Guard the Cache: Dispatch Optimization in a Contextual
Role-oriented Language

Lars Schiitze
lars.schuetze@tu-dresden.de
Technische Universitéit Dresden,
Chair for Compiler Construction
Germany, Dresden

ABSTRACT

Adaptive programming models are increasingly important
as context-dependent software conquers more domains. One
such a model is role-oriented programming where behavioral
changes are implemented by objects playing and renouncing
roles. As with other adaptive models, the overhead introduced
by source code adaptations is a major showstopper for role-
oriented programs. This is in part because the optimizations
of object-oriented virtual machines (VMs) do not provide the
same performance gains when applied to role-oriented pro-
grams. Recently, dispatch plans have been shown to enable
optimizations beyond those in VMs, thereby improving the
performance of role programs with low variability. This paper
introduces guarded dispatch plans, an extension of dispatch
plans with a context-aware guarding mechanism that allows
reuse in high-variability scenarios. Fine-grained guards use
run-time feedback to partially reuse dispatch plans across call
sites when contexts are changing. We present an algorithm to
construct and compose guarded dispatch plans and provide a
reference implementation of the approach. We show that our
approach is able to gracefully degrade into a default dispatch
approach when variability increases. The implementation is
evaluated with synthetic benchmarks capturing different char-
acteristics. Compared to the state-of-the-art implementation
in ObjectTeams we achieved a mean speedup of 3.3X in static
cases, 3.0x at low variability and the same performance in
highly dynamic cases.

CCS CONCEPTS

o Software and its engineering — Software performance; Com-
pilers; Context specific languages.

KEYWORDS

roles, context, dynamic dispatch, adaptive programming

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

COP ’22, June 06—10, 2022, Berlin, Germany

(© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Cornelius Kummer
cornelius.kummer@mailbox.tu-
dresden.de
Technische Universitéit Dresden
Germany, Dresden

Jeronimo Castrillon
jeronimo.castrillon@tu-dresden.de
Technische Universitéit Dresden,
Chair for Compiler Construction
Germany, Dresden

ACM Reference Format:

Lars Schiitze, Cornelius Kummer, and Jeronimo Castrillon. 2022.
Guard the Cache: Dispatch Optimization in a Contextual Role-
oriented Language. In Proceedings of the 14th ACM International
Workshop on Context-Oriented Programming and Advanced Modu-
larity (COP ’22), June 06-10, 2022, Berlin, Germany. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Today, many applications must be designed for adaptability
and extensibility in mind. In the domain of robotics and
cyber-physical system (CPS), adaptability defines the abil-
ity to change the behavior of the system depending on the
context the application is executed. This requires weaving
complex logic into the applications to switch among behav-
iors. Context-dependent behavior is thus scattered across the
application and decisions to switch between the behaviors is
tangled with the application logic.

Separation of concerns is a guiding principle to conquer
the complexity of such modern software systems. Prominent
approaches are aspect-oriented programming (AOP) [24],
context-oriented programming (COP) [18], and role-oriented
programming (ROP) [4, 35, 42]. The latter has been proposed
as an extension to object-oriented programming (OOP) to
enable adaptive software by design. Classes represent the
structural aspect of the domain while roles capture the behav-
ioral aspects. To model context-dependency, compartments
encapsulate roles and represent the context in which these
roles can be active. Behavioral changes are implemented by
objects playing and renouncing roles which in fact adds and
removes behavior to and from the object. Hence, role-oriented
programming can be seen as a combination of AOP and COP.

Virtual machines (VMs) use run-time profiles to optimize
the application. However, heuristics and optimizations de-
signed to work with object-oriented programs do not provide
the same performance gains when used with role-oriented
programs as a guest language. To apply the adaptations,
the artifacts need to be combined properly. This may be
done at compile-time whenever the conditions under which
the artifacts are combined can be evaluated statically. For
conditions that depend on run-time information this has to
be done dynamically. Evaluating these residuals at run-time
introduce a non-negligible overhead [37].

ObjectTeams [15] is a mature ROP implementation that
delivers an overall good performance while supporting most of
the features attributed to roles [27]. Recently, a new language
runtime was designed for ObjectTeams that builds a plan to

https://orcid.org/0000-0003-1422-6601
https://orcid.org/0000-0002-5007-445X
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

COP '22, June 06-10, 2022, Berlin, Germany

capture the dispatch to role functions at runtime to further
improve execution performance [38, 39]. This is achieved by
caching the results of lookups to foster reuse of dispatch code.
The assumption is that applications become stable over time
and the context in which the lookup has been performed does
not change often. The current language runtime, however,
leads to performance penalties in cases with high variability
due to a higher cache contention.

In this paper, we propose a language runtime approach
that improves support for situations with high variability
and demonstrate it with an implementation on ObjectTeams.
First, we define and implement improved guards that capture
conditions when lookup results may be reused. This extends
the use-cases under which reuse is possible, improving per-
formance over existing approaches. Second, we also define a
strategy that gracefully degrades the lookup procedure when
variability increases.

2 BACKGROUND

This section introduces the role-oriented programming con-
cept and dispatch plans as a technique to optimize role-
oriented, context-dependent programs.

2.1 Role-Oriented Programming

Classes in the object-oriented paradigm are good at capturing
structures of a domain but not at capturing varying behavior
of objects or groups of objects. The idea of roles originated
from the domain of databases, where it was observed that
persisted objects tend to represent more than a single specific
class over time [3]. A similar observation was made in the
domain of conceptual modeling [34].

The difference is to classify each entity in the domain to
either be the natural type which is rigid and independent or
the role type which is anti-rigid and dependent [26]. This de-
pendency of role types is the foundation of the relation which
defines which natural type fills a role type. On the level of
instances, a natural that plays a role in a context is extended
with the behavior and properties of the role. Thus, roles allow
separating the structure and relations of entities in a domain
and the (context-dependent) behavioral adaptations [27, 42].
This change in behavior enables adaptive software by design
and in consequence unanticipated adaptation [44].

2.2 Contextual Roles and the Semantic Gap

Role-playing superimposes behavior onto the natural. The
natural appears as an object with a compound type consisting
of the natural type and role types [22]. This dynamic exten-
sion happens orthogonal to the inheritance hierarchy of the
natural type. Method lookup on these compound objects may
return different call targets on objects with the same natural
type. Role-oriented semantics often must be emulated which
in turn incurs a high runtime overhead [37]. The reason is the
gap between the object model of these concepts and the object
model of the underlying system or VM. In fact, heuristics of-
ten decide not to optimize these dynamic extensions resulting
in inferior performance [32, 37]. Implementation techniques

L. Schiitze, C. Kummer and J. Castrillon

1 <class Account {

2 void withdraw(float amount) { --- }

3}

4 team class Bank {

5 class CheckingsAccount playedBy Account {
6 callin withFee(float amount) {

7

8 result = base.withFee (amount * FEE);

9

10 return result;

11 }

12 withFee (float) « replace withdraw(float)
13 }

14 3}

15 -

16 Bank bigBank; Account acc;

17

18 bigBank.activate ();

19 acc.withdraw(100.00);

Figure 1: ObjectTeams/Java code to declare a role with addi-
tive behavior adaptations for accounts in a bank and its usage.

range from interfaces and design patterns [4, 9, 43] over em-
bedded DSLs [8, 11, 20, 28, 33, 41, 45, 47] to standalone
languages [1, 15, 21, 31]. The many implementations result
from an inconsistent view on what features constitute a role-
oriented programming language — forming a family of role
languages [27].

ObjectTeams [14] is a programming model which provides
most of the features attributed to roles. It combines COP
and AOP providing class-wide and instance-local adapta-
tions. The reference implementation extends Java featuring
(unanticipated) adaptation [15]. To our knowledge it is the
fastest implementation for contextual roles [37]. Fig. 1 shows
a snippet of ObjectTeams/Java code.! Contexts are repre-
sented as team class which encapsulate their roles. A role
declaration uses the playedBy statement to declare the base
type (i.e., natural type) which is eligible to play the role. A
role may define additive behavior that is executed before,
after or instead of a method of a base type. Adaptations are
declared in bindings (Fig. 1 line 12) declaring the method
to adapt, how the adaptation must be applied, and the role
method (i.e., callin) going to be called. In terms used in
AOP, callin intercepts a method call and callNext proceeds
the intercepted call.

The compiler type checks declarations of bindings to have
compatible type signatures. The compiler assumes closed-
world on the types of teams and roles that it type checks. For
these bindings code is generated to dispatch to the declared
role functions (e.g., callReplace) which must be evaluated at
runtime. The lookup code contains all possible dispatches to
role functions defined inside a team class. For classes that are
referenced by the bindings (i.e., base types) the assumption

LA detailed description of the language features is presented in [17].

Guard the Cache: Dispatch Optimization in a Contextual Role-oriented Language

| Bank | | SavingsAccount

withDraE
callAllBindings
Recursive chaining wrapper /
callAlIBinding
callBefore
P
callReplace
withFee
callNext
‘ callAllBind|ngs
I
callOrig
S
callAfter

Figure 2: Control flow of a role method dispatch. Grey boxes
represent execution of framework code while white boxes
represents behavior implementations.

is open-world. At run-time there may be sub-classes loaded
which are not known at compile time. To realize such a
mixed setting the compiler deduces type information which
is preserved in the class files for later consumption by the
runtime. The runtime adapts loaded classes and generates
entry points into role dispatch to preserve the semantics.

Fig. 2 shows the evaluation from a function call of a pro-
gram from Fig. 1. This scheme has been coined recursive
chaining wrapper, as role method dispatch is implemented
recursively over active team instances (i.e., callNext). The
generated code and the recursive evaluation counters opti-
mizations of the VM. For ObjectTeams, the implementation
of the lookup in object-oriented VMs causes a performance
penalty of 59.9x compared to a pure object-oriented design
pattern implementation [37].

2.3 Dispatch Plans

Polymorphic dispatch plans [38, 39] have been proposed as a
solution to overcome the inherent overhead of role dispatch.
The approach supports the open-world assumption of lazily
loaded types at run-time. Inspired by partial evaluation [10],
the lookup uses runtime feedback from the application to
construct a plan of role methods to execute. The resulting dis-
patch plan is used to generate a graph which can be optimized
and re-executed by the Java Virtual Machine (JVM). This

COP '22, June 06-10, 2022, Berlin, Germany

requires a mechanism to guard and invalidate the compiled
code when the assumptions are not valid anymore.

Instead of implementing super instructions in the VM the
approach uses the invokedynamic bytecode instruction to
link and invoke user-provided, run-time generated code [36].
This bytecode instruction is implemented and optimized
differently across JVMs [46, 48]. It is initialized and executed
in a two-step process. First, the call site is initialized by
invoking a user-defined bootstrap method which returns a
call site object. Arguments to the bootstrap method must be
statically compiled (e.g., the signature of the generated call
site). The resulting call site object manages further calls at
this call site. Second, the call site object links executable code
like any other function in the JVM. The user-provided code
is type-checked when linked making subsequent type-checks
unnecessary.

To minimize the impact of role dispatch the graph must
only include calls to role methods without any delegates
(e.g., callReplace) as seen in Fig. 2. Inspired by polymorphic
inline-caches (PICs) [19], the graph can be stored and reused
in subsequent calls at the same call site. A guard ensures
that invalid lookup results will not be executed. The guard
captures types of active contexts on initial invocation and
evaluates on re-execution whether the active context is struc-
turally equal. That is, context instances might change, but
their types must remain the same. Otherwise, the guard and
the related dispatch plan will be invalidated and the graph
must be recomputed. Caches speed up the approach up to 4x
but lacks a mechanism to deal with call sites that are unstable
(a.k.a., megamorphic). A megamorphic call site triggers cache
contention, leading to slowdowns that can easily be of an
order of magnitude.

3 GUARDED DISPATCH GRAPHS

As previously discussed, caching role invocation can lead to
substantial speedups, but slowdowns can be prohibitively
large in case of unstable call sites. On the other side the
recursive chaining wrapper does not suffer from changing
applications. This chapter proposes an approach to combine
both worlds; caching and improved guards are used to speed
up the application. Yet, it gracefully degrades to a default
dispatch approach in which runtime performance is less in-
sensitive to the stability of the call site.

3.1 Type Notations

In order to describe how to construct a dispatch plan and a
dispatch graph we first need to describe the type notation
used. A role-oriented program has (potential) role-playing
classes B (i.e., base types), context types C, and role types
R defined inside context types. Thus, a role-oriented pro-
gram has types 7 = C U B U R. For example, consider
a class Account € B, a Bank € C which provides the role
CheckingsAccount € R. We use small letters to describe in-
stances of classes at runtime, e.g., acc is an instance of Account
written typeof(acc) = Account.

COP '22, June 06-10, 2022, Berlin, Germany

The runtime stores active context instances y = (co, ..., cn-1)
of length n > 0 where typeof(c;) = C; and C; € C. Entries in
y are ordered so recently activated contexts come first. This
reflects that recently activated contexts provide roles with a
higher priority than older contexts.

Extracting the types of the instances in y creates a runtime
state T = (Cy,...,Cn-1). Two states I and I’ are structurally
equal iff for each C; € T and C] € T’ is C; = C}. Given T =
(Co,...,Cp—1) and T’ = (C/,. ..,CJ’._I) we say ' contains T’ iff
C(;:Ck/\..,/\C;_1 = C4j-1 for some k:0 <k <n.

For any type T € 7, Mr holds all methods declared in
T. Each method m € M7 may be described by its name n
and the signature o = (Tyet, (T, To, . . ., Ty—1)), n = 0 consisting
of the return type T,.; and a tuple describing the argument
types. We define T* = (Tp,...,T,—1) as short-hand for the
argument types. The element in the first position is the type
T which the method is declared in. The reason is, that a
call to m is transformed into a series of byte codes where
the callee has to reside on the stack with the arguments. To
give an example of a method signature consider the method
CheckingsAccount.withFee (see Figure 1) which has the con-
crete method signature (void, (CheckingsAccount, float)).

3.2 Lifting

Calls to methods of base types may not be directly dispatched
to the respective role methods. In a single dispatched lan-
guage, the receiver type is used to lookup the method to be
called. Thus, the signature of both methods is not directly
compatible. Due to the underlying role polymorphism the
base type can be coerced to its role type, called lift [16].

Given active context instances y = (c,...,cp—1). Lets as-
sume there is a base type B € B, and some C; provides a role
type R € R. A binding in C; declares a role method mp =
(ng,or) with og = (TRret’(R’ T;)) to replace mg = (ng,oB)
with op = (Tp,,,, (B, T;)). While op and og are not directly
compatible, a lifting can be defined that is sound due to the
underlying role polymorphism. The lifting must ensure that
for each declared binding there is a partial lifting function
lift : B8 x C — R s.t. lift(B,Cj) = R. For brevity, we assume
that the other argument types are equal:

os " = (1Ts,.., 1 (BN MTED) = (Tryer (R TE))

3.3 Guards

A resolved plan only applies valid adaptations when the
application state at the time of construction is structurally
equal to the current state. When executed, the guard checks
whether the stored state I’ is structurally equal to the active
state T. If the guard succeeds the adaptations it guards are
executed. Otherwise, another guard may be executed. The
chain of guards forms a polymorphic inline-cache of context
types.

The semantics of role dispatch distinguishes two kinds of
role invocations. The initial invocation at the call site of a

base type B and the invocation of a base call (see Fig. 1 line 8).

For guard of the latter stores the state which contains the

L. Schiitze, C. Kummer and J. Castrillon

Algorithm 1: Construction of a Dispatch Plan

In: Function m = (n, o) declared in base type B

In: Active context instances y = (co,...,cn-1)

Out: Dispatch plan P = (guard, before, replace, after)
1 guard « () after « () before « () replace < (m)
2 proceed < true
3 foreach c; € y A proceed do

4 C « typeof(c;)
5 guard — (guard, C)

// Resolve all bindings for m in C
6 Mc « lookupRoleBindings(C, m)
7 foreach m; = (nj, ;) € Mc do

// Lift signature o to oj

8 m, < liftBaseToRole(m, m;)
9 switch kindof(m;) do
10 case before do
u ‘ before « (before,m;)
12 end
13 case replace do
14 replace «— m,
15 proceed « false
16 end
17 case after do
18 ‘ after « (after,my)
19 end
20 end
21 end
22 end

23 return appendAll(guard, before,replace, after)

following context types. This increases the chances that a
dispatch plan is reused.

For an initial role invocation on base type B, given the
state T' = (Cy, ...,Cp—1) and some Cj,0 < j < n—1 declares a
replace binding for method of B. The guard captures the state
I'" = (Cy,...,Cj). Whenever I'" is contained in T' the guard
can be reused.

When control reaches the base call, j contexts have been
called. The remaining contexts I’ = (Cj41,...,Cp-1) con-
tained in T must be processed. Assuming there is no other
context that declares a replace binding for method of B the
guard will capture I'”’. Otherwise, the guard will capture
the contained contexts (Cjt1,...,C;) for some C; declaring a
binding. The amount of context types captured in the guard
is thereby minimized and only contains those contributing to
the dispatch plan.

3.4 Guarded Dispatch Plans

Whenever a context instance is activated or deactivated the
runtime updates the store of active context instances y. The
construction of a dispatch plan takes these active context
instances y and the function m of the base type B that is
invoked. It returns all role functions that must be called and

Guard the Cache: Dispatch Optimization in a Contextual Role-oriented Language

-
-

V3

0
4 Guard
F
FER T

000 5 Begin

.

[
6 ArrayAccess
¥

\ A

Y0 A 4 -7

\ I:j
\‘\ 10 Before
\
V¥
11 Orig

------- \ 4

Figure 3: Dispatch graph representing the invocation of a
before role function and the original function

the captured contexts in I'’. The guarded approach makes
each dispatch plan independent from the deactivation of a
context. In case T and I'” are not structurally equal, the guard
forwards execution instead of discarding the whole plan as
in previous approaches.

Algorithm 1 describes how the construction is performed.
It iterates over context instances in y as long as no replace
binding is discovered. The guard captures each processed
context type. For each context type the declared bindings
are queried and signatures are lifted. According to the kind
of binding declared the role function is appended to already
captured role functions of the same kind. The returned dis-
patch plan #? includes all discovered role functions separated
by kind and the guard to be created. From such a plan the
dispatch graph can be created which is executed by the JVM.

3.5 Guarded Dispatch Graph

The dispatch graph is the high-level intermediate representa-
tion (IR) generated from a dispatch plan. The IR is inspired
by the sea-of-nodes notation [7] and is subsequently optimized
by the JVM. Each white box represents a function, while red
boxes represent special nodes such as the begin of a basic
block or return instructions. Turquoise ellipses represent data.
The red edge defines the control flow while dashed edges de-
fine data flow. The annotation on dashed edges defines the
order of incoming arguments. A partial order among nodes
connected by the control flow defines a possible execution
order, one of which is highlighted by the annotation on the

COP '22, June 06-10, 2022, Berlin, Germany

15 Return

Figure 4: Result tunnelling in a dispatch graph

vertices. The root of the dispatch graph is the entry point to
the execution at the call site with the arguments present on
the call stack. The JVM is able to (abstractly) interpret the
IR to yield whether the provided and required signature of
the call site is fulfilled by the graph.

As shown in Algorithm 1 the creation of dispatch plans
aggregates role functions that can be composed into a single
execution. The dispatch graph must be composed out of the
smaller graphs that represent each individual role dispatch. It
accepts the signature according to the base method op. Each
role binding is type checked by the compiler and at run-time
individual dispatches are type checked and lifted accordingly.

Role functions that have the before or after behavior modi-
fier can be executed in conjunction before or after the original
function (or the replacing role function). They may not change
the control-flow by providing base calls and do not change
the return value. In contrast, replace behavior may have a
base call instruction inside the role function body. The return
value of that instruction could be used in subsequent state-
ments (see Figure 1) until the role method finally returns.
Because the exact execution trace is not known a priori, the
dispatch graph has to generate special instructions to cope
with the result called result tunneling.

When a role function is executed after a replace the result
of the replace (or original base function) must be returned
to the call site. Figure 4 shows a dispatch graph that cap-
tures the result. There might be multiple functions executed
afterwards. This also highlights how dispatch graphs capture
the semantics of role dispatch and bridge the gap between
language semantics and efficient execution.

3.6 Graceful Degradation

In call sites with high variance, cached dispatch plans are
evicted and constructed anew. There is a break-even point
after which the constant re-construction of the plan become
prohibitively costly [39]. To cope with this, the graceful degra-
dation mechanism is applied when a threshold is reached to
reduce the impact of cache contention.

First, call sites track the length of the chain of guards and
prunes the oldest entries whenever a threshold is reached.This
impacts the number of comparisons with guards for structural

COP '22, June 06-10, 2022, Berlin, Germany

equality. Second, there is a maximum number of evictions
tolerated at a call site. If the threshold is reached the call
site is tagged as unstable, gracefully degrades and ceases to
construct dispatch plans at all. All calls will be forwarded
to the recursive chaining wrapper without incurring extra
overhead. In line with current approaches this decision is final
to avoid optimizing and deoptimizing a call site.

We decided the initial values for the thresholds from num-
bers found in literature. An approach using PICs in JavaScript
observed a maximum of 7 entries in their benchmarks [40]
and an implementation for Squeak holds a maximum number
of 8 slots [12]. We used these references to define the thresh-
old for instability of 8 and half that value as an initial value
for the length of the chain as each entry might consist of a
bigger chunk of code.

4 EVALUATION

This section evaluates our approach compared to the original
dispatch implemented in ObjectTeams and dispatch plans
without graceful degradation [39]. We use microbenchmarks
that help to stress different aspects of our approach.

4.1 Experimental Design

The experiments were conducted on a Linux server with
Ubuntu 20.04, 32GB RAM and Core i7-9700T CPU. For
execution we used Oracle JDK 14.02 with 8 GB heap and
compared against the latest version of ObjectTeams (2.8.1).
All benchmarks were implemented with Java Microbench-
mark Harness (JMH) and measured for 10 iterations after
10 warmup iterations. To coordinate the execution of the
benchmarks we used ReBench [29].

4.2 Instrumentation Overhead

To implement the semantics of conditional interception often
residuals have to be evaluated contributing to the overall
execution time even if there is nothing to adapt. The time
to call a single method that has a registered binding but no
active context instance (i.e., noop) is measured. Second, a
single context instance provides an adaptation to a single
base class.

Figure 5a shows the geomean execution time where in
the noop case our approach is 2.5x faster than the original
implementation. The guard captures that there is no active
context and the call site directly links to the original method.
In the single replace case our approach is 3.3x faster. The
guard captures the active context and links to the replace
role method. The base call directly calls the original method.
The original implementation always uses the stub methods
to dispatch which explains the overhead.

4.3 Characteristics of Role Method Types

To evaluate the run time characteristics of each variant of
adaptation in isolation (before, replace, after), we built a
synthetic benchmark for each of them. In these benchmarks,
a context only provides the type of adaptation that is subject

L. Schiitze, C. Kummer and J. Castrillon

to evaluation. The amount of active context instances is
varied between 1, 10 to 100.

The results are shown in Figure 5b. Due to the fixed
dispatch scheme, the execution time of the original implemen-
tation in every scenario is almost the same. Our approach
composes a different plan depending on the types of behav-
ioral adaptations. Dispatch Plans are on average 2.9x faster
(max 3.5x) in the case in which all bindings are of type be-
fore. Role methods of type after are executed on average 3.3x
faster (max 3.7X) than the original implementation. While
not changing contexts the guards could be completely reused
allowing to execute replace callins on average 2.9x faster
(max 3.4x).

For polymorphic dispatch plans without degradation speed-
ups between 3.8x to 4.5x have been reported for static
cases [39]. This is comparable to our results as the guards
introduce more computations and jumps in the resulting
code.

4.4 Instability and Graceful Degradation

Our approach supports graceful degradation to diminish the
overhead for unstable call sites. To evaluate the effectiveness
of the degradation we designed a synthetic benchmark that
creates a set of permutations of active contexts and measures
the execution time across these permutations. Each context
that participates contributes a before, replace and after role
method. We compared the execution time of the original
approach against dispatch plans and dispatch plans with
degradation disabled.

Compared to the original implementation, our approach
has on average the same execution time as the original ap-
proach since there is no possible reuse. However, without
graceful degradation the execution time increases by up to
3.8x. This means that too much variability can be effectively
countered by degrading to the original dispatch.

5 RELATED WORK

This section will introduce related work in the context of VM
implementations application level. Our work is in between
both approaches; lookup is defined at application level but
optimized by the VM.

Optimizing dispatch is a recurring topic among approaches
that use reflection or meta-object protocols (MOPs). MOPs
enable the definition of extended semantics in the host lan-
guage itself [23]. One can define dispatch from within the host
language instead of relying on VM or compiler support. For
these (reflective) call sites call target and argument types are
not known until invocation. A single PIC may not be able cap-
ture these cases since same-named methods can be called on
unrelated objects. A chain of PICs is able to store the result
of the lookup for each intermediate level for further reuse [30].
VMs use heuristics for aggressive speculative optimizations.
But in some cases heuristics fail to determine whether op-
timizations are beneficial. To communicate variabilities to
the VM call sites in the application can be annotated. Thus,
optimizations can be triggered where heuristics would fail [6].

Guard the Cache: Dispatch Optimization in a Contextual Role-oriented Language

D ObjectTeams l:’ Dispatch Plan

30 - =+
1000 -

60 -

40 -

20 -

Time per OP in ns
Time per OP in ns

0-

Role Methods After

COP '22, June 06-10, 2022, Berlin, Germany

D ObjectTeams |:| Dispatch Plan

Role Methods Before Role Methods Replace

1000 - 1000 -
100 - 100 -

10— 10 -

!
Noop Single Replace

Benchmark

(a) Comparison of no active contexts (noop) and a
single context with a replace role function.

!
10 100 1 10 100 1 10 100
Number of active contexts

(b) The contribution of different role function types (before, after, replace) to the overall
execution time. Each type is measured with 1, 10 and 100 active contexts.

Figure 5: Evaluation results of the overhead (left) and comparison of the impact of role function types in both approaches (right)

Communicating the variability to the VM via annotations
has also been proposed for COP, where sideway composition
introduces an overhead [32].

Steamloom [5] uses super instructions in a custom VM
to implement AOP semantics. A separate data structure
manages aspect objects the just-in-time (JIT) compiler use
to generate aspect code into method bodies [13]. The data
structure contains meta-data for each class. Each entry of
instance-local aspects must be cloned from the class adapted
by the aspect. Inlining method bodies of these classes is not
possible anymore as there exist multiple versions of these
classes.

In ROP contexts introduce highly indirect variability. Our
approach encodes opportunities to optimize specific call sites.
Without using compiler directives, we rely on the fact that
the abstraction used by dispatch graphs is optimized by the
VM.

ContextJS [25] uses wrappers to dynamically rewrite the
AST. The wrapper delegates to each partial method in the
beginning but subsequently inlines the delegatee to reduce the
overhead. When stabilized, the partial function boundaries
are removed and the method bodies copied. In our approach
the amount of optimizations is decided by the VM.

JCOP has been extended to use invokedynamic call sites [2].

Call targets to partial methods are stored in a map which
is managed from each layer. Each call to proceed to the
next active layer will link the next partial method stored in
the map for the layer. They observed a speedup despite not
embedding the call graph for partial methods.

6 CONCLUSION AND FUTURE WORK

We presented guarded dispatch plans that overcome the
performance problems other role-oriented programming lan-
guages face. This can be achieved by regarding the dynamic
run-time state, i.e., active contexts and their roles, as invari-
ant during compilation. This requires a mechanism to guard

and eradicate compiled code when the assumptions are not
valid anymore.

We show that our approach is able to gracefully degrade
into other dispatch approaches when variability increases.
The implementation is evaluated with synthetic benchmarks
capturing different characteristics. Compared to the state-of-
the-art implementation in the ObjectTeams we achieved a
mean speedup of 3.3X in static cases, 3.0x at low variability
and the same performance in highly dynamic cases. Without
guards, the approach would become 3.8x slower on very
dynamic applications.

In the future we will evaluate our approach on real-world
programs using ObjectTeams. A candidate application is the
static analysis of the Eclipse Java Compiler to detect potential
problems related to the null-ness of variables (null analysis),
such as dereferencing a null value. Before the analysis has been
officially released, a proof-of-concept implementation had
been built using ObjectTeams. Due to its many extensions
of the compiler it is a great use-case how our approach can
improve real-world applications.

ACKNOWLEDGMENTS

This work is funded by the German Research Foundation
(DFG) within the Research Training Group “Role-based Soft-
ware Infrastructures for continuous-context-sensitive Systems”
(GRK 1907)

REFERENCES

[1] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. 1995. Fi-

bonacci: A Programming Language for Object Databases. The

VLDB Journal 4, 3 (July 1995), 403-444.

Malte Appeltauer, Michael Haupt, and Robert Hirschfeld. 2010.

Layered Method Dispatch with INVOKEDYNAMIC: An Imple-

mentation Study. ACM Press, 1-6.

Charles W. Bachman and Manilal Daya. 1977. The Role Con-

cept in Data Models. In Proceedings of the Third International

Conference on Very Large Data Bases, Vol. 3. Tokyo, Japan,

464-476.

[4] Dirk Béumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. 1997.
The Role Object Pattern. In Proceedings of the 1997 Conference

2

3

COP '22, June 06-10, 2022, Berlin, Germany

(13

14

15

(16

[17

(18

[19

(20]

[21

[22

(23

(24

25

(26

(27

on Pattern Languages of Programs (PLoP 97).

Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus
Ostermann. 2004. Virtual Machine Support for Dynamic Join
Points. ACM Press, 83-92.

Guido Chari, Diego Garbervetsky, and Stefan Marr. 2017. A
Metaobject Protocol for Optimizing Application-Specific Run-
Time Variability. ACM Press, 1-5.

Cliff Click and Keith D. Cooper. 1995. Combining Analyses,
Combining Optimizations. ACM Trans. Program. Lang. Syst.
17, 2 (March 1995), 181-196.

Mohamed Dahchour, Alain Pirotte, and Esteban Ziményi. 2004.
A Role Model and Its Metaclass Implementation. Information
Systems 29, 3 (May 2004), 235-270.

Martin Fowler. 1997. Dealing with Roles. In Proceedings of the
1997 Conference on Pattern Languages of Programs (PLoP 97).
Yoshihiko Futamura. 1999. Partial Evaluation of Computation
Process—An Approach to a Compiler-Compiler. Higher-Order
and Symbolic Computation 12, 4 (1999), 381-391.

Georg Gottlob, Michael Schrefl, and Brigitte Rock. 1996. Extend-
ing Object-Oriented Systems with Roles. ACM Transactions on
Information Systems 14, 3 (July 1996), 268-296.

Michael Haupt, Robert Hirschfeld, and Markus Denker. 2007.
Type Feedback for Bytecode Interpreters. In Proceedings of
the Second Workshop on Implementation, Compilation, Opti-
mization of Object-Oriented Languages, Programs and Systems.
Berlin, Germany.

Michael Haupt and Mira Mezini. 2005. Virtual Machine Support
for Aspects with Advice Instance Tables. L’Objet 11, 3 (2005).
Stephan Herrmann. 2003. Object Teams: Improving Modularity
for Crosscutting Collaborations. In Objects, Components, Ar-
chitectures, Services, and Applications for a Networked World.
Vol. 2591. Springer Berlin Heidelberg, Berlin, Heidelberg, 248—
264.

Stephan Herrmann. 2007. A Precise Model for Contextual Roles:
The Programming Language ObjectTeams/Java. Applied Ontol-
ogy 2, 2 (2007), 181-207.

Stephan Herrmann, Christine Hundt, and Katharina Mehner. 2004.
Translation Polymorphism in Object Teams. Technical Report
Bericht-Nr. 2004/05. Technische Universitit Berlin, Berlin.
Stephan Herrmann, Christine Hundt, and Marco Mosconi. 2011.
OT/J Language Definition v1.3.

Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008.
Context-Oriented Programming. The Journal of Object Technol-
ogy 7, 3 (2008), 125.

Urs Holzle, Craig Chambers, and David Ungar. 1991. Optimizing
Dynamically-Typed Object-Oriented Languages with Polymorphic
Inline Caches. In ECOOP’91 European Conference on Object-
Oriented Programming. Vol. 512. Springer-Verlag, Berlin/Heidel-
berg, 21-38.

Bo Ngrregaard Jgrgensen and Eddy Truyen. 2003. Evolu-
tion of Collective Object Behavior in Presence of Simultaneous
Client-Specific Views. In Object-Oriented Information Systems.
Vol. 2817. Springer Berlin Heidelberg, Berlin, Heidelberg, 18-32.
Tetsuo Kamina and Tetsuo Tamai. 2009. Towards Safe and Flexi-
ble Object Adaptation. In International Workshop on Context-
Oriented Programming. ACM Press, 1-6.

Tetsuo Kamina and Tetsuo Tamai. 2010. A Smooth Combination
of Role-based Language and Context Activation. In FOAL 2010
Proceedings.

Gregor Kiczales, Jim Des Rivieres, and Daniel G. Bobrow. 1991.
The Art of the Metaobject Protocol. MIT Press, Cambridge,
Mass.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
1997. Aspect-Oriented Programming. In ECOOP’97 — Object-
Oriented Programming. Vol. 1241. Springer Berlin Heidelberg,
Berlin, Heidelberg, 220-242.

Robert Krahn, Jens Lincke, and Robert Hirschfeld. 2012. Efficient
Layer Activation in Context JS. IEEE, 76-83.

Thomas Kiihn, Stephan Bohme, Sebastian Gotz, and Uwe AB-
mann. 2015. A Combined Formal Model for Relational Context-
Dependent Roles. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering.
Pittsburgh, PA, USA, 113-124.

Thomas Kiihn, Max Leuth&duser, Sebastian Gotz, Christoph Seidl,
and Uwe Afmann. 2014. A Metamodel Family for Role-Based
Modeling and Programming Languages. In Software Language
Engineering. Vol. 8706. Springer International Publishing, Cham,

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(37]

(38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

L. Schiitze, C. Kummer and J. Castrillon

141-160.

Max Leuth&duser. 2017. Pure Embedding of Evolving Objects.
In The Ninth International Conference on Advanced Cognitive
Technologies and Applications. 22-30.

Stefan Marr. 2018. ReBench: Execute and Document Benchmarks
Reproducibly. (Aug. 2018).

Stefan Marr, Chris Seaton, and Stéphane Ducasse. 2015. Zero-
Overhead Metaprogramming: Reflection and Metaobject Protocols
Fast and without Compromises. ACM Press, 545-554.

Supasit Monpratarnchai and Tamai Tetsuo. 2008. The Implemen-
tation and Execution Framework of a Role Model Based Language,
EpsilonJ. IEEE, 269-276.

Tobias Pape, Tim Felgentreff, and Robert Hirschfeld. 2016. Op-
timizing Sideways Composition: Fast Context-oriented Program-
ming in ContextPyPy. ACM Press, 13-20.

Michael Pradel and Martin Odersky. 2008. SCALA ROLES A
Lightweight Approach towards Reusable Collaborations. In IC-
SOFT 2008 - Proceedings of the 3rd International Conference
on Software and Data Technologies. 13-20.

Trygve Reenskaug, Per Wold, and Odd Arilc Lehne. 1996. Work-
ing with Objects: The OOram Software Engineering Method.
Manning, Greenwich.

Dirk Riehle and Thomas Gross. 1998. Role Model Based Frame-
work Design and Integration. In Proceedings of the 13th ACM
SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications. ACM Press, 117-133.

John R. Rose. 2009. Bytecodes Meet Combinators: Invokedynamic
on the JVM. In Proceedings of the Third Workshop on Virtual
Machines and Intermediate Languages. ACM Press, Orlando,
Florida, 1-11.

Lars Schiitze and Jeronimo Castrillon. 2017. Analyzing State-of-
the-Art Role-based Programming Languages. In Proceedings of
the International Conference on the Art, Science, and Engineer-
ing of Programming - Programming ’17. ACM Press, Brussels,
Belgium, 1-6.

Lars Schiitze and Jeronimo Castrillon. 2019. Efficient Late Binding
of Dynamic Function Compositions. In Proceedings of the 12th
ACM SIGPLAN International Conference on Software Language
Engineering - SLE 2019. ACM Press, Athens, Greece, 141-151.
Lars Schiitze and Jeronimo Castrillon. 2020. Efficient Dispatch of
Multi-object Polymorphic Call Sites in Contextual Role-Oriented
Programming Languages. In 17th International Conference on
Managed Programming Languages and Runtimes. ACM, Virtual
UK, 52-62.

Manuel Serrano and Marc Feeley. 2019. Property Caches Revisited.
In Proceedings of the 28th International Conference on Compiler
Construction - CC 2019. ACM Press, Washington, DC, USA,
99-110.

Yannis Smaragdakis and Don Batory. 2002. Mixin Layers: An
Object-Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM Transactions on Software
Engineering and Methodology 11, 2 (April 2002), 215-255.
Friedrich Steimann. 2000. On the Representation of Roles in
Object-Oriented and Conceptual Modelling. Data € Knowledge
Engineering 35, 1 (Oct. 2000), 83-106.

Friedrich Steimann. 2001. Role= Interface: A Merger of Concepts.
Journal of Object-Oriented Programming (2001).

Nguonly Taing, Thomas Springer, Nicolds Cardozo, and Alexander
Schill. 2016. A Dynamic Instance Binding Mechanism Supporting
Run-Time Variability of Role-Based Software Systems. In Com-
panion Proceedings of the 15th International Conference on
Modularity. ACM Press, 137-142.

Nguonly Taing, Markus Wutzler, Thomas Springer, Nicolds Car-
dozo, and Alexander Schill. 2016. Consistent Unanticipated Adap-
tation for Context-Dependent Applications. ACM Press, 33—-38.
Christian Thalinger and John Rose. 2010. Optimizing Invokedy-
namic. In Proceedings of the 8th International Conference on
the Principles and Practice of Programming in Java - PPPJ
’10. ACM Press, Vienna, Austria, 1.

R.K. Wong and H.L. Chau. 1998. Method Dispatching and Type
Safety for Objects with Multiple Roles. In Proceedings. Tech-
nology of Object-Oriented Languages and Systems, TOOLS 25
(Cat. No.97TB100239). IEEE Comput. Soc, Melbourne, Vic.,
Australia, 286—296.

Shijie Xu, David Bremner, and Daniel Heidinga. 2016. MHDeS:
Deduplicating Method Handle Graphs for Efficient Dynamic JVM
Language Implementations. ACM Press, 1-10.

	Abstract
	1 Introduction
	2 Background
	2.1 Role-Oriented Programming
	2.2 Contextual Roles and the Semantic Gap
	2.3 Dispatch Plans

	3 Guarded Dispatch Graphs
	3.1 Type Notations
	3.2 Lifting
	3.3 Guards
	3.4 Guarded Dispatch Plans
	3.5 Guarded Dispatch Graph
	3.6 Graceful Degradation

	4 Evaluation
	4.1 Experimental Design
	4.2 Instrumentation Overhead
	4.3 Characteristics of Role Method Types
	4.4 Instability and Graceful Degradation

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

