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Abstract—Coarse Grained Reconfigurable Architectures (CGRAs)
have proved to be viable platforms for health monitoring
applications. Targeting energy-efficiency, state-of-the-art (SoA)
CGRAs are augmented with approximation techniques, while
still maintain acceptable accuracy at final Quality of Result
(QoR). However, such CGRAs suffer from overheads of
collecting separate Add/Mul/Div units. We propose BioCare as
an area- and energy-efficient CGRA for health- monitoring edge
devices, which exploits the synergistic effects of multiple
approximations across HW/SW stack. BioCare offers different
levels of energy-accuracy trade-off through the plasticity of its
small PEs, each can support precision-adaptability with a Single
Instruction,  Multiple Data (SIMD) manner. BioCare
demonstrates its superiority over SoAs, by achieving up to 32%
and 67% area- and energy-savings, with 3.6x higher
throughput. In addition to analysis on multiple Kkernels,
evaluations on a multi-kernel ECG application shows that
BioCare speed-ups the QRS detection latency by 61%, with 0%
loss in accuracy. Our implementations will be available at
https://cfaed.tu-dresden.de/pd-downloads.

Index Terms—Bio-signal, ECG, EEG, CGRA, Approximate
Computing, SIMD, Energy-Efficiency, Edge Computing.

I. INTRODUCTION

The number of wearable devices —having one of the
fastest-growing industries — is projected to surpass one billion
and their market value is expected to grow triple and worth
over $54 billion by 2023 [1f], [2]. Enabling a remote and
smart health (s-health) monitoring through these wearable
nodes entails high-processing speed, secure and swift data
transportation and storage, for which relying merely on
conventional cloud computing not only will impose a drastic
traffic on the network, but also cannot guarantee patients’
privacy protection [3]]. A promising solution to address these
concerns is to efficiently process bio-signals at the edge,
referred to as Multi-access Edge Computing (MEC) [3]. MEC
can provide many advantages for s-health e.g., short response
time through extracting necessary features and transporting
them rather than whole sampled data. Thus, energy-efficiency
is of utmost importance for such a battery-operated node.

To accelerate compute-intensive bio-signal analysis on
personalized gadgets, SoA studies have shown merits of
CGRAs [4], [5] (commercialized in e.g., Samsung Galaxy
smartphones/smartwatches [6]], [7]]): @ post fabrication
datapath flexibility with near-ASIC energy-efficiency,
higher computation speed and smaller area/power vs. FPGAs
[8]. Still, to enable a real-time processing in 24/7 portable
gadgets, higher throughput should be achieved in stringent
power-budget. To cope with such design constraints, several
approximation techniques have emerged, however, they suffer
from inevitable routing-power and die-area overhead, due to
collecting accuracy-configurable Add/Mul/Div units, with an
inter- or intra-PE heterogeneity[9]—[11].

Flexibility/Reconfigurability _. DOAdd @Mul mDiv @ Others

A ® 100 10

GPU c 2

[=%

Hrpea _§ 80 8 2

oAsic % o 5 %

[STelV] o 2

=) 43

D CGRA z 40 L

9] ©

ol o

= L5
Energy < Divider Divider Divider

s I
Efficiency Performance Area Delay Energy
(a) (b)

Fig. 1: a) Performance comparison of CGRA with other architectures[8|] and b)
operations energy in bio-signal kernels/Pan Tompkins application (16-bit ALU)

Approximation potentials are even more pronounced in
bio-signal analysis, as 1) processing stage dissipates up to
70% of total energy in wearable nodes [12]]. 2) These signals
are inherently subjected to noise and their processing
algorithms exhibit high parallelism and error-resiliency. Such
computations can thus benefit greatly from an approximate
CGRA, easily adjustable with patient’s changing condition/
activity/physiology and application upgradability which
usually outpace hardware wupdates. Yet, merely one
cutting-edge work [13]] has shown notable gains by deploying
inexact Add/Mul in kernels of an ECG program, albeit in a
fully-customized ASIC implementation, without investigating
application or architecture-level techniques.

The concept of SIMD is recently exploited by e.g., Xilinx
[16] and Intel [[17], to provide support for precision-variability
in a single unit. Such efforts, however, are restricted to two
Muls with a common operand, or Mul/Div [15], in FPGAs.
This highlights the demand for a generic approximate SIMD
ALU, that can also be utilized in health-monitoring platforms.
Moreover, while Add/Mul are frequent functions in bio-signal
processing workloads, [9], [[15], [[18] and our evaluations
show that long latency/high power of division, not only limit
application speed, but also consumes considerable portion of
ALU area/energy (Fig. [Ib). These obstacles have hitherto
prevented offloading of division operations to most of CGRA
accelerators and relieving host processor from context-
switching on such occasional interrupts.

To address above-mentioned concerns, BioCare sets out as
an area- and energy-efficient CGRA which supports runtime
function-versatility and precision-adaptability through the
plasticity of its PEs; each can perform Add, Mul, or Div, on
different bit-width. Particularly, featuring SIMD at intra-
rather than conventional inter-PE granularity mitigates stress
on global routing. Such a light-weight SIMD architecture can
perfectly fit for Mul-exhaustive bio-signal processing, while
also allows better utilization of PEs when division is required
as Wel In short, our novel contributions are:

IDivision is unavoidable in bio-medical programs, e.g. feature extraction in
arrhythmia detection/classification by transformations/kmeans/NN (softmax layer).
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TABLE I: Summary of SoA studies in the literature from the perspectives of approximation and parallelization

Approximate S ; L - i }

SIMD Add/Mul/Div Optimimization-Layer Description of Work Platform | Performance Improvement Accuracy

X VIV Circuit Power-gate configurable Add/Mul [10], [11] & Div [9] in PEs CGRA {Delay, Energy } + PSNR 26, SSIM 0.9 in images

X IV X Circuit/Application Quantization with inexact Muls in NN ([14] and its references) ASIC Energy ++ < 10% classification loss

X IV X Circuit/Application Inexact Add/Mul in ECG analysis (fixed precision kernels) [13] ASIC {Area, Energy } ++ PSNR/SSIM/QRS: 11, 0.3, 100

v Accurate X Process bio-signals by multi-datapath PEs (ALU+Reg+Mux) [4], [S| [ CGRA | {Energy, Throughput} + -

v XV Circuit/Architecture First hybrid Mul/Div (LUT-based, customized for FPGAs) [15] FPGA {Energy, Throughput} + ARE 0.8%, PSNR 45

v X /I Circuit/Architecture Enable a chain of HW/SW approximations (Mul/Div & CGRA {Energy, Power, Final PSNR/SSIM/QRS:

/Application Precision scaling) efficiently, in a cross-layer hierarchy Throughput } ++ >29.3, 0.82, 100
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Fig. 2: Intra-kernel sensitivity analysis: performance gain & QoR changes by using SIMDive Mul/Div & lowering precision (Ref: 16-bit kernel, accurate Mul/Div)

e BioCare, specialized for bio-signal processing, implements a
chain of customizable approximations, seamlessly across
HW/SW stack. By capitalizing on and optimizing SoA
Mul/Div|[[15]], each proposed PE of BioCare supports function-
and precision-adaptability in a small area-footprint.

An application-level sensitivity analysis on prevalent bio-
signal kernels & a multi-kernel ECG program, highlighting
over-provisioning of fixed 16-bit precision. Hence, adapting
precision via SIMD at runtime extends battery lifespan.
Show % is a deciding metric that optimally reflects
intensity of performance-gain over a possible accuracy loss.
A gradient descent based heuristic based on this metric has
also been presented that maximizes performance gain for a
user-defined accuracy threshold within kernels.

II. RELATED WORK

SIMD CGRAs: SIMD execution model has already been
employed for accurate computations [4], [5]. However, such
CGRAs suffer from high area, stems from multiple datapath in
PEs. Amortizing this penalty, few works have narrowed their
focus to design approximate SIMD Mul and/or Div [15]], [19].

Approximate CGRAs/Bio-signal Processing: As mentioned,
Multi-access Edge Computing, MEC, is the solution to energy-
efficient processing of bio-signals [3]. Works in this cutting-
edge track are, however, limited to power-gating PEs (having
separate inexact Add/Mul/Div) [9]-[11]]. Targeting bio-signal
approximation, XBioSiP [|13]] has applied LSB simplification on
kernels of an ECG program, albeit all fixed to 16-bit precision.

We adopt Mul/Div approximation of SIMDive [15], the
rationale behind which is multi-fold: (D it has proved having
a superior resource-accuracy trade-off over SoAs [20], plus its
error-strategy is adjustable and independent from Mul/Div
size. @ Its errors are unbiased: they are centered nearly
symmetrical around zero, therefore, can cancel out each
others in consecutive bio-signal kernels (having mostly
Add/Mul) and prevent PSNR degradation. B) It elegantly fits
into i) ALU function transformation: 2D Mul/Div is converted
to 1D shift & Add/Sub in logarithmic representation. ii)
SIMD design: higher-precision units are achieved with modest
overhead by connecting smaller instances. We distinguish our
additional contributions over SIMDive: further reduce its
error-coefficients, specialize its LUT-customized structure for
aclose-ASIC implementation to embed it in our SIMD CGRA.

ITI. PROPOSED ARCHITECTURE

A. Motivation and Sensitivity Analysis

Bio-signals are usually sampled at 8 to 16-bit, which satisfies
accuracy requirement of battery-powered remote monitoring
gadgets. To design a CGRA that enables runtime accuracy-
energy trade-off”} we target approximation techniques at both
HW & SW level (i.e. inexact operations and precision scaling).
In this regard, we have conducted an analysis on prevalent
kernels shared by bio-signal applications, from pre-processing
(band- pass FIR filter for noise removal), to feature extraction
(FFT, Discrete Wavelet Transform, and approximate entropy),
and classification (K-Means). We also have analysed a widely-
used multi-kernel ECG program, QRS detection: it not only is
the atomic task in heart diseases diagnosis, but also employed
in epilepsy/sleep apnea analysis, biometric authentication, etc.
We have used Pan Tompkins QRS detection algorithm, serves
as the main standard for wearable devices. This application
has five kernels: low-pass followed by high-pass filter,
differentiator, squarer, and moving average window. Following
points summarize key observations (Fig. [Ib and Fig. [2):
o Analyzing real-world ECG and EEG signals from MIT-BIH
and CHB-MIT databases [22]] shows samples are unevenly
distributed in the range of 16-bit: 94.8% of ECG and 92.2%
of EEG can be trimmed, efficiently to be fitted into 8-bit,
respectively. Therefore, such high resolution can be relaxed
while still accommodate most of information.
Owing to its near-zero biased error, applying 4- or 16-coeff.
SIMDive [15] marginally affected PSNR (still >29) and
SSIM (still >0.8) of kernels/Pan Tompkins application.
This tolerable degradation allows homogeneous structure of
light-weight Mul/Div in all CGRA PEs. In contrast,
approximation of Add could lead to high error, as it is also
used in SIMDive algorithm (integer/fractional Add steps,
Fig. Bd). Considering small contribution of Add in total PE
area, we judiciously opted to keep this small unit accurate
and instead focus on adaptable precision scaling.
After sorting operations in the kernel by their significance
on the output QoR, we lowered the precision of each
operation and measured the gains in performance-metrics.
Fig. [2] shows: 1) operations show different behavior w.r.t
changes in QoR and performance: while precision scaling
results in considerable critical path reduction in some

2Especially as many abnormality symptoms exist 24h prior to deterioration[21]
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Fig. 3: (a) BioCare CGRA, (b), (c) Proposed SISD/SIMD PE/ALU (d) Mitchell’s Mul/Div with SIMDive [15] Coefficients, (e) Supported SISD/SIMD opcodes.

kernels —mostly because of their division, acting as speed
bottleneck operation— others might benefit more from
area/power savings, 2) Even uniform 8-bit precision with
accurate units provides acceptable QoR: e.g.~100% QRS
detection with PSNR of 30.3 is higher than of XBioSip
which is based on fixed 16-bit operations (aggressively up
to 12-bit at first stages, final PSNR of 11.6). Hence, a
mixed-precision strategy (adjusted based on importance of
operations) can be beneficial as it enables different energy-
accuracy trade-offs while reduces energy and extend the
battery life-time. This is achievable by our approximation
heuristic and on-the-fly configurable SIMD CGRA.

B. Proposed Approximation Heuristic

Sensitivity analysis has revealed that contribution of
operations in QoR sensitivity and performance gain, varies in
each kernel. Hence, the goal of our proposed intra-kernel
approximation strategy is to maximize gains while also
guarantees a user-defined accuracy. To this end, we use the
gradient of % as a deciding metric that perfectly
reflects performance gain over a possible accuracy losﬂ first,
all operations are uniformly set to 16-bit precision. Then
heuristic search is navigated toward reducing precision of the
operation having highest gradient descent in the kernel (found
based on the sensitivity analysis). If accuracy drops below a
threshold, heuristic backtracks and continues with the next
operation having highest gradient descent. An interesting
point observed is combining approximate operations
sometimes results in slight increase in PSNR. Our profiling
has shown the near-zero biased errors of SIMDive Mul/Div
have canceled each other in consecutive operations, thereby
increasing approximation opportunities and allowing smaller
precision. Arbitrary Pareto-optimal points at different levels of
accuracy, generated by our heuristic, can be stored in context
memory RAM enabling runtime accuracy-performance
trade-offs. In this manuscript, we adhere to final 100% QRS
detection (for evaluation in the next section in Fig. [5) in Pan
Tompkins, with marginal PSNR degradation 29.3 (Table [[).

C. Proposed SISD/SIMD CGRA Architecture
Each PE in BioCare CGRA (Fig. [3), encompass an
exclusive context memory that configures the ALU for SISD/
3The gradient descent based heuristic used in layer-wise quantization of NNs

[23]] targets resource, while in a fixed-area SIMD PE, higher throughput gained
by reducing the precision implies multiple operations can be executed.

SIMD modes. ALU is assembled by a shifter, leading-one
detector (LOD), adder, and two’s complement unit (handle
signed numbers or Sub operation which used also in SIMDive
Div). Their unifying via Mitchell’s algorithm, has also
facilitated implementing a light-weight approximate Mul/Div
[15]. This integration 1) prevents the overhead of collecting
separate Add/Mul/Div units; 2) circumvents long latency of
SoA dividers (with <1% error) which act as the
speed-bottleneck operation of ALU; and 3) enables an
approximate SIMD Div by decomposing a larger one to
smaller instances (which is not mathematically practical in
accurate mode [[13])). Fig. B, details proposed ALU opcodes
in BioCare that supports different levels of precision
on-the-fly (note, addition of Mul outputs is 32-bit). PEs also
include small ROMs for Mul/Div constant error-reduction
coefficients of [15]. The delicate optimization that was not
noticed and utilized in [15] —that we applied in our
BioCare CGRA - is that Mul-coefficients can be halved as
swapping operands does not affect Mitchell’s Mul error. This
also has reduced the complexity of the associated Mux that
selects the coefficient (though these do not impose a
significant overhead in CGRA, especially as Mux complexity
increases logarithmically, see Fig. fh). As CGRAs have
variation of interconnect structures depending on application-
domain, we have augmented BioCare with diagonal and 2-hop
links (for third and sixth rows) which enable energy-efficient
processing of bio-signals [24]. Although these domain-specific
requirements has increased interconnection area/power,
ultimately Instruction Per Cycle (IPC) and execution
time/energy of the total application has improved: prolonged
schedules are avoided when PEs are not used as routing
nodes. Similar observations are also drawn in [25[]-[27].

IV. RESULTS AND DISCUSSION

We have assessed the collective performance metrics for
different CGRA sizes, in both SISD and SIMD modes with
16-bit (subword of 8-bit) inputs. BioCare is evaluated against
approximate 16-bit X-CGRA [11|], GP-CGRA [9]]. We
analysed Add/Muls candidates in X-CGRA and GP-CGRA
and selected those with lowest resourcexerror bias. In
addition, we have evaluated XBioSip approximation approach
[13] by implementing it in CGRA with a minimal-overhead to
make 2-16 Add/Mul LSB configurable. For a fair comparison,
we kept same routing structure in all CGRAs and refrained



TABLE II: Circuit-level metrics of 16-bit Add/Mul & 8-bit Div (normalized to
accurate versions)

ARE! | PRE’ EB Area | Power | Delay | Energy

Acc_Add (16-bit) - - - 1 1 1 1

Accurate | Acc_Mul (16-bit) - - - 1 1 1 1
Acc_Div (8-bit)? - - - 056 1.13 | 1.32 | 148

L O R B
[15] Mul/Div (16-bit) 0.8/0.7 16.9/5.2 -0.04/-0.01 0.51 0.48 | 0.71 | 0.35
XBioSip | AppAdd5 (2-16) |0.01-30| 100 | -0.01-6.9 0.52| 0.48 | 0.7 | 0.35
[13]  [AppMultVI® (2-16)[0.01-61| 100 0.03-60 |0.54| 0.53 0.63 | 0.37
X-CGRA | RAP-CLA W6 0.2 100 0.2 1.16| 1.18 | 0.87 | 1.03
[11] Dadda DQ42C4 8.1 51 8.1 0.66| 0.62 | 0.69 | 0.43
GP-CGRA| Add_Design 4 0.3 100 0.01 0.57 045 0.66 | 0.35
19 Mul_Version Lit | 3.4 22 3.4 0.8 ] 09 088 0.79

1Avg of Absolute Relative, 2Peak Rel, 3Error Bias (all%),4Norm. to 16-bit Mul

TABLE III: Architecture-level metrics of CGRAs for 100% QRS detection

Area Chain Peak Area Chain Peak
, | Power Energy , | Power Energy
(pm” Latency | Throughput (pm* Latency | Throughput
<109 ™| @e) | @ops) | P <10 ™| s | ops) | PV
PE 2x2
Accurate | 5.1 [ 025 | 107 0.11 27 J196]094] 21 | 035 [114
(‘% SISD| 3.7 | 022 | 44 0.2 09 139 08 8.3 ‘ 0.66 39
£ |SIMD| 43 | 0.23 52 0.17-0.34 | 1.2 | 158 | 0.85 9.7 0.62-1.24 | 49
XBioSip | 7.3 | 034 | 17.3 0.06 59 | 271|126 | 338 0.21 25
X-CGRA | 45 | 023 8.1 0.19 1.8 | 169 | 0.84 | 16.1 0.42 79
GP-CGRA| 4.8 | 0.24 9.3 0.18 22 | 184 | 09 18.6 0.39 9.5
4x4 8x8
Accurate | 72 | 35 | 28 1.3 48 | 276 [132] 77 53 206
5 SISD | 51 2.9 15.3 2.6 157 190 109 387 10.1 64
£ |SIMD| 56 3.1 16.2 2.5-49 19.9 | 207 | 11.1 | 405 9.6-19.2 81
XBioSip | 97 4.6 45 0.84 105 | 360 | 17.2 138 32 441
X-CGRA | 61 3.1 25 1.6 32 232 | 115 73 6.4 134
GP-CGRA| 68 3.4 27 1.5 39 262 | 12.8 76 59 163

IPeak throughput of SISD/SIMD can be up to 2x when using 8-bit operands.

from utilizing specialized scheduling/mapping optimizations.

Architectures are coded from scratch in Verilog, synthesised

with Nangate 45 nm using Synopsis Design Compiler, placed

&routed with Cadence Innovus. We have used widely-used

list scheduling algorithm [28]] to traverse kernels DFG nodes

with aresource-aware approach. Table[llsummarizes circuit-level
characteristics, providing insights for selection of [15]], bodes
well for an ALU design, while Table and Fig. [] detail
architecture-level metrics of CGRAs. Finally, Fig. [5] compares
performance metrics of ECG Pan Tompkins application
executed on CGRAs (for BioCare SIMD mode operations
precision are tuned using proposed approximate heuristic).

Following inferences are highlighted based on results:

o Table [l justifies that SIMDive hybrid Mul/Div suits for an
approximate ALU design: it achieves lowest error-bias with
higher performance improvement. Analysis exhibits that even
4 coeff. SIMDive guarantees 100% QRS detection, but we
have used the more accurate, 64-coeff. Mul/Div, to create
opportunity for our adaptable precision-scaling.

e BioCare outperforms other CGRAs at architecture-level: as
indicated in Table [Tl and Fig. @ (b) SISD and even SIMD
BioCare are up to 32% smaller and 67% more energy-
efficient, and 41% faster than the accurate counterpart. The
small cost of transforming SISD to an SIMD structure is
worthwhile, as it can enable up to 3.6x higher throughput
vs. accurate CGRA (if all approx. PEs configured to 8-bit).

o It is also worth underlining that Mitchell-based designs are
more suited than accurate counterparts for an SIMD ALU
design. In the hierarchical-based structure of accurate SIMD
Mul, resource footprint grows quadratic (x?) when operand
size is doubled (for Div is not feasible, as mentioned
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Fig. 5: Application-level comparison of CGRAs, by running ECG program

(Pan Tompkins QRS Detection)
previously). This factor is smaller in BioCare ALU: for
instance, a double sized Add/Sub is achieved by connecting
two smaller instances. Furthermore, it is also re-used for
Add/Sub step in the logarithmic-based structure of Mul/Div.

« Table[IT)/ Fig.[3] indicate that LSB approximation of XBioSip
is rewarding, only in a customized ASIC implementation
and this approach will be counter-productive when realized
in a CGRA (due to the inevitable overhead of making FAs
and 2x?2 Muls up to 16-bit accuracy-configurable).

e BioCare offers significant application-level savings, while
maintaining acceptable accuracy: Although architecture-
level gains of other CGRAs (Table are also reflected at
application-level (Fig.[3), ultimately SIMD BioCare provides
superior savings as it accommodates kernels operations with
reduced precision (achieved by the proposed approximation
heuristic), in smaller PE instances. Especially 49%, 74%,
and 61% reductions are gained respectively, in area, energy,
and application-execution time of Pan Tompkins program,
with ~0% quality loss (this shorter detection latency is
appealing for real-time processing). Unutilized PEs in
SIMD mode can be power-gated or leveraged for analysis
of bio-signals at a higher sampling rate or accommodation
of more tasks (extracting more feature at edge can alleviate

overheads/challenges of communication with cloud).
V. CONCLUSION AND FUTURE WORKS

BioCare serves as a stepping stone for bio-signal processing
at the edge. The proposed SISD/SIMD CGRA template benefits
from high-throughput and energy-efficiency of instruction- and
data-level parallelism enabled by the light-weight PE which
enables adaptive precision-scaling. As future work, intend to
evaluate BioCare on more multi-kernel applications such as
heart arrhythmia detection through ECG processing.
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