be seen as a combination of AOP and COP in
a way, depending on the specific role-oriented programming lan-
guage, it uses a mixture of instance-local and class-wide aspects to
implement context-dependent adaptations.

1 class Account {

2 void withDraw(float amount) {...}

3 }

4
5 team class Bank {

6 class CheckingsAccount playedBy Account {

7 ...

8 }

9
10 class SavingsAccount playedBy Account {

11 callin void withFee(float amount) {

12 base.withFee(FEE * amount);

13 }

14 withFee <- replace withDraw;

15 }

16 }

Figure 3: Object Teams source code showing how Accounts
can have different behavior when withdrawing money. The
SavingsAccount adds a fee for each withdrawal.

In the past years different role-oriented approaches and imple-
mentations emerged which can be grouped into behavioral [6, 11,
14] and contextual role languages [5, 22, 33, 37, 47]. Different im-
plementations support different sets of role features [32, 46].

2.4 Contextual Roles with Object Teams
While behavioral roles can be compared to dynamic programming
languages such as Ruby or Python, where playing a role merely
reduces to changing the implementation of a function, contextual
role languages establish their own domain. Behavior is not only
dependent on the instance of the role, but also on the instance of
the context that role is played in. Thus, role playing becomes a
triple of contexts, role and player [31].

Object Teams [19] is the most sophisticated role-oriented pro-
gramming language supporting most of the features attributed
to roles [32]. There currently exist a reference implementation in
Java [21] which is the fastest implementation of roles despite the
many features supported [44]. An example is shown in Figure 3
which is also part of the evaluation in Section 4. It shows how a
bank is modeled as a team representing the context of different
types of accounts. These types add additional constraints to the
basic functionality of withdrawing and disposing money from those
accounts. The reference implementation extends the syntax of Java
and introduces a new class type named team class. Teams can
be instantiated to represent objectified contexts and encapsulate
roles. Roles are defined as inner classes of teams. With a slight
extension to the Java syntax, the playedBy relation can connect
roles to the role-playing base classes as shown in Figure 3 line 10.
Roles in Object Teams define new or modified behavior and state
of their base classes while their semantics is similar to crosscutting
concerns in AOP. Thus, every instance of the base class which plays
a role in a team is affected whenever an instance of that team is
active.

MPLR ’20, November 4–6, 2020, Virtual, UK Lars Schütze and Jeronimo Castrillon

Account Bank SavingsAccount

withDraw

callAllBindings

callAllBindings

Recursion over Teams
callBefore

callReplace

withFee

callNext

callOrig

Figure 4: A sequence diagram of the trace of a role dispatch
in Object Teams implemented in a single dispatch language.

Role Bindings. While most approaches resort to structural typ-
ing where the signature of role functions must be identical to the
signature of the base function, Object Teams provides mappings to
state the binding from role functions to base functions. Mappings
are defined inside the role classes as shown in Figure 3 line 14. To
accommodate reuse of legacy code bindings can define permuta-
tions on the arguments, or define arbitrary glue code to achieve
signature compatibility.

Role functionsmay have two directions. A callout delegates a role
function to a base function to reuse existing behavior of base classes.
In the other direction, role functions intercept calls to functions of
their base classes. They may be executed before, after, or replace
base functions. Because they alter the behavior of base classes and
result into calling into the role, these functions are called callin.

In a running application there can be multiple active teams that
provide roles that have bindings for the same base function. The
Object Teams runtime keeps a stack of active teams where the latest
activated team has the highest priority. If a callin replaces a base
function it can also call back into the original function performing
a base call. Because a callin can have potentially multiple bindings
to different base functions the syntax is defined to do a base call
to the role function as shown in Figure 3 line 12. This behavior is

comparable to the proceed keyword introduced by aspect-oriented
and context-oriented programming. Whenever such a base call hap-
pens, the next callin from the stack of active teams has precedence
over the original function. This results in a recursive application
of replace callins until there is no more active callin or there is no
more base call executed.

Lookup. The Object Teams reference implementation consists
of two compilers. The application is first statically compiled and
then dynamically woven at run time. The static compiler extends
the Eclipse Java compiler. It provides semantic checks on the bind-
ings and role functions to detect type errors and generates the dis-
patch logic. The weaver adapts base classes when they are loaded.
It rewrites functions if there exist a binding and weaves code to
redirect them into the Object Teams runtime for dispatching. For
each function, a unique ID is selected and the body is moved into
a generic function callOrig. The purpose of this function is to
dispatch to the original code which is guarded by that ID.

To resolve lookups, Object Teams provides a sophisticated mech-
anism to implement role lookup into an object-oriented program-
ming language. The static compiler associates each binding with
an ID that is uniquely associated with that binding among the in-
heritance hierarchy of the team. For each team a generic dispatch
method callAllBindings is generated. The purpose is to delegate
to the respective methods for each type of callin. Those special dis-
patch methods dispatch based on the generated ID to the respective
role functions. To realize this, the implementation needs to retrieve
the role instance played by the base object in the team instance.
This process is called translation polymorphism where players are
lifted to their respective role in a given context [23]. Figure 4 shows
a trace of how the reference implementation of Object Teams re-
solves lookups at call sites bound by roles. To visualize the overhead
the sequence diagram uses grey bars to highlight framework code
while white bars are the actual code of the application.

Deep nested function calls result in less optimizations by the
Just-in-Time (JIT) compiler such as function inlining. In a single
dispatched language this requires multiple steps where the lan-
guage runtime might not observe the connection between func-
tions. Generated functions such as Bank.callReplace which is
responsible for dispatching to every replace callin inside the team
Bank may become too large to be chosen for any optimization at
all. Thus, the approach hinders optimization for variability at call
sites, since the language runtime’s heuristic treat framework code
as application code. The impact is severe as the most sophisticated
approach to context dependent roles, Object Teams, is still roughly
54 times slower than a comparable implementation using design
patterns [44].

Family Polymorphism. Due to the advanced concepts of inher-
itance defined in Object Teams, where subclasses of base classes,
subroles of roles, and subteams of teams co-exist, the very powerful
concept of family polymorphism is introduced [12]. By inheriting
at team-level, a corresponding family, where the types of roles are
bound to the team instance containing them, is created. This is im-
portant when roles are externalized, i.e., stored and used outside of
teams [20, 23]. In the reference implementation, teams define inner
classes which are roles. Role classes are virtual classes. Figure 5
shows a diagram which uses a notation that is inspired by UML

Efficient Dispatch of Multi-object Polymorphic Call Sites in Contextual Role-Oriented Programming Languages MPLR ’20, November 4–6, 2020, Virtual, UK

Team

RoleBase

SubTeam

Role

SubRoleSubBase

Figure 5: Family polymorphism is introduced in Object
Teams by inheritance between teams. The notion of the dia-
gram is inspired by a UML class diagram.

class diagrams. It represents the different inheritance relations be-
tween classes, teams and roles using the UML generalization arrows.
Roles in subteams override (implicitly inherit) roles with the same
name in superteams is shown as a UML realization arrow. The fills
relation defines which role is played by which class is represented
as a solid arrow.

2.5 Optimizing Meta-Object Protocols
In traditional object-orientation the variability at a polymorphic call
site is determined by the dynamic types arriving at run time. Such
variability can be accounted for with polymorphic inline caches
(PIC) [27] which map the resolved lookup results from their in-
stances. However, the aforementioned approaches do not behave
like traditional object-oriented programs, i.e., polymorphism is
defined differently. To some extent, a commonality of all these ap-
proaches is that they use a Meta-Object Protocol (MOP) to embed
domain-specific elements into the host language. For call sites that
are part of the API of the MOP, variability can be reduced by chain-
ing PICs, effectively constructing dispatch chains for these dynamic
languages [36].

3 ROLE POLYMORPHIC DISPATCH
Efficient execution of role-oriented programs requires to cope with
the different kind of variability at call sites as well as to improve
stability to leverage optimizations of the language runtime. When
a function is invoked via a polymorphic reference, late binding
ensures that we get the appropriate implementation of that method
for the actual object. Due to family polymorphism, the role meth-
ods have to be searched on the possible families (see Figure 5) of
active teams. This section will introduce how the variability can be
captured in a data structure resembling the idea of a polymorphic
inline cache at the call site.

3.1 Late Binding of Role Dispatch
Deep nested function calls result in possibly less optimizations
applied by the Just-in-Time (JIT) compiler. Especially, optimizations
such as inlining use heuristics that penalize nesting. As it is shown
in Figure 4 the Object Teams reference implementation uses long
chains of function calls and recursive function invocations. Thus,
the language runtime might not observe the connection between
the call site and the resulting function calls.

However, the Object Teams compiler has access to the bindings
which encode all relevant information of classes, methods and the
respective role classes and methods. This metadata, together with
run-time state of the Object Teams runtime, can be used to construct
a call graph that defines, given a particular call site in a base class,
the role method to be called.

We propose Polymorphic Dispatch Plans, a compilation strat-
egy that supersedes the control-flow dependent dispatch, enabling
optimizations by the JIT compiler. By directly linking callin func-
tions, glue code and intermediate functions used for dispatching
are avoided. The original calling convention is used as a fallback
in case of unstable call sites to avoid overhead of repeatedly re-
linking the same call site [45]. A polymorphic dispatch plan is a
composition of role functions and necessary type conversions at
run time, conceptually representing a directed acyclic graph (DAG).
Figure 6 shows a DAG of a resolved polymorphic dispatch plan of
a before callin followed by the original function. The DAG consists
of control flow edges represented by solid arrows and data flow
dependencies as dashed arrows. Gray boxes represent data that is
required when generating the DAG while white boxes are required
when executing the DAG. The DAG is valid until there are too many
cached DAGs at the call site. On invalidation it drops out of the role
polymorphic inline cache.

To achieve this, both compilers need to be adapted. The run-time
weaver needs to change the bytecode of base functions to call role
functions of active teams. The static compiler needs to change how
base calls are implemented. To dispatch those, the compiler needs to
peek if there is a next active team or whether it has to call the base
function. The implementation uses invokedynamic that is directly
observable and walkable by the JIT compiler [42, 48]. The graph is
also completely visible to the JIT compiler which allows to execute
optimizations. Because the static compiler is an extension of the
Eclipse Java Compiler, it must be extended to allow the definition
and compilation of arbitrary invokedynamic call sites that has not
been possible before.

3.2 Runtime Feedback in Object Teams
The Object Teams static compiler produces metadata, containing
information about callins, that is compiled into Java bytecode as
class attributes. Among these attributes are information about the
bindings which are compiled into team classes. These attributes are
read by the run-time weaver to identify and change base classes
and function invocations as described in section 2. In the reference
implementation, this information was only used to generate code
that realizes the dispatch semantics of Object Teams. However, this
metadata may also be used to identify and link callins directly from
a call site.

MPLR ’20, November 4–6, 2020, Virtual, UK Lars Schütze and Jeronimo Castrillon

team0
team1
· · ·

teamN

base instance

guard lift

role instance

binding

before
callin

orig

result

Figure 6: ADAGof a guarded Polymorphic Dispatch Plan for
a single before callin and the original function, highlighting
the control flow (solid arrows) and the data flow (dashed ar-
rows). Gray boxes are required for generation, white boxes
for execution.

The runtime of Object Teams keeps a stack of active team in-
stances. This data structure can be used when linking call sites at
run time. To include this information, the code compiled by the two
compilers needs to be adapted. Prior, the static compiler enhanced
the signature of callin functions to pass relevant stack frame data.
This data was used to drive the dispatch, e.g., by recursively iterat-
ing over an array of teams representing the active run-time team
stack.

At run time there is more information available that can be used
to directly determine the call target. Given a dynamic call site, the
called base function is known, as well as the team instances and
classes. We use this information to query the MOP of Object Teams
to retrieve the binding for the base class. The binding contains the
name of the role class, the name and signature of the role function
as well as other information. This is used to directly link to the
implementation of the respective callin function.

Figure 7 explains the new lookup process we implemented in
our approach. The left side shows a twofold initialization phase. In
the beginning the call site must be bootstrapped first. During the
bootstrapping phase, the uninitialized call site points to an initial-
ization function that is associated with the call site at compile time.
To be consistent with the reference implementation that function
is also called callAllBindings. It returns a mutual call site object
that is set to relink itself upon invocation and shifts the call site
into the next phase.

In the initialization phase, the call site points to the relink func-
tion which in turn sets the call target depending on the run-time
state to the actual role function or base function. To achieve this,
we peek iteratively into the stack of active teams and retrieve the
respective bindings. This is done until the first replace callin is
reached effectively composing a chain of function invocations. This
iterative approach replaces the recursive lookup strategy. Thus, the
control-flow dependent dispatch can be removed and replaced by a
call graph directly observable and walkable by the JIT compiler.

Finally, after initializing the call site it is guarded to accept struc-
turally equivalent run-time states. This means, dispatching with
a stack of active teams (𝑇1,𝑇2, · · · ,𝑇𝑁) is not dependent on the
particular instances of those teams. Whenever the guard fails, the
process of initializing the call site is repeated and the result is added
to the known targets of the call site. Thus, it is only dependent on
a specific order of team classes which resembles a polymorphic
inline cache applied to contextual roles.

The right side of Figure 7 shows how the call site can optimized
for specific cases, effectively eliminating the overhead of the staged
role dispatch. Given our running example of an Account whose
functions are extended by the SavingsAccount there is only one
replace callin to be executed, namely withFee. Thus, the base call
will directly execute the base function. In general, if a callin has a
base call, it originally called deeper into the stack of active teams.
This could either result in the execution of new callins until there
is a replace callin or the base call will be dispatched to the base
function. In our approach the base call is another invokedynamic
call site that repeats the initialization phase starting at a deeper
index of the stack. If the call site is called often enough it eventually
is recognized by the JVM to be stabilized. The JIT compiler will emit
much more efficient code for the call site resulting in a performance
improvement.

3.3 Optimizing Role Polymorphic Call Sites
For the JVM the signatures of a base function and its role functions
is incompatible. While the signature of a base function for some
base class 𝐵 is (𝐶𝐵, 𝐴𝑟𝑔𝐵, · · ·)𝑅𝑒𝑡𝐵 the signature of a role 𝑅 defined
in team 𝑇 is (𝐶𝑇

𝑅
, 𝐴𝑟𝑔𝑇

𝑅
, · · ·)𝑅𝑒𝑡𝑇

𝑅
, where there can be arbitrarily

many arguments. If the elements of𝐴𝑟𝑔𝐵 and𝐴𝑟𝑔𝑇
𝑅
are not directly

compatible, the Object Teams compiler will generate a mapping
function which maps each argument to the other. However, the
classes 𝐶𝐵 and 𝐶𝑇

𝑅
are role polymorphic which means on the type

level there is a lifting function 𝑙𝑖 𝑓 𝑡𝑇
𝑅
such that 𝑙𝑖 𝑓 𝑡𝑇

𝑅
(𝐶𝐵) = 𝐶𝑇

𝑅
.

In other words, base classes can be lifted to their respective role
representation [23]. At the instance level, each role instance is de-
pendent on the team instance it is the role playing in. For two
different team instances 𝑡1, 𝑡2 ∈ 𝑇 and a base instance 𝑏 ∈ 𝐶𝐵 it
is 𝑙𝑖 𝑓 𝑡𝑡1

𝑅
(𝑏) ≠ 𝑙𝑖 𝑓 𝑡

𝑡2
𝑅
(𝑏). Thus, a role polymorphic call site requires

(𝐶𝐵,𝑇) and the binding to retrieve the meta-information 𝐶𝑇
𝑅
to

find 𝑙𝑖 𝑓 𝑡𝑇
𝑅
. To actually dispatch the call site the instances (𝑏, 𝑡) are

required.
This information can also be used to guard a call site. A guard

requires the argument types of the base function to match the base
type 𝐶𝐵 . Because in Object Teams a call site can be changed by
multiple roles the guard also checks the team stack (𝑇1, · · · ,𝑇𝑁).
For the latter the order is important because different orders of
active teams 𝑇𝑖 result in different call graphs. When executing a
dispatch plan, the guard checks the run-time type of the arguments
on the stack and, if succeeding, forwards it to the resolved dispatch
plan. If the guard fails it checks the next guard at the call site. If
there is no next guard a new dispatch plan has to be generated that
is guarded with the current types of the arguments on the stack.
This effectively constructs a polymorphic inline cache (PIC) for
contextual roles. The benefit of this approach is that the variability
at the call site is reduced as dispatch plans can be reused and the

Efficient Dispatch of Multi-object Polymorphic Call Sites in Contextual Role-Oriented Programming Languages MPLR ’20, November 4–6, 2020, Virtual, UK

Account DynamicLinker Bootstrap

Bootstrapping

withDraw

callAllBindings

link

relink

CallSite

Initialisation

relink

Iterate over teams

composeBefore

composeReplace

composeAfter

Account SavingsAccount Bootstrap

Stabelised until replace callin

withDraw

withFee

callNext

bootstrapping & initialisation

callOrig

Stabilised

withDraw

withFee

callOrig

Figure 7: Sequence diagrams of a dynamic call site where lookup results in direct calls to role methods. Left shows the initial-
ization where the call graph is generated. The right side shows how the call site may stabilize and optimize.

call site becomes stable enabling optimizations by the JIT compiler
of the JVM. When a program is very dynamic, where role bindings
change often, a call site can also be marked as unstable. A call site
that is marked unstable will revert to the original lookup procedure.

4 EVALUATION
This section evaluates the run-time performance and characteristics
of polymorphic dispatch plans and compares it with the original
implementation of Object Teams. To support the usefulness of
leveraging run-time type feedback to optimize the polymorphic
case, the approach is also compared to dispatch plans (without
polymorphism).

4.1 Benchmark Characterization
We used a typical synthetic benchmark we designed to compare dif-
ferent language implementations of the role-oriented concept [44].
The benchmark uses many demanding role-oriented programming
features such as multiple active contexts, deep roles (i.e., roles
playing roles), and multiple callins that are not easily built with
object-oriented design patterns.

The benchmark describes a banking scenario. Persons and ac-
counts are classes implementing basic behavior. For example, ac-
counts can withdraw and deposit money. A bank is a compart-
ment (i.e., context) where persons can play the role of customers.
Accounts play roles that change the account’s behavior such as
different fees involved in withdrawing money from a checking
account.

We evaluate on two variations of the benchmark, namely a dy-
namic case with variable context activations and a static case with
a static context and no further activation, to explore different char-
acteristics of context-dependent software. To achieve this, the dy-
namic case models the transaction as a team itself. This means, that
in each iteration of transactions of money between two accounts
the context switches twice. First when the transaction is activated
and second when it is deactivated. In the static case the money is
directly withdrawn and disposed from the accounts which means
in the whole benchmark there is no change in the context. While
software must be adaptable to changing contexts it also has to be
performant enough to stay useful. We consider a case static if there
is no adaptation happening for a period of time. Whenever there is
a period of static behavior the language runtime should be able to

MPLR ’20, November 4–6, 2020, Virtual, UK Lars Schütze and Jeronimo Castrillon

1 bank.activate ();

2 for (Account from :

3 bank.getSavingAccounts ()) {

4 for (Account to :

5 bank.getCheckingAccounts ()) {

6 from.decrease(amount);

7 to.increase(amount);

8 }

9 }

10 bank.deactivate ();

Figure 8: The measured portion of the Bank benchmark
static case written in Object Teams/Java. The interaction is
directly with the accounts but their active roles of the bank
change the executed behavior.

1 bank.activate ();

2 for (Account from :

3 bank.getSavingAccounts ()) {

4 for (Account to :

5 bank.getCheckingAccounts ()) {

6 Transaction transaction =

7 new Transaction ();

8 transaction.activate ();

9 transaction.execute(from ,to,amount);

10 transaction.deactivate ();

11 }

12 }

13 bank.deactivate ();

Figure 9: The measured portion of the Bank benchmark
dynamic case written in Object Teams/Java. Bank and
Transaction are teams whose roles influence the Account be-
havior.

exploit it. This may be compared with the warm up of JIT compilers
in dynamically compiled languages. However, if a call site registers
eight adaptations it will not optimize acquiring the run-time stack
data anymore but still uses dispatch plans for dispatching. When-
ever the call site reached eight variations of structural different
runtime stacks of teams, it will use the calling convention already
present in the current implementation of Object Teams (Classic
2020).

To evaluate reuse, the static benchmark shown in Figure 8 does
not model transactions but money is transferred directly from one
account to the other. This mimics a monomorphic state at the call
site where the roles of each account stays the same.

Figure 9 shows the measured portion of the dynamic case. The
inner-most loop models transactions as teams which are activated
and deactivated in every iteration. The accounts play the roles of
the source and target of cash flow. The activation and deactivation
of the Transaction team changes the active roles for each of its
role-playing instances. While this may trigger an invalidation of
the call site, the structure of activated teams can be reused.

The experiments were performed on an Intel Core i7-9700T CPU
at 2.00GHz running Ubuntu 20.04 and 36GB of RAM. For the Poly-
morphic Dispatch Plans and the current reference implementation
of Object Teams (Classic 2020) the Oracle JDK 14.0.2 was used, while
the others used the Oracle JDK 9.0.4. The JVM had 4GB maximum
heap space and only used the server compiler.

The benchmark used different problem sizes to evaluate the
results on different inputs. In each benchmark, there are N persons
having 2·N accounts (a CheckingAccount and a SavingsAccount).
To capture run-time variation, the benchmark has been repeated
126 times per data point while the VM has been restarted every 42
iterations executed from a benchmarking framework [35]. We are
interested in the overall execution time, normalized to the current
classic implementation of Object Teams. To observe if there are
scalability problems, we measured with different problem sizes. For
the dynamic case we varied the amount of transactions from 1 to
2.5 million. The static case uses less objects and was scaled up to 6
million transactions.

4.2 Performance Analysis
The chart depicted in Figure 10 show the results of the reference
implementation of Object Teams (Classic 2020) compared to our
proposed Polymorphic Dispatch Plans. For comparison, an older
version of the reference implementation of Object Teams (Classic
2019) as well as Dispatch Plans [45] were alsomeasured. The plot
shows the geometric mean of the run-time ratio, i.e., run-time factor.
To compare to the current state of the art, the values are normalized
to Classic 2020. The y-axis uses a log10 scale to highlight where
each approach introduces a run-time overhead or improves over
the current implementation. Lower values show better results. The
error bar shows the standard derivation of the runtime ratio.

The left part of Figure 10 shows how the static case benefits both
approaches, dispatch plans as well as polymorphic dispatch plans.
While dispatch plans compile the active teams directly into the
DAG, polymorphic dispatch plans still require them to be present
on the argument stack. Because of the stable call site, the retrieval
of this run-time data can be optimized. This allows implementing
copy-on-write optimizations for the data structure representing
the active team stack. Polymorphic dispatch plans show a geomet-
ric mean speedup of 3.8× up to 4.5× compared to Classic 2020.
They also improve over dispatch plans by 1.4×. Executing Poly-
morphic Dispatch Plans on the GraalVM 20.2, does improve over
Classic 2020 by 2.8×, but is 2.6× slow than executed on JDK 14.
Interesting is also the high standard derivations across the different
benchmarks when running on GraalVM.

The right part of Figure 10 shows the results of the dynamic
case. Dispatch Plans have a 14× run-time overhead compared to
Classic 2020. The variability introduced by the dynamic case
forces the dispatch plans to issue lots of deoptimizations. This is
because they require the stack of team instances not to change
to reuse generated dispatch plans and they were not designed to
offer guards on run-time data. Polymorphic Dispatch Plans on the
other side may reuse generated dispatch plans. Due to their guards,
they can leverage from the fact that the run-time stack of teams is
structurally equivalent. The approach of role-polymorphic inline
caches achieves, for smaller inputs, a geometric mean speedup of

Efficient Dispatch of Multi-object Polymorphic Call Sites in Contextual Role-Oriented Programming Languages MPLR ’20, November 4–6, 2020, Virtual, UK

Static Context Benchmark Variable Contexts Benchmark

2 4 6

1
.0

1
.5

2
.0

2
.5

1

3

10

0.3

0.5

1.0

Million of Iterations

R
u

n
tim

e
 f

a
c
to

r
n

o
rm

a
liz

e
d

 t
o

 C
la

s
s
ic

 2
0

2
0

 lo

w
e

r
is

 b
e

tt
e

r

Classic 2019 Dispatch Plans Polymorphic Dispatch Plans Polymorphic Dispatch Plans Graal

Figure 10: The bar chart shows the geometric mean of the run-time ratio at logarithmic scale, normalized to the classic imple-
mentation of Object Teams for the respective suites. The error bar shows the standard derivation of the run-time ratio.

1.1×. For bigger inputs the garbage collection also takes up more
time which introduces noise to the values resulting in a median
slowdown of up to 2.3× and a standard derivation of 0.95. Executing
Polymorphic Dispatch Plans on the GraalVM 20.2, which is built on
OpenJDK 11, reduced the slowdown to up to 1.2×. To underpin the
assumption that the noise is introduced by the garbage collector we
increased the maximum heap size up to 8GB. As a result, the values
level off at a geometric mean speedup of 1.1×. This conclusion also
corresponds to the trace records of the running JVM we analyzed
manually in separate runs.

5 RELATEDWORK
This section introduces approaches that focused on improving
lookup and dispatch in approaches related to Multi-Dimensional
Separation of Concerns and recent research in optimizing the in-
herent runtime overhead of these approaches.

5.1 Aspect-Oriented Programming
Since object-oriented execution environments, i.e., virtual machines,
do not understand aspect semantics, the aspect compiler produces a
verbose description of aspects in an object-oriented paradigmwhich
incurs high overhead [18]. The reason is that function invocations
or property accesses are typical locations for join point shadows
that will be decorated with residuals. Mechanisms for late binding
of advices are not applied to such high-level concept, resulting
in residuals being evaluated each time. This results in a severe
performance penalty ranging from two orders of magnitude in
AspectWerkz [9] to performance losses of less than one decimal
power [15] in Steamloom [17].

Steamloom’s approach was to optimize cross-cutting, class-wide
aspects by enhancing the object model of the Jikes RVM [1], com-
piling advice invocation code into the function body, effectively
eliminating residuals, which incurs minimal overhead [8, 16]. How-
ever, aspects that only apply to specific object instances, called
instance-local aspects, block optimizations in Steamloom. For each
instance-local aspect, Steamloom compiles different versions of

MPLR ’20, November 4–6, 2020, Virtual, UK Lars Schütze and Jeronimo Castrillon

a function where each version is local to the object instance and
associated with the applied advices. If there are multiple versions of
such a function, the compiler cannot inline calls to those functions
anymore which introduces performance penalties [17].

5.2 Context-Oriented Programming
Weaving and execution of layered methods violate assumptions that
common language implementations hold about lookup resulting
in inefficient code implementing the dispatch. Thus, the compiler
often does not optimize or fails to optimize a specific part of the
code.

In a VM with a meta-tracing JIT compiler, the JIT compiler does
not optimize the executed method itself but the trace of the inter-
preter by specializing towards the values of the objects. By employ-
ing compiler directives such as promote, the compiler can optimize
layered dispatch even if the heuristics did not decide to optimize the
part of the application [39]. The optimized parts must be guarded
and invalidated when layers change. Thus, the optimization relies
on a steady state w.r.t. layer activation. However, most COP lan-
guages use method-based JIT compilers such as the Java Virtual
Machine (JVM) or Google’s JavaScript Engine V8 and cannot profit
from this approach.

In ContextJS [34] the layered dispatch is optimized by reducing
the number of method calls and lookups by inlining partial methods
into a generated wrapper function [30]. Active compositions can
be cached for speedup on subsequent invocations, e.g., to check if
there was no change. While the inlining improves the performance
by 10× it still just reaches 3% of the performance of a comparative
implementation using the host language only.

An implementation leveraging an early version of dynamic ex-
ecution of methods in Java uses invokedynamic to improve the
lookup and execution of layered dispatch in JCop [3]. Instead of
delegation methods a list of all partial methods is generated by the
compiler. The runtime provides a callable proxy that dispatches to
all partial methods when executed. The authors report a perfor-
mance improvement of 48 to 35 times while being 1.75 times slower
than a pure Java method in a completely static benchmark. They
also highlight the huge impact of the JIT compiler when layers
change.

5.3 Role-Oriented Programming
By taking advantage of the run time generation of dispatch code
we proposed the generation of a Dispatch Plan for each call site
influenced by roles [45]. Such a plan encodes the direct steps re-
quired to lookup and execute role functions which can in the best
case provide up to 2.7× speedup. The approach did not take into
account how to speedup call sites when the behavioral adaptations
change dynamically which results in an average slowdown of up
to 9.76×.

6 CONCLUSION AND FUTUREWORK
Context-dependent software continues to become increasingly im-
portant. The role concept is a promising candidate to build context-
dependent software as contexts and behavioral adaptations can be
directly represented in the language. This allows for a flexible soft-
ware development process to build context-dependent software. In

general, however, role language implementations suffer from a high
runtime overhead when dispatching compositions of adaptations.
This paper analyzed Object Teams, a feature-rich programming lan-
guage for contextual roles. To reduce the overhead of dispatching
role functions in Object Teams, we propose polymorphic dispatch
plans that use the notion of directed acyclic graphs to represent
a call graph constructed at run time. The concept of polymorphic
inline caches is extended to role polymorphic call sites. This en-
ables the reduction of variability at a call site as dispatch plans can
be reused. For a demanding role-based benchmark we achieved a
mean speedup of 3.8× up to 4.5×. In the worst case, when adapta-
tions change constantly, a median slowdown of 2.3× up to a mean
speedup of up to 1.1× may be achieved.

This research explored how language implementations in the
host language can exploit the knowledge about runtime data to
improve the code generated by the virtual machine. In future work,
we consider extending a VM to support role-oriented execution
semantics. Research on JIT compilers, tuning compiler heuristics
for role-oriented programs and efficient runtime data structures
for object-level specializations look promising. The VM is able to
manage important data structures such as the active team stack,
while role-playing may be captured inside the object layout. This
specialization will open further optimization possibilities.

ACKNOWLEDGMENTS
This work has been funded by the German Research Foundation
within the Research Training Group Role-based Software Infras-
tructures for continuous-context-sensitive Systems (GRK 1907) and
the Center for Advancing Electronics Dresden (cfaed).

REFERENCES
[1] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby,

S. Fink, D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V.
Sarkar, and M. Trapp. 2005. The Jikes Research Virtual Machine Project: Building
an Open-Source Research Community. IBM Systems Journal 44, 2 (2005), 399–417.
https://doi.org/10.1147/sj.442.0399

[2] Egil P. Andersen and Trygve Reenskaug. 1992. System Design by Composing
Structures of Interacting Objects. In ECOOP ’92 European Conference on Object-
Oriented Programming. Vol. 615. Springer-Verlag, Berlin/Heidelberg, 133–152.
https://doi.org/10.1007/BFb0053034

[3] Malte Appeltauer, Michael Haupt, and Robert Hirschfeld. 2010. Layered Method
Dispatch with INVOKEDYNAMIC: An Implementation Study. ACM Press, 1–6.
https://doi.org/10.1145/1930021.1930025

[4] Malte Appeltauer and Robert Hirschfeld. 2012. The JCop Language Specification:
Version 1.0. Number 59 in Technische Berichte Des Hasso-Plattner-Instituts Für
Softwaresystemtechnik an Der Universität Potsdam. Universitätsverlag Potsdam,
Potsdam.

[5] Matteo Baldoni, Guido Boella, and Leendert van der Torre. 2006. powerJava:
Ontologically Founded Roles in Object Oriented Programming Languages. In
Proceedings of the 2006 ACM Symposium on Applied Computing - SAC ’06. ACM
Press, Dijon, France, 1414. https://doi.org/10.1145/1141277.1141606

[6] Fernando Sérgio Barbosa and Ademar Aguiar. 2012. Modeling and Program-
ming with Roles: Introducing JavaStage. Frontiers in Artificial Intelligence and
Applications (2012), 124–145. https://doi.org/10.3233/978-1-61499-125-0-124

[7] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and MartinaWulf. 1997. The Role Object
Pattern. In Proceedings of the 1997 Conference on Pattern Languages of Programs
(PLoP 97).

[8] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann. 2004.
Virtual Machine Support for Dynamic Join Points. ACM Press, 83–92. https:
//doi.org/10.1145/976270.976282

[9] Jonas Bonér. 2004. AspectWerkz – Dynamic AOP for Java. In International
Conference on Aspect-Oriented Software Development.

[10] Johan Brichau, Michael Haupt, Nicholas Leidenfrost, Awais Rashid, Lodewijk
Bergmans, Tom Staijen, Istvan Nagy, Anis Charfi, Christoph Bockisch, Ivica
Aracic, Vaidas Gasiunas, Klaus Ostermann, Lionel Seinturier, Renaud Pawlak,
Mario Südholt, Davy Suvee, Theo D’Hondt, Peter Ebraert, Wim Vanderperren,

https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1007/BFb0053034
https://doi.org/10.1145/1930021.1930025
https://doi.org/10.1145/1141277.1141606
https://doi.org/10.3233/978-1-61499-125-0-124
https://doi.org/10.1145/976270.976282
https://doi.org/10.1145/976270.976282

Efficient Dispatch of Multi-object Polymorphic Call Sites in Contextual Role-Oriented Programming Languages MPLR ’20, November 4–6, 2020, Virtual, UK

Shiu Lun Tsang, Monica Pinto, Lidia Fuentes, Eddy Truyen, Adriaan Moors,
Maarten Bynes, Wouter Joosen, Shmuel Katz, Adrian Coyler, Helen Hawkins,
Andy Clement, and Olaf Spinczyk. 2005. Survey of Aspect-Oriented Languages
and Execution Models. AOSD-Europe-VUB-01 Deliverable D12. Vrije Universiteit
Brussel, Brussels, Belgium.

[11] Chengwan He, Zhijie Nie, Bifeng Li, Lianlian Cao, and Keqing He. 2006. Rava:
Designing a Java Extension with Dynamic Object Roles. In 13th Annual IEEE
International Symposium andWorkshop on Engineering of Computer-Based Systems.
IEEE, 7 pp.–459. https://doi.org/10.1109/ECBS.2006.57

[12] Erik Ernst. 2001. Family Polymorphism. In ECOOP 2001 — Object-Oriented
Programming. Vol. 2072. Springer Berlin Heidelberg, Berlin, Heidelberg, 303–326.
https://doi.org/10.1007/3-540-45337-7_17

[13] Martin Fowler. 1997. Dealing with Roles. In Proceedings of the 1997 Conference on
Pattern Languages of Programs (PLoP 97).

[14] Kasper B. Graversen and Kasper Østerbye. 2003. Implementation of a Role Lan-
guage for Object-Specific Dynamic Separation of Concerns. In SPLAT: Software
Engineering Properties of Languages for Aspect Technologies.

[15] Michael Haupt and Mira Mezini. 2004. Micro-Measurements for Dynamic Aspect-
Oriented Systems. In Object-Oriented and Internet-Based Technologies. Vol. 3263.
Springer Berlin Heidelberg, Berlin, Heidelberg, 81–96. https://doi.org/10.1007/
978-3-540-30196-7_7

[16] Michael Haupt and Mira Mezini. 2005. Virtual Machine Support for Aspects with
Advice Instance Tables. L’Objet 11, 3 (2005).

[17] Michael Haupt, Mira Mezini, Christoph Bockisch, Tom Dinkelaker, Michael
Eichberg, and Michael Krebs. 2005. An Execution Layer for Aspect-Oriented
Programming Languages. In Proceedings of the 1st ACM/USENIX International
Conference on Virtual Execution Environments. ACM Press, 142. https://doi.org/
10.1145/1064979.1065000

[18] Michael Haupt and Hans Schippers. 2007. A Machine Model for Aspect-Oriented
Programming. In ECOOP 2007 – Object-Oriented Programming, Vol. 4609. Springer
Berlin Heidelberg, Berlin, Heidelberg, 501–524. https://doi.org/10.1007/978-3-
540-73589-2_24

[19] Stephan Herrmann. 2003. Object Teams: Improving Modularity for Crosscutting
Collaborations. In Objects, Components, Architectures, Services, and Applications
for a Networked World. Vol. 2591. Springer Berlin Heidelberg, Berlin, Heidelberg,
248–264. https://doi.org/10.1007/3-540-36557-5_19

[20] Stephan Herrmann. 2004. Confinement and Representation Encapsulation in Object
Teams. Technical Report 2004/06. Technische Universität Berlin, Fakultät IV-
Elektrotechnik und Informatik, Berlin, Germany.

[21] Stephan Herrmann. 2005. Programming with Roles in ObjectTeams/Java. In
AAAI Fall Symposium on Roles- an Interdisciplinary Perspective.

[22] Stephan Herrmann. 2007. A Precise Model for Contextual Roles: The Program-
ming Language ObjectTeams/Java. Applied Ontology 2, 2 (2007), 181–207.

[23] Stephan Herrmann, Christine Hundt, and Katharina Mehner. 2004. Translation
Polymorphism in Object Teams. Technical Report Bericht-Nr. 2004/05. Technische
Universität Berlin, Berlin.

[24] Erik Hilsdale and JimHugunin. 2004. AdviceWeaving in AspectJ. In Proceedings of
the 3rd International Conference on Aspect-Oriented Software Development - AOSD
’04. ACM Press, Lancaster, UK, 26–35. https://doi.org/10.1145/976270.976276

[25] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-Oriented
Programming. The Journal of Object Technology 7, 3 (2008), 125. https://doi.org/
10.5381/jot.2008.7.3.a4

[26] Robert Hirschfeld, Hidehiko Masuhara, and Atsushi Igarashi. 2013. L: Context-
Oriented Programming with Only Layers. In Proceedings of the 5th International
Workshop on Context-Oriented Programming - COP’13. ACM Press, Montpellier,
France, 1–5. https://doi.org/10.1145/2489793.2489797

[27] Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing Dynamically-
Typed Object-Oriented Languages with Polymorphic Inline Caches. In ECOOP’91
European Conference on Object-Oriented Programming. Vol. 512. Springer-Verlag,
Berlin/Heidelberg, 21–38. https://doi.org/10.1007/BFb0057013

[28] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In ECOOP 2001 — Object-
Oriented Programming. Vol. 2072. Springer Berlin Heidelberg, Berlin, Heidelberg,
327–354. https://doi.org/10.1007/3-540-45337-7_18

[29] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. 1997. Aspect-Oriented Programming. In

ECOOP’97 — Object-Oriented Programming. Vol. 1241. Springer Berlin Heidelberg,
Berlin, Heidelberg, 220–242. https://doi.org/10.1007/BFb0053381

[30] Robert Krahn, Jens Lincke, and Robert Hirschfeld. 2012. Efficient Layer Activation
in Context JS. IEEE, 76–83. https://doi.org/10.1109/C5.2012.20

[31] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann. 2015. A Com-
bined Formal Model for Relational Context-Dependent Roles. In Proceedings of the
2015 ACM SIGPLAN International Conference on Software Language Engineering.
Pittsburgh, PA, USA, 113–124. https://doi.org/10.1145/2814251.2814255

[32] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aß-
mann. 2014. A Metamodel Family for Role-Based Modeling and Programming
Languages. In Software Language Engineering. Vol. 8706. Springer International
Publishing, Cham, 141–160. https://doi.org/10.1007/978-3-319-11245-9_8

[33] Max Leuthäuser. 2017. Pure Embedding of Evolving Objects. In The Ninth Inter-
national Conference on Advanced Cognitive Technologies and Applications. 22–30.

[34] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. 2011. An
Open Implementation for Context-Oriented Layer Composition in ContextJS.
Science of Computer Programming 76, 12 (Dec. 2011), 1194–1209. https://doi.org/
10.1016/j.scico.2010.11.013

[35] Stefan Marr. 2018. ReBench: Execute and Document Benchmarks Reproducibly.
(Aug. 2018). https://doi.org/10.5281/zenodo.1311762

[36] Stefan Marr, Chris Seaton, and Stéphane Ducasse. 2015. Zero-Overhead Metapro-
gramming: Reflection and Metaobject Protocols Fast and without Compromises.
ACM Press, 545–554. https://doi.org/10.1145/2737924.2737963

[37] Supasit Monpratarnchai and Tamai Tetsuo. 2008. The Implementation and Ex-
ecution Framework of a Role Model Based Language, EpsilonJ. IEEE, 269–276.
https://doi.org/10.1109/SNPD.2008.103

[38] Harold Ossher and Peri Tarr. 1999. Multi-Dimensional Separation of Concerns in
Hyperspace. Research Report RC 21452(96717)16APR99. IBM T.J. Watson Research
Center, New York, NY, USA.

[39] Tobias Pape, Tim Felgentreff, and Robert Hirschfeld. 2016. Optimizing Sideways
Composition: Fast Context-Oriented Programming in ContextPyPy. ACM Press,
13–20. https://doi.org/10.1145/2951965.2951967

[40] Trygve Reenskaug, Per Wold, and Odd Arilc Lehne. 1996. Working with Objects:
The OOram Software Engineering Method. Manning, Greenwich.

[41] Dirk Riehle and Thomas Gross. 1998. Role Model Based Framework Design
and Integration. In Proceedings of the 13th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACMPress, 117–133.
https://doi.org/10.1145/286936.286951

[42] John R. Rose. 2009. Bytecodes Meet Combinators: Invokedynamic on the JVM.
ACM Press, 1–11. https://doi.org/10.1145/1711506.1711508

[43] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. Context-Oriented
Programming: A Software Engineering Perspective. Journal of Systems and
Software 85, 8 (Aug. 2012), 1801–1817. https://doi.org/10.1016/j.jss.2012.03.024

[44] Lars Schütze and Jeronimo Castrillon. 2017. Analyzing State-of-the-Art Role-
Based Programming Languages. In Proceedings of the International Conference on
the Art, Science, and Engineering of Programming - Programming ’17. ACM Press,
Brussels, Belgium, 1–6. https://doi.org/10.1145/3079368.3079386

[45] Lars Schütze and Jeronimo Castrillon. 2019. Efficient Late Binding of Dynamic
Function Compositions. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering - SLE 2019. ACM Press, Athens,
Greece, 141–151. https://doi.org/10.1145/3357766.3359543

[46] Friedrich Steimann. 2000. On the Representation of Roles in Object-Oriented and
Conceptual Modelling. Data & Knowledge Engineering 35, 1 (Oct. 2000), 83–106.
https://doi.org/10.1016/S0169-023X(00)00023-9

[47] Nguonly Taing, Thomas Springer, Nicolás Cardozo, and Alexander Schill. 2016.
A Dynamic Instance Binding Mechanism Supporting Run-Time Variability of
Role-Based Software Systems. In Companion Proceedings of the 15th International
Conference on Modularity. ACM Press, 137–142. https://doi.org/10.1145/2892664.
2892687

[48] Christian Thalinger and John Rose. 2010. Optimizing Invokedynamic. In Proceed-
ings of the 8th International Conference on the Principles and Practice of Program-
ming in Java - PPPJ ’10. ACM Press, Vienna, Austria, 1. https://doi.org/10.1145/
1852761.1852763

[49] David Ungar, Harold Ossher, and Doug Kimelman. 2014. Korz: Simple, Symmetric,
Subjective, Context-Oriented Programming. In Proceedings of the 2014 ACM Inter-
national Symposium onNew Ideas, New Paradigms, and Reflections on Programming
& Software. ACM Press, 113–131. https://doi.org/10.1145/2661136.2661147

https://doi.org/10.1109/ECBS.2006.57
https://doi.org/10.1007/3-540-45337-7_17
https://doi.org/10.1007/978-3-540-30196-7_7
https://doi.org/10.1007/978-3-540-30196-7_7
https://doi.org/10.1145/1064979.1065000
https://doi.org/10.1145/1064979.1065000
https://doi.org/10.1007/978-3-540-73589-2_24
https://doi.org/10.1007/978-3-540-73589-2_24
https://doi.org/10.1007/3-540-36557-5_19
https://doi.org/10.1145/976270.976276
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.1145/2489793.2489797
https://doi.org/10.1007/BFb0057013
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1109/C5.2012.20
https://doi.org/10.1145/2814251.2814255
https://doi.org/10.1007/978-3-319-11245-9_8
https://doi.org/10.1016/j.scico.2010.11.013
https://doi.org/10.1016/j.scico.2010.11.013
https://doi.org/10.5281/zenodo.1311762
https://doi.org/10.1145/2737924.2737963
https://doi.org/10.1109/SNPD.2008.103
https://doi.org/10.1145/2951965.2951967
https://doi.org/10.1145/286936.286951
https://doi.org/10.1145/1711506.1711508
https://doi.org/10.1016/j.jss.2012.03.024
https://doi.org/10.1145/3079368.3079386
https://doi.org/10.1145/3357766.3359543
https://doi.org/10.1016/S0169-023X(00)00023-9
https://doi.org/10.1145/2892664.2892687
https://doi.org/10.1145/2892664.2892687
https://doi.org/10.1145/1852761.1852763
https://doi.org/10.1145/1852761.1852763
https://doi.org/10.1145/2661136.2661147

	Abstract
	1 Introduction
	2 Background
	2.1 Aspect-Oriented Programming
	2.2 Context-Oriented Programming
	2.3 Role-Oriented Programming
	2.4 Contextual Roles with Object Teams
	2.5 Optimizing Meta-Object Protocols

	3 Role Polymorphic Dispatch
	3.1 Late Binding of Role Dispatch
	3.2 Runtime Feedback in Object Teams
	3.3 Optimizing Role Polymorphic Call Sites

	4 Evaluation
	4.1 Benchmark Characterization
	4.2 Performance Analysis

	5 Related Work
	5.1 Aspect-Oriented Programming
	5.2 Context-Oriented Programming
	5.3 Role-Oriented Programming

	6 Conclusion and Future Work
	Acknowledgments
	References

