The OpenPME Problem Solving Environment
for Numerical Simulations

Nesrine Khouzami!, Lars Schiitze', Pietro Incardona'?3, Landfried Kraatz',
Tina Subic’?3, Jeronimo Castrillon', and Ivo F. Sbalzarini'»2:3:4

! Technische Universitéit Dresden, Faculty of Computer Science, Dresden, Germany
firstname.lastname@tu-dresden.de
2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
3 Center for Systems Biology Dresden, Dresden, Germany
4 Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany

Abstract. We introduce OpenPME, the Open Particle-Mesh Environ-
ment, a problem solving environment that provides a Domain Specific
Language (DSL) for numerical simulations in scientific computing. It
is built atop a domain metamodel that is general enough to cover the
main types of numerical simulations: simulations using particles, meshes,
and hybrid combinations of particles and meshes. Using model-to-model
transformations, OpenPME generates code against the state-of-the-art
C++ parallel computing library OpenFPM. This effectively lowers the
programming barrier and enables users to implement scalable simulation
codes for high-performance computing (HPC) systems using high-level
abstractions. Plenty of recent research has shown that higher-level ab-
stractions and problem solving environments are well suited to alleviate
low-level implementation overhead. We demonstrate this for OpenPME
and its compiler on three different test cases—particle-based, mesh-based,
and hybrid particle-mesh—showing up to 7-fold reduction in the number
of lines of code compared to a direct OpenFPM implementation in C++.

Keywords: Domain Specific Compiler - Particle-Mesh Methods.

1 Introduction

Computer simulations are the third pillar of science, alongside theory and ex-
periment. Scientists increasingly rely on simulated models to investigate scales
that are not experimentally accessible and nonlinearities that are not theoreti-
cally treatable. However, the complexity of modern high-performance computing
(HPC) systems, and the complexity of HPC programming models increasingly
limit implementation efficiency and performance portability. Alleviating this has
therefore become a key research focus for HPC [25]. Examples are problem solv-
ing environments (PSE) [6], which reduce the programming barrier by provid-
ing higher-level domain-specific abstractions. Since higher-level abstractions en-
able more powerful compiler transformations, this often leads to performance
improvements over hand-written code [21]. A PSE typically consists of a Do-
main Specific Language (DSL) and an Integrated Development Environments
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(IDE) [6]. In scientific computing, such approaches have successfully been pro-
posed for array programming [28,29], finite-element simulations [9}(16}[18}22}/23],
and for tensor expressions in numerical simulations [3,24].

Most numerical simulations can be expressed in terms of particles, meshes,
or a combination thereof. Meshes are often used to discretize continuous fields,
e.g., for finite-differences or finite volumes. Particles can be used to represent
either discrete objects, like atoms in a molecule or cars in road traffic, or as
arbitrarily discretization points for continuous fields. The classic Particle-In-Cell
(PIC) codes in plasma physics |10] are an example of a combination of particles
and meshes. Existing DSLs for particle-mesh simulations include PPML [2],
PPME [14], and FDPS [12]. Of these, FDPS and PPME are limited to particles,
with FDPS focusing on N-body simulations. PPML supports both particles and
meshes, but relies on the discontinued Fortran library PPM [27]. To the best of
our knowledge, there exists no DSL that supports particles, meshes, and hybrid
particle-mesh codes on a modern and actively maintained platform library.

This paper presents a DSL and IDE for particle, mesh, and hybrid particle-
mesh simulations on parallel computers, the Open Particle-Mesh Environment
(OpenPME). OpenPME is based on the Open Framework for Particles and
Meshes (OpenFPM) [11], a recent and actively maintained open-source C+-+
library. Compared to writing C++ code for OpenFPM, OpenPME reduces
the implementation effort and lowers the entry barrier for users. It hides the
distributed-memory constructs of OpenFPM and provides error messages that
are easier to understand than the template-engine errors of the C++ compiler.

Our DSL rests on a metamodel that captures all five types of simulations:
particles (continuous and discrete), mesh (continuous), and two types of hybrid
simulations. The OpenPME compiler implements a staged compilation process,
where high-level DSL constructs are reduced to an intermediate metamodel. The
metamodel provides a language-independent representation and enables model-
to-model transformations. This allows the OpenPME compiler to automatically
inject OpenFPM communication operations for distributed-memory programs,
freeing the user of having to write them. In a second step, the metamodel is trans-
lated to OpenFPM C++ code. We showcase the expected productivity increase
and DSL design of OpenPME using three real-world examples that highlight the
seamless support for hybrid particle-mesh simulations and the automatic inser-
tion of data-movement and parallel communication primitives by the compiler.

2 Background and Motivation

We introduce the general structure of particle-mesh simulations, describe the
OpenFPM library, and detail our motivation for developing OpenPME.

2.1 Hybrid particle-mesh simulations

Particle-mesh methods provide a universal framework for numerical simulations
in scientific computing. They can be used to simulate both discrete and contin-
uous models, either deterministically or stochastically [2026]. When simulating
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discrete models, particles directly represent entities in the model. In continu-
ous models, particles correspond to mathematical discretization points. Parti-
cles are point objects that have a position and a list of properties. They can
interact with other particles through pairwise interactions, and then evolve as
a consequence of the interactions, i.e., particles change their position and/or
their properties. These interactions can be deterministic or probabilistic. Hybrid
particle-mesh methods are used to obtain more efficient simulations or to sim-
ulate multi-physics models. Particle-to-mesh and mesh-to-particle interpolation
allows transferring data between the two representations [10].

2.2 The OpenFPM library

OpenFPM |[11] is an open-source C++ template library for implementing scal-
able parallel particle-mesh simulations on multi-CPU and multi-GPU computer
hardware. It provides multiple layers of abstraction: based on memory alloca-
tors and memory-layouting abstractions, OpenFPM implements single-core data
structures. Using data-decomposition and network communication abstractions,
these are then transformed to multi-core and distributed-memory data struc-
tures. Finally, a library of frequently used numerical solvers is implemented using
these data structures. A profiling interface and transparent in-situ visualization
of simulation results [§8] complete the library.

In OpenFPM, particles can carry any composite container of C++ objects
as properties, and simulations can be performed in arbitrary-dimensional do-
mains. It guarantees transparent memory layout conversion (e.g., between CPU
and GPU) and run-time dynamic load-balancing to distribute data evenly and
adapt to changes in local mesh resolution or particle density. OpenFPM includes
checkpointing, parallel file I/O, and communications abstractions, including the
ghost_get operator to transparently communicate boundary data between pro-
cessors in a domain decomposition.

2.3 Motivation

OpenFPM heavily relies on C++ templates and template meta-programming
to achieve its flexibility and performance. This renders the source code more
complex, leading to programming mistakes and cryptic error messages from the
C++ compiler. A typical example of OpenFPM code is shown in Fig. [I] for a
simulation of the three-dimensional Navier-Stokes equation of fluid mechanics
(only one dimension shown). The more concise OpenPME three-dimensional
representation in Fig. EL point (4 will be discussed in Sec. Not only is
the C++ more error-prone, but also makes it impossible for the compiler to
detect semantic errors that arise from accessing objects in the wrong place or
misplaced operators in the formula. User also must manually place ghost_get
communication operations to account for data exchange on a parallel computer.
These calls must be in the right place and include the correct properties to be
communicated, which is not always obvious for users. Extraneous ghost_get
calls reduce the scalability and performance of the simulation.
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g_dwp.template get<rhs>(key)[x]=
facix(g_vort.template get<vorticity>(key.move(x,1))[x]+
g_vort.template get<vorticity>(key.move(x,-1))[x])+
fac2*(g_vort.template get<vorticity>(key.move(y,1))[x]+
g_vort.template get<vorticity>(key.move(y,-1))[x]1)+
fac3x(g_vort.template get<vorticity>(key.move(z,1))[x]+
g_vort.template get<vorticity>(key.move(z,-1))[x])-
2.0fx(facl+fac2+fac3)*
g_vort.template get<vorticity>(key)[x]+
fac4xg_vort.template get<vorticity>(key) [x]*
(g_vel.template get<velocity>(key.move(x,1))[x]-
g_vel.template get<velocity>(key.move(x,-1))[x])+
facb*g_vort.template get<vorticity>(key)[ylx*
(g_vel.template get<velocity>(key.move(y,1))[x]-
g_vel.template get<velocity>(key.move(y,-1))[x])+
fac6*g_vort.template get<vorticity>(key)[z]*
(g_vel.template get<velocity>(key.move(z,1))[x]-
g_vel.template get<velocity>(key.move(z,-1))[x]1);

Fig.1. OpenFPM C++ code snippet to calculate the x-component of the three-
dimensional Navier-Stokes equation.

OpenPME’s goal is to allow computational scientists to write efficient sim-
ulations with domain-specific abstractions and error messages. OpenPME’s ab-
stractions enable high-level optimizations that would otherwise require complex
and brittle analysis in a custom C++ compiler pass. We demonstrate this by
automatically placing ghost_get operations.

3 OpenPME Design and Implementation

We detail the design and implementation of OpenPME based on a metamodel
that captures all (hybrid) particle-mesh methods.

3.1 Design overview

OpenPME introduces an intermediate layer between the user’s simulation ap-
plication and the OpenFPM C++ library, as illustrated in Fig. [2] It is based on
two metamodels representing particle-mesh simulations and the C++ code us-
ing OpenFPM. Model-to-model transformations identify syntactic elements and
semantic relations that enable, e.g., expression rewriting or automatic insertion
of communication statements. The generated code executes on any platform
supported by OpenFPM. This includes multi-core CPUs, GPUs, distributed-
memory CPU clusters, and multi-GPU clusters. Parallel efficiency and scalability
are inherited from OpenFPM [11]. OpenPME is implemented in Jetbrains MPS[]

The simulation metamodel is implemented as a stack of sub-languages (see
Fig. ‘ The use of sub-languages enables separation of concerns and keeps
the implementation modular, extensible, and maintainable. Lower levels pro-
vide foundational elements of the language that are used to build more complex
features higher in the stack.

5 Jetbrains Meta Programming System (MPS) [https://www.jetbrains.com/mps/
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Fig. 2. Modular architecture of OpenPME. An intermediate layer between HPC ap-
plication domains interfacing OpenFPM for HPC architecture systems.
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Fig. 3. Excerpt from the metamodel to describe particle-mesh simulations.

The OpenFPM C++ metamodel captures the domain of imperative, object-
oriented programs. It is implemented in the openpme. cpp language (see Fig. [2).
This model is expressive enough to generate the complete C+-+ code of a simula-
tion using OpenFPM. We also use this model as an intermediate representation
when lowering simulation code using model-to-model transformation.

3.2 Metamodel for particle-mesh simulations

The metamodel for particle-mesh simulations builds on our prior work in [14]. Tt
supports three types of simulations: particle-only, mesh-only, and hybrid particle-
mesh of both continuous and discrete models. Fig. [3] shows an excerpt of the
model as UML diagram. An OpenPME program consists of modules, each with
a sequence of statements. A statement can declare variables or a boundary condi-
tion, or define the simulation domain and dimensionality (see Fig. . A TimeLoop
statement supports different time-discretization methods as first-class concepts
in the model. The model supports basic data types found in most program-
ming languages, as well as domain-specific types such as Particle or Mesh.
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Fig. 4. Excerpt from the metamodel to describe OpenFPM C++ programs.

Expression statements are binary or unary arithmetic and logical expressions
that access constants or particle and mesh properties. There are first-class con-
cepts to express computations on a complete field, such as differential operators
(Dif£0p), e.g., a gradient. Domain-specific types allow specifying Interpolate
statement to transform data from particles to meshes and vice-versa.

3.3 OpenPME DSL syntax

The syntax of the OpenPME DSL allows for both imperative and declarative
programs. Its declarative nature allows hiding loops and conditional statements,
e.g., when specifying particle interaction and evolution (see Fig. m lines 25-26).
Another design principle is to remain close to the mathematical notation of
the equations to be simulated. This can be seen in Fig. [8] where the Partial
Differential Equation (PDE) to be simulated is explicitly expressed. Properties
of both particles and meshes can be accessed in bulk which frees the user from
having to iterate through a loop (see Fig. E[) This hides OpenFPM’s iterator
classes, where using templates is mandatory to reach high performance.

3.4 Metamodel for OpenFPM C++

The second metamodel captures features of imperative, object-oriented C+-+
code that compiles against the OpenFPM library. Model-to-model transforma-
tions from the metamodel for simulations allows detecting and avoiding program-
ming mistakes. An excerpt of the model is shown in Fig. 4] as a UML diagram.

This metamodel has a single root concept File containing a list of state-
ments. Statements can be, e.g., the declaration of a variable (VarDecl) of prim-
itive type or of any OpenFPM class, such as distributed vectors and meshes.
Computations are expressed through expression statements (ExprStmt), with
most common ones being arithmetic operations, references to variables, or func-
tion calls. The model captures function calls to the OpenFPM API in a generic
way, which is only specified during code generation. This allows to adapt to
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~7| while (mloop_iterator._f4a0.isNext() {

~” |for mesh node loopNodeM in rhs
loopNodeM -> vortex_stretching_m [0 ] =
loopNodeM -> vortex_stretching_m [1]= ... B . -
loopNodeM -> vortex_stretching_ m[2] = g_dwp.template get<rhs>(l =..
~_|end for g_dwp.template get<rhs>(key)[z] = ...
)

rhs -> vortex_stretching_m = (velocity_mesh -> |-~~~
velocity_m-v) vorticity_mesh -> vorticity_m +
nu * A vorticity_mesh -> vorticity_m

reduce

|/ pre-process),

Fig. 5. Code generation for the 3D Navier-Stokes equation

future changes in the OpenFPM API. Template parameters can be inferred by
semantic analysis during code generation.

3.5 Model-to-model transformation and code generation

Code generation in OpenPME is implemented by multiple model-to-model trans-
formations refining and optimizing the program, a model-to-model transforma-
tion lowering the program to our intermediate representation, and a final text-
generation stage that produces C++ code. Models in MPS are directed graphs
that have distinct spanning trees, which correspond to abstract syntax trees. A
model-to-model transformation maps an input graph to an output graph, where
the output graph may consist of elements from different metamodels.

To illustrate how these transformations can be chained, consider (4) in Fig. EI,
which computes a complete field stored in a mesh. Because the computation
happens on the whole field, the expression is first refined to be contained in a
FieldLoop (see Fig.[3) to yield a point-wise calculation over all mesh nodes. In
a subsequent transformation, the assignment to the property is replaced by an
assignment to each dimension of the property, rewriting the expression on the
right-hand side to consider only the respective dimension. While lowering the
expression into its intermediate representation, the differential operator (here
V x) is replaced by finite differences. In the last transformation, the intermediate
program is traversed, generating C++ code for each element. For instance, the
access to properties of the mesh is replaced by templated C++ code where each
property is represented by its template argument (see Fig. .

Communication between processors is hidden in the OpenPME DSL and
automatically inserted during code generation. For example, particle positions
can only change due to particle interactions. Interaction happens, by design,
in particle loops. Therefore, whenever the position of a particle is assigned, an
OpenFPM communication statement can be inserted after the respective loop.

4 Evaluation

We evaluate OpenPME in three use-cases representative of different types of
simulations: First, we consider a molecular dynamics simulation of a Lennard-
Jones gas, which is representative of a particles-only simulation. Second, we use
OpenPME to simulate the Gray-Scott reaction-diffusion model in a represen-
tative mesh-only simulation. Third, we simulate incompressible fluid dynamics
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Fig. 6. Execution time of simulations written directly in OpenFPM versus those gen-
erated by OpenPME for the three uses-cases with a varying amount of cores.

by solving the Navier-Stokes equations using a Vortex Method representative of
hybrid particle-mesh simulations. We compare how many lines of code (LOC)
were necessary to implement each use-case. The experiments were repeated 10
times and scaled from 1 to 8 cores on a HPC cluster. The overall result is shown
in Fig. [ where each is discussed in the following sections.

4.1 Lennard-Jones: Particles-only simulation of a discrete model

We consider a molecular dynamics simulation in three dimensions (3D) where
particles represent atoms in a gas that interact according to the pairwise Lennard-
Jones [13], exerting a force on both atoms as a function of their distance. Fig. [7]
shows an excerpt of the corresponding OpenPME program. The simulation pro-
cess is encapsulated in the methods interact and evolve defined on the parti-
cles sets (lines 14-18). The simulation uses Verlet time stepping, where the parti-
cle velocities and positions are advanced alternatively with the force recomputed
in-between. Calls to interact and evolve must specifying the property to use
(lines 25-26). The communications required when particles move across proces-
sor boundaries, as well as to update the ghost layers with the new velocities from
the neighboring processors, are automatically added by the compiler and do not
need to be specified in the OpenPME program. Finally, the program computes
the potential energy of the system using an imperative iteration over particles
(line 29). At the end, particle data is stored in a file and visualized according to
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Module Lennard Jones

dimension: 3
domain_size: box((0.0,0.0,0.0),(1.0,1.0,1.0))
boundary_conditions: periodic

1

2

3

4

5

6

7

8 type of : particle-based
9 Particle sets:

10 name particles

11 properties

12 velocity d:3

13
14

force d:3

Define interact in particles with self as p_force, neighbor as q_force
15 p_force->force += 24.0 * 2.0 * sigma/r~7 - sigma6/r~4 *
16 diff (p_force,q_force)
17 Define evolve in particles with self as p_velocity
18 p_velocity->velocity += 0.5 * dt * p_velocity->force
19 .
20 Body:
21 .
22 interact force, particles
23 time loop start:0 stop: 10000
24 e
25 evolve velocity, particles
26 interact force, particles
27
28 for particle p_energy in particles
29 ce
30 E += 2.0 * sigmal2/rn_e"6 - sigma6/rn_e"3 - shift
31 end for
32 end timeloop
33
34 output file: "particles"

35 end module

Fig. 7. OpenPME program for Lennard-Jones molecular dynamics simulation.

the specifications in the visualization phase (line 34). As can be seen in Fig. [f]
both approaches perform similar. The implementation with OpenPME requires
57 LOC instead of 151 LOC using OpenFPM.

4.2 Gray-Scott: Mesh-only simulation of a continuous model

To illustrate the use of OpenPME for a mesh-only simulation of a continu-

ous model, we simulate the Gray-Scott reaction-diffusion model given by the

PDEs [7]
ou

EZDUAU—UU2+F(1—U),

v

ot
that govern the space-time evolution of the concentration fields u(x, t) and v(x, t)
of two chemicals U and V. D, and D, are the diffusion constants of the two
chemicals, and F' and k are the chemical reaction rates. This model is nonlinear
and shows self-organized emergence of sustained spatiotemporal patterns. The
OpenPME program in Fig. [§] shows a 3D model on a regular Cartesian mesh
of 128 x 128 x 128 nodes, discretizing the two scalar (d = 1) fields U and V

D,Av +uv? — (F 4+ k) (1)
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1 Module Gray Scott 17 Body:

2 18 ...

3 19 Load 01d from "init_mesh.hdfb"
4 20 time loop start: O stop: 5000
5 type of : mesh-based 21 New->u = 01ld->u + dt * du *
[ Meshes: 22 A0ld->u - 0ld->u *

7 name 01d 23 01d->v~2 + F *

8 properties 24 1.0 - 0ld->u

9 ud:1 25 New->v = 01ld->v + dt * dv *
10 v d:1 26 A0ld->v + 0ld->u *

11 size{128,128,128} 27 01d->v~2 - F + k *x 0ld->v
12 name New 28 copy from New to 01ld

13 properties 29 Resync Ghost 0ld<u,v>

14 ud:1 30 end timeloop

15 v d:1 31 ...

16 size{128,128,128%} 32 end module

Fig. 8. OpenPME program for Gray-Scott simulation on a mesh.

(lines 6-16). Time stepping is done using the explicit Euler method. The Laplace
operator A over the continuous fields v and v is discretized using central finite
differences. The corresponding OpenPME expressions closely mirror the terms
and notation in the model PDEs. The DSL compiler can automatically insert
OpenFPM communication operators and distributed OpenFPM data structures.
In this case, two identically distributed meshes are required in order to read and
write simultaneously. We are on average 3.25x slower than OpenFPM original
code. The reason is that consecutive bulk access of mesh properties results in
independent mesh loops that are merged in the hand-written OpenFPM C++
program which requires more communication and computation. This is one of
many optimizations for the code generation we are targeting in future work. For
this simulation, OpenPME requires 40 LOC instead of 100 LOC in OpenFPM.

4.3 Vortex-in-Cell: Hybrid particle-mesh simulation of a continuous
model

We simulate incompressible fluid dynamics as governed by the 3D Navier-Stokes
equations in vorticity form using a Vortex Method simulation [4]. This is a
hybrid particle-mesh method where particles represent fluid elements that carry
vorticity, and a mesh is used to solve the Poisson equation for the flow velocity
field, which in turn moves the vorticity particles.

The OpenPME program in Fig. [0 starts by initializing the flow field on a
mesh and creating particles at the mesh nodes using the remesh statement (D).
After initializing the particles, the simulation enters the time loop with a fixed
time step dt = 0.0125. In each time step, the vorticity is interpolated from
particles to mesh in order to solve the Poisson equation for the flow velocity on
the mesh (2). Computing and storing the right-hand side of the Poisson equation
requires a second mesh phi (3). Next, the vortex stretching term is computed on
the mesh, where the Laplace operator A is automatically discretized by central
finite differences (4). As all properties were calculated on meshes, we have to
interpolate back to the particles ). This is used to update particle positions (6).
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W) Vortex in cell

Module Vortex in cell Body:

decl double nu =1 / 3000
decl double dt = 0.0125

Load vorticity_mesh " init_vort_double.hdf5 "
remesh vorticity_mesh < vorticity m > ‘o particles < vorticity > (1)
type of simulation: hybrid decl Integer i = 0
Particle sets: time loop start: 1 stop: 500
name Pﬂrticles vorticity_mesh -> vorticity_m = 0.0
properties interpolate particles < vorticity > to vorticity_mesh < vorticity m > @
vorticity d: 3 Resync Ghost Put vorticity_mesh < vorticity_m >
velocity d: 3 Solve poisson on vorticity_mesh -> vorticity_m phi -> velocity_phi

vortex_stretching d: 3
old_vorticity d: 3
old_position d: 3

<< ...

<< >

size <no size>

velocity_mesh -> velocity_m = v x phi -> velocity_phi

rhs -> vortex_stretching_m = (vorticity_mesh -> vorticity_m-v) veélocity_mesh -> velocity_m +
nu % A vorticity_mesh -> vorticity m

remesh vorticity_mesh < vorticity m > particles < vorticity >

particles -> vortex_stretching = 0.0

ancestor vorticity_mesh particles -> velocity = 0.0

Meshes: interpolate rhs < vortex_stretching_m > particles < vortex_stretching > @
name vorticity_mesh interpolate velocity_mesh < velocity m > particles < velocity >
properties particles —> old_vorticity = particles -> vorticity
vorticity_m d: 3 particles —> vorticity = particles —> vorticity + 0.5 % dt % particles -> vortex_stretching
size { 128, 128, 128 } particles -> old_position = particles -> pos
ancestor <no ancestor> particles -> pos = particles -> pos + 0.5 * dt * particles -> velocity
name velocity_mesh vorticity_mesh -> vorticity_m = 0.0
properties interpolate particles < vorticity > vorticity_mesh < vorticity_m >
velocity m d: 3 Resync Ghost Put vorticity_mesh < vorticity_m >
size { 128, 128, 128 } Solve poisson on vorticity_mesh -> vorticity_m phi -> velocity_phi
ancestor <no ancestor> velocity_mesh -> velocity_m = v x phi -> velocity_phi
name ph} rhs -> vortex_stretching_m = (vorticity_mesh -> vorticity_m-v) velocity_mesh -> velocity_m +
properties

nu * A vorticity_mesh -> vorticity_m
particles -> vortex_stretching = 0.0
particles -> velocity = 0.0

velocity_phi d: 3
size { 128, 128, 128 }
ancestor <no ancestor>

name rhs interpolate rhs < vortex_stretching_m > particles < vortex_stretching >
properties interpolate velocity_mesh < velocity m > particles < velocity >

vortex_stretching_m d: 3 particles —> vorticity = particles -> old_vorticity + 0.5 * dt * particles -> vortex_stretching
size { 128, 128, 128 } particles —> pos = particles -> old_position + 0.5 % dt % particles -> velocity

ancestor <no ancestor>

Fig. 9. OpenPME program for a Vortex Method simulation of incompressible flows.

The generated code performs on average as OpenFPM. For this simulation the
parallel efficiency drops the more cores are used . For the measured problem
size 2 cores give the best performance. This implementation of a Vortex Method
in OpenPME requires 73 LOC instead of 508 LOC in OpenFPM which is a 7-fold
reduction.

5 Related Work

Many frameworks have been proposed to ease the use of HPC systems for sci-
entific computing and simulations.

Among internal DSLs, Blitz++ is a C++ template library and DSL
for defining mesh stencils from a high-level mathematical specification library.
Liszt is a portable DSL, embedded into Scala, to implement PDE solvers
on meshes, supporting different parallel programming models. Freefem-++ ﬂgﬂ is
a DSL for finite-element methods allowing users to define analytic and finite-
element functions using abstractions like meshes and differential operators.

Other approaches use external DSLs. Examples include the Unified Form
Language (UFL) to define PDEs and finite-element simulations. There are
several optimizing compilers that generate low-level code from UFL, e.g., the
FEniCS Form Compiler (FFC) [15]. The Firedrake project is an extension
to FEniCS that adds composing abstractions like parallel loop operations. Users
express simulations in a high-level specification translated to an abstract syntax
tree by the COFFEE compiler, able to apply suitable low-level optimizations.
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Many DSLs use domain-specific optimizations. Examples include PyOP2 23],
a DSL for unstructured-mesh simulations executing numerical kernels in parallel,
which enhances FFC to generate optimized kernels from finite-element expres-
sions written in UFL. Devito [17] is a DSL that uses symbolic Python expressions
to provide optimized stencil computations. Saiph [19] is an optimizing DSL for
computational fluid dynamics, implemented in Scala, with a custom compiler
to translate code to an intermediate representation that is subsequently trans-
lated to C++. In the CFDlang [24] DSL, the locality of operators is exploited
to optimize tensor operations for performance in computational fluid dynamics.

6 Conclusions and Future Work

We presented OpenPME, a PSE for particle, mesh, and hybrid particle-mesh
simulations on parallel and high-performance computers. It is based on two
novel metamodels, covering the domain of particle, mesh, and hybrid particle-
mesh simulations, while also covering the imperative object-oriented C++ API of
OpenFPM. It supports simulations of all types for both continuous and discrete
models. The OpenPME compiler uses a sequence of model-to-model transforma-
tions between the two metamodels in order to automatically inject the required
communication and synchronization operations for distributed-memory codes,
and to translate OpenPME programs to OpenFPM C++ code. This leverages
the scalability, GPU support, and performance of OpenFPM to generate efficient
HPC applications. The OpenPME language stack is modularly composed of mul-
tiple sub-languages, improving maintainability and extensibility. The OpenFPM
metamodel is only specified during code generation, hence flexibly adapting to
future API changes in OpenFPM.

OpenPME programs can be developed independently at a high level of ab-
straction, close to the mathematical model. It frees users from having to explicitly
deal with the C++ template constructs of OpenFPM, from having to use explicit
iterators, and from having to decide on and place communication abstractions
in a distributed-memory parallel program. This enables high-level optimizations
not otherwise possible, renders simulation programs more compact, easier to
read, and more accessible to new users. In the benchmarks presented here the
code size of simulations is reduced up to a factor of 7 when implementing them
in OpenPME versus directly writing C++ code for OpenFPM. The generated
code performs in general as the hand-written C++ code using OpenFPM.

In the future, we plan to further improve OpenPME by adding features
to support optimized memory layouts in OpenFPM, like space-filling curves
as sub-domain or mesh-node indices in order to improve cache efficiency. The
high-level OpenPME syntax cleanly separates the model specification from the
choice and parameters of the numerical methods used to simulate the model.
This will enable auto-tuning in the compiler to automatically select simulation
parameters (e.g., mesh resolution or time step size) and discretization methods to
reduce the simulation runtime required to reach a certain target accuracy. A more
declarative syntax could allow domain experts to apply manual optimizations
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and gives us more control over the generated code. The OpenPME PSE — the
DSL, IDE, and compiler — are available as open-source softwareﬂ
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