This paper is accepted to be published in ACM Great Lakes Symposium on VLSI (GLSVLSI) 2020 (author-ready version)

SIMDive: Approximate SIMD Soft Multiplier-
Divider for FPGAs with Tunable Accuracy

Zahra Ebrahimi, Salim Ullah, Akash Kumar
Chair For Processor Design, Center for Advancing Electronics Dresden (CfAED),
Technische Universitit Dresden, Germany
zahra.ebrahimi_mamaghani@tu-dresden.de

ABSTRACT

The ever-increasing quest for data-level parallelism and variable
precision in ubiquitous multimedia and Deep Neural Network
(DNN) applications has motivated the use of Single Instruction,
Multiple Data (SIMD) architectures. To alleviate energy as their
main resource constraint, approximate computing has re-emerged,
albeit mainly specialized for their Application-Specific Integrated
Circuit (ASIC) implementations. This paper, presents for the first
time, an SIMD architecture based on novel multiplier and divider
with tunable accuracy, targeted for Field-Programmable Gate
Arrays (FPGAs). The proposed hybrid architecture implements
Mitchell’s algorithms and supports precision variability from 8 to
32 bits. Experimental results obtained from Vivado, multimedia
and DNN applications indicate superiority of proposed
architecture (both in SISD and SIMD) over accurate and
state-of-the-art approximate counterparts. In particular, the
proposed SISD divider outperforms the accurate Intellectual
Property (IP) divider provided by Xilinx with 4x higher speed and
4.6% less energy and tolerating only <0.8% error. Moreover, the
proposed SIMD multiplier-divider supersede accurate SIMD
multiplier by achieving up to 26%, 45%, 36%, and 56% improvement
in area, throughput, power, and energy, respectively. The library of
implementations will be open-sourced and available at
https://Address_blinded_for review.edu, to springboard future
research on approximate multipliers/dividers for approximate
computing and FPGA communities.
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1 INTRODUCTION

The computationally-intensive nature of upcoming Internet of
Things (I0T) and multimedia, has dictated the demand to feature
energy-efficient, multi-precision Single Instruction, Multiple Data
(SIMD) architectures. Approximate computing paradigm has
shown to serve as a viable energy-efficient solution for these
applications after the strives to prevent breakdown of Moore’s law
with the cease of Dennard scaling era [11]. This technique has also
become pronounced in machine learning domain, as it can trade
stringent resource budget with a tolerable quality relaxation.
Multipliers and dividers are the most highly-used/resource-hungry
arithmetic units in the kernel of these applications (dominating
99% of computational energy [11]) which carves out a prominent
niche for their approximation. In particular, long latency of divider
limits the overall speed of applications. Approximation of division
has recently gained attention as, although less frequent, this
operation is still inevitable in these applications. For instance, it is
used within K-means in unsupervised clustering, Discrete Cosine
Transform in JPEG compression and AlexNet Convolutional
Neural Network (up to half a million times in three layers) [15].
However, the required numerical-precision for these operations is
not fixed among all or even within an application (e.g., not only
the precision varies during learning and retrieval phase, but also
among layers of a neural network [13]).

Field-Programmable Gate Arrays (FPGAs), rewarded by a high
degree of parallelism to accelerate these applications, have been

augmented with hard-wired DSP blocks to excel multiplications.
Nevertheless, in spite of their advantages, hosting off-the-shelf
fixed-precision DSP blocks falls short on fulfilling design
requirements in a variety of domains. Beside being unable to
perform division, some shortcomings that testify on their
inefficiency are: 1) their fixed locations in FPGAs impose routing
complexity and often results in degraded performance of some
circuits [16] (and Viterbi decoder, Reed-Solomon and JPEG
encoders discussed in [31]); 2) unable to be efficiently-utilized for
multiplication precision below 18-bit [4, 18] (the comparable
performance and better energy-efficiency of small-scale LUT-based
multipliers over DSP blocks further encourages their deployment
in various applications, e.g., neural networks) 3) their limited ratio
versus LUTs (<0.001) in multiplication-intensive applications or
concurrently executing programs. This forces designers to utilize
soft- Intellectual Property (IP) versions of multipliers and dividers
provided by major FPGA vendors such as Xilinx and Intel [38, 37].

Most of the architectures in the literature which are mainly
customized for ASIC, have focused on approximating fixed
word-length multipliers or dividers, or SIMD multipliers [28, 29,
23]. These techniques are not generic since approximation
principles (as defined for ASIC) neglect differences in the
underlying reconfigurable infrastructure and yield insignificant
improvements when directly synthesized and ported to FPGAs
[32]. Few designs have targeted FPGAs which are either
approximate SISD [31, 32] or accurate SIMD multipliers [24, 25, 17,
14, 26]. Moreover, lack of support for division in their SIMD
architecture imposes substantial overhead on the target design.
This highlights the need for exploring novel avenues to provide a
roadmap enabling approximate SIMD-fashion multipliers/dividers,

specifically for FPGAs.
This paper presents for the first time an SIMD approximate soft
Multiplier-Divider  targeted  for FPGAs  with  Tunable

accuracy — SIMDive. The proposed hybrid architecture not only

eliminates the need of reconfiguration and its associated overheads

but can also support both integer multiplication and division, for
the first time, in an integrated hardware with the word-lengths of

8-, 16-, and 32-bits. We build our architecture based upon

Mitchell’s algorithm which translates multiplication into addition.

This translation results in the simplest linearly-approximated

logarithmic multiplier [21]. In addition, by altering only the

additions to subtractions, division can be derived with the same
steps. These translations enable resource-saving, and perfectly fit

FPGAs as they are already equipped with fast carry chains

hardened to accelerate addition and subtraction. As such, the novel

contributions of this paper are outlined as follows:

e First integrated  approximate  multiplier-divider
architecture. We first propose a novel multiplier and a divider
based on Mitchell’s algorithms, each of which has smaller
resource and higher speed than its accurate counterpart
(specially divider with 4.6X less energy and4x higher speed).
Afterwards, we architect a hybrid design that can be used in
either functionality without the need of reconfiguration with
still less energy and delay than accurate multiplier.

e An SIMD architecture for proposed multiplier-divider,
customized for FPGAs. To speedup original Mitchell’s
algorithm and adapt SIMD approach, we propose a Leading-One
Detector (LOD), used in the first step of this algorithm. The
proposed LOD detects the position of leading one in parallel in
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Table 1: Summary of SISD (approximate) and SIMD (accurate/approximate) multipliers and dividers in the literature

SIMD | Approx | Mul/Div Description of work Platform Improvement Avg Rel Error (%)
X v IX 4x4 and 8x8 with approximate partial products [32] FPGA {Area, power, latency}+ 1.6
X v IX 4-, 8-, and 16-bit with approximate PPs using 4x2 instances [31] FPGA {Area, energy}+ 0.3
X 4 JIX TImproving accuracy of Mitchell’s logarithmic multiplication [28] ASIC {Area, power}++ 2.7
X 4 XV Improving accuracy of Mitchell’s division (same approach in [28] is applied for division) [29] ASIC {Area, power}++, Delay+++ 2.9
X v X/ MSB division based on position of Ieading-one ([12], [7]) ASIC {Delay, power, energy}++ 0.8t0 3,13.4
X v X/ Multiplying truncated/rounded dividend with reciprocal of divisor: [34], [33], [39], [3] ASIC {Area, power, delay}+++ 4.2,28,24,49
X v XV Inexact subtractors in array divider [19], Approximating FP mantissa division to subtraction [9] ASIC {Area, power, delay}+ 1.8, 0.6 for FP
4 X X Accurate variable-precision multiplier (8x8 to 32x32) [25] FPGA Throughput ++ Accurate
v X VX 8- to 32-bit Add/Sub/Mul for FPGA-based multimedia processors [17], [26] FPGA Throughput ++ Accurate
v v X Variable-precision multiplier based on 8-bit truncated instances [23] ASIC {Area, Energy} + 1.2
v 4 I/ First approximate hybrid multiplier/divider (SISD and SIMD) with tunable accuracy FPGA Area ++, {Throughput, energy}+++ 0.7

each 4-bit segment of inputs solely with two 6-LUTs instead of
large priority encoders, used in previous studies. Moreover, by
adding one controlling signal, our proposed design also
successfully implements an approximate SIMD divider,
altogether smaller than accurate multiplier.

e Tunable accuracy using novel light-weight error-
reduction scheme. We propose error-reduction strategy
applicable to both multiplication and division. We use solely one
6-LUT for determining each bit of 64 error-reduction terms and
minimal extra circuitry for their addition to the baseline
multiplier/divider. In fact, our error-coefficients are added with
the same LUTs and their associated fast carry chains that are
already used for the addition step of Mitchell’s algorithm!. This
addresses the prolonged critical path in cutting-edge
error-refinement approaches [28, 29, 20]. Hence, we are able to
increase accuracy by one-bit and limit error to a desirable bound
using one more LUT (99.2% accuracy with eight LUTs).
Moreover, our error-refinement scheme is easily scalable and
can be coupled with multiplier-divider of any size.

Evaluation of SIMDive against established approximate multipliers

and dividers in the literature demonstrates that it outperforms

cutting-edge designs (both SISD and SIMD) w.r.t the accuracy and
performance metrics. To allow extensible designs and accelerate
research in FPGA and approximate computing communities, the

RTL and behavioral models of SIMDive will be open-sourced and

available at https://Address_blinded_for_review.edu.

2 RELATED WORK
The summary of state-of-the-art (SoA) studies in the literature
(Table 1), can be classified in two major categories:

2.1 SISD Approximate Multiplier/Divider

SoA studies in this category, [29, 29, 3, 28, 33, 39, 34, 7, 12, 9, 20] for
ASIC and [32, 31] for FPGAs use four approaches: 1) LSBs
truncation which impose higher error (>4%) in divider compared to
multiplier. 2) Hierarchical structure of inexact multipliers. This has
weak-scalability as Karnaugh map simplifications were optimized
for a specific-size (hence, error can drastically accumulate when
transported to a larger design). 3) Use approximate adders
(subtractors) for multiplication (division) which offers limited
resource saving. 4) Multiplying rounded dividend with reciprocal
of divisor in which achieving low error (<1%) comes with the cost
of overhead at least in one of resource metrics compared to exact
divider  and/or  SIMDive 5) Exploit  approximate
multiplication/division algorithms based on leading one position.
In addition, approaches implemented in ASIC-platforms have
provided smaller gains in FPGAs. Ultimately, penalty of separate
resources for implementing multiplier and divider still exists.
Specifically, shortcoming attributed to Mitchell-based designs are:
1) approximating log of inputs individually (by piece-wise
segmentation of each power-of-two-interval), neglects magnitude
of error after multiplication [20]. 2) Lengthened critical path of due
to selection of error-coefficient depends on the intermediate result
of Mitchell’s algorithm. 3) Many overflow cases after adding the

I The ternary addition is devised based on directly configuring LUT primitives from
Xilinx UNISIM library [36].

error-reduction term.

2.2 SIMD Accurate/Approximate Multiplier

Authors in [18, 4] have shown performance/energy improvements
in FPGA-based DNNs by modifying ASIC-based DSP block to
perform double approximate multiplications with a common
operand. In a recent study, [23] has proposed an approximate
SIMD design (using 8x8 truncated multipliers) for ASIC platforms.
Targeting FPGAs, few works have presented SIMD soft multipliers
[25, 24, 26, 17] that implement accurate multiplication with
precision 8- to 32- bit.

By providing better resource gains and accuracy when
compared to SoAs, our work differs from [28, 29] (which have
similar and untunable approximation schemes, separately for
multiplication and division), as: 1) we design a light-weight
accuracy knob that can bound error to < 0.8%, customized
specifically for FPGAs. 2) Through our error-reduction approach,
the primary weakness of these works, i.e., the prolonged critical
path is addressed. 3) We introduce the first hybrid
multiplier/divider, smaller than an accurate multiplier, without the
need for reconfiguration or changing architecture of FPGAs, 4)
With a customized LOD designed for FPGAs, we enable
precision-variability of proposed multiplier/divider targeted for
SIMD architectures. SIMDive can speed up execution of many
applications featuring data parallelism while also reducing the
share of energy expenditure by coalescing multiple memory
accesses, both of which increase computational efficiency.

3 PROPOSED ARCHITECTURE
3.1 Preliminaries: Mitchell’s Algorithms

Consider the binary representation of N-bit unsigned integer A
(Eq. 1), in which k reveals the position of leading one. The rest of
the bits (starting from position k — 1 to 0) are considered as the
fractional part (falls in the range 0 < x < 1).
k-1
A=2k4 Z 21b; =28 (1 + x) =2543 = 25(1 + 0.01011)y, 10 = 23(1 + 0.01) (1)
i=0
In linear mathematics, loga(1 + x) is approximated to x for this
range; therefore, the approximate log value of input A is:

Logy(A)~k + x =L0g»(43) ~ (101.01011),, L0g2(10) = (11.01), (2)

In the same manner for second input, summation (subtraction)
of two parts is obtained in Eq. 3 (Eq. 4).

Loga(P) = (ky +kz)+(x1 +x2) = K = (1000),, X =(0.10011), )

Loga(D) = (ki —ka)+(x1—x2) = K =(10)3, X5 =(0.00011), @)

Finally, by applying anti-log, binary representation of
approximate product (quotient) are derived by Eq. 5 (Eq. 6):

S [2kitRe (14 x4 xp), X Hx <1
2K (x4 x), X a2 1 )
= P =(110011000); = 408, Paccurare = 430
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- 2Kk 12 4 x1 — x3),  x1—x3 <0
2R (14 x — x5), X —x2 20 (6)
= D = (100)2 =4, Dgccurate =4

3.2 SIMDive: Approximate SIMD Multiplier-Divider

The overall structure of proposed SIMD multiplier-divider is
illustrated in Fig. 2. Controlling signals precision and Mul/Div mode
shown in Fig. 2 (a), serve to establish diverse sub-word size and
functionalities of each module, respectively. We used the default
one-hot encoding preferred by FPGA manufacturers as it is proven
to be more resource-efficient than binary encoding for
reconfigurable fabrics [2]. One-hot encoding scheme also enables
two further advantages: 1) it allows us support mixed-precision and
mixed-functionality for the first time: the proposed SIMD
multiplier-divider can either operate as a single 32x32 unit or be
decomposed into a twin 16x16, one 16x16 and two 8x8, or quad 8x8
units each of which can act separately as a integer multiplier or a
divider?. Supporting dynamic mixed-functionality in our design
eliminates the need of separate resources/the overhead of
reconfiguration and accommodates both operations in a single
module. This feature which makes it stand out from previous
works is of great interest, especially in multiplication-intensive
workloads with fewer division (appealing for both DNN and
multimedia). Moreover, in case of sub-word parallel processing, a
complete 32-bit SIMDive unit is not occupied for a division and it
can also orchestrate multiplication if needed. 2) The separate
data-size signals can also be used to power-gate each sub-unit,
individually, in case of idleness for a long period (can be
investigated as a future track, as it is not in the scope of this paper).
In the following, we describe the structure of each 8-bit Mul/Div
unit based on Mitchell’s algorithm.

Referring to Fig. 2 (b), detection of leading one is orchestrated in
parallel in our proposed approximate log calculator for each 4-bit
segment of the input by using two 6-LUTs: the first LUT acts as a
zero-detection flag and detects whether the four bits are zero. The
second 6-LUT (used as two 5-LUTs) is directly configured in such a
way to reveal the position of leading-one (0 to 3). Afterwards,
depending on the required operand word-length, integer and
fractional parts are determined based on the most significant
non-zero segment. It is worth underlining that segmentation
granularity enables a trade-off in latency-energy which could be a
determining parameter for a designer in relatively-large
multipliers. Based on our analysis, 4-bit segmentation rendered the
best energy-delay product for 32-bit SIMD architecture. In the next
step, each 4-bit addition for integer and fractional parts shown in
Fig. 2 (b) are fulfilled by a Virtex-7 slice. As shown in part (c) of
this figure, each slice includes four 6-LUTs and its associated fast
carry chains, together implement a CLA. Extending the 8-bit
addition to 16- and 32-bits in our SIMD architecture is also easily
achieved by connecting the Coy; from previous adder to the C;, of
next adder (handled by yellow multiplexers in part (a) of this
figure). Integer division is also performed by altering additions to
subtractions (Eq. 5 and Eq. 6). We support this operation by a 2’s
complement module which calculates the negative of the second
input before feeding it to the adder.

3.3 Proposed Light-Weight Error-Reduction Scheme

Mitchell’s error for multiplier and divider (8-bit) is plotted by a heat
map provided in Fig.1, through which four points can be observed:

2k1+R2 (xy xp),

_ X1 +x <1
2k1+k2 (1 — x; — xp + x1%7),

Ep=P-P
P xX1+x2 21

™

Naturally in case of divider, second operand has 16, 8, and 4-bit, respectively.

ok1-k; (x1 (g =13~ (x)?)

En=D-D= 2(1+x7) .
D ok1—ky ey xp=(x)%)
1+xp

X1 —x2 <0
(®)

> x1—x2 20

o Different error magnitude in each power-of-two interval (Fig.1
(), (d)) demonstrates that adding a single correction term to the
output cannot fit for all multiplier/divider sizes.

e Eq.7 and Eq. 8 prove proportional replication of error in each
power-of-two. Which is to say, irrespective of k1 and kg, unique
refinement schemes for each of multiplier/divider may fit all sizes
and they can be added to fractional part before scaling to save
more resources.

e Fig.1 (b), (e) exhibit the non-uniform, but symmetrical error
distribution: errors tends to be the same at the beginning and
end of each power-of-two interval, encouraging the same
reduction approach for all multiplier or divider sizes.

e Finally, Fig.1 (c) shows diverse distribution of relative error. This
means employing a single error-coefficient to the whole interval
(as proposed in SoA MBM [28] and INZeD [29]), is not efficient
and results in many output overflow cases.

Coalescing the insights from above points incentivize using
multiple error-reduction terms appropriately opted based on
summation of fractional parts to cope with overflow and yet
enduring minimal latency overhead. In our analysis, we attempted
to optimize two factors: 1) error magnitude X error distribution in
each region (can be estimated as the integral of error-magnitude of
the region). 2) partitioning overhead which depends on the
number of MSBs checked in fractional parts (e.g., checking up to 11
bits as proposed in [20] would thwart the gain of approximation).
Elaborately building our architecture upon these observations and
benefiting from the underlying FPGA structure, we have proposed
a novel error-reduction scheme based on efficiently utilizing
6-LUTs: we assign 3 MSBs of each fractional part to LUT inputs
which is responsible for calculating one bit of the error-coefficient.
As illustrated in Fig. 1 (b) and (e), the squarish region for all
combination of inputs is subdivided to 64 sub-regions by merely
using 3 MSBs of inputs. We assign a distinctive coefficient to each
of these regions, representing their average error for each

sub-interval. 64 output entries of ith LUT determine it" bit of
these 64 coefficients in binary representation. Therefore, using
only one LUT, we can efficiently determine one bit of 64
error-coefficient terms. Having 64 coefficients appropriately
calculated based on the combination of both operands addresses
both drawbacks discussed in Section 2 (neglecting magnitude of
error due to separately approximating each operand and overflow
cases). It has to be emphasized that employing a single coefficient
also results in several cases having equal or near error same as
peak error in original Mitchell. These cases neither are measured,
nor handled in[28, 29]. In our scheme, such errors are alleviated by
assigning an appropriate coefficient to each pair of input.

As discussed, LUTs and their associated fast carry chain in
Xilinx UNISIM library [36] can be configured to implement a
ternary adder. This perfectly suits our error-healing approach as
we are able to combine the process of adding error-reduction term
with fractional parts within the same resources in a single step.
Regardless of adder size, only one more bit at MSB is needed in
ternary addition (compared to binary version), since
fracl;+frac2;+error_term;+Cj, (Coy; of from previous bit) may
result in 3 bits which necessitates one more LUT at the end of the
chain. Moreover, the delay of FPGA primitives is fixed and adding
error-reduction term at the same time when fractional parts are
added keeps the overall delay of the circuit nearly untouched
(addresses lengthened critical path discussed in Section 2).
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Figure 1: Mitchell’s error: (a) integer multiplier, (b): top view of multiplier relative error in each power of two interval (same for any size of multiplier) (c): relative
error distribution in multiplier, (d): integer divider, (e): top view of divider relative error in each power of two interval (same for any size of divider)
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Figure 2: (a) SIMDive Structure, (b) Proposed 8-bit multiplier/divider,
(c) Virtex-7 slice (used for addition/subtraction of integer/fractional parts)

3.4 Applicability to other FPGAs

Our approach is easily applicable to various FPGAs without the need
for architectural modification. It can achieve even better accuracy in
higher-bit LUTs (e.g., 8-bit ALMs in Intel’s Stratix and Arria series):
considering 4-bits of each fractional parts will provide 256 sub-
regions. Therefore, solely one LUT can enable 256 error-reduction
coefficients which can significantly improve accuracy>. Our error-
analysis reveals that the proposed light-weight error-reduction
approach in this paper can significantly reduce average relative error
to < 0.1% using 8-LUTs).

4 RESULTS AND DISCUSSION

4.1 Experimental Setup

Here, we have evaluated SIMDive against five SIMD and SISD
accurate and approximate cutting-edge multipliers and dividers.
They include: performance-optimized accurate IPs of multiplier
(LogiCORE v12) [38] and divider (LogiCORE v5.1) [37] with
default configuration, i.e., single-cycle radix-2, non-blocking,

3Ternary addition also can be implemented efficiently in Stratix and Arria series with
higher frequency [10]

provided by Xilinx Vivado, Mitchell [21], SoAs MBM [28], INZeD
[29] and AAXD dividers [29] as they have the best resource-error
trade-off when compared to the rest of designs ([12, 19, 34, 7, 8]),
CA [31] (based on approximate 4x4 multipliers) customized for
FPGAs, and truncated multiplier (with 7x7 or 15x7 as the basic
multiplier, the more accurate one is also exploited in SIMD
structure). Note, hierarchical SIMD divider is not mathematically
feasible by decomposing large one to small instances [5]. Even
implementing division in reciprocal-multiplication approach
would be approximate and user still needs divider IP to generate
reciprocal function. However, by exploiting Mitchell’s algorithm in
our proposed SIMDive, we have made its approximated SIMD
mode possible (as division is translated to subtracting two pairs of
numbers and then a simple shifting).

All designs are implemented from scratch in 16-bit SISD mode
to provide insight about their individual resource footprints and
accuracy. Afterwards, they have been exploited in 32-bit SIMD
architecture. Each circuit is coded in VHDL and synthesized and
implemented by Vivado 17.4 for Virtex-7 VC707 FPGA. Area,
throughput, and power are reported from Vivado and Power
Analyzer simulations over 10° for SISD and 10 inputs for SIMD
mode uniformly distributed in a random order in the whole 16-
and 32-bit interval, respectively. For precise estimations,
throughput and energy dissipation are calculated based on the
total execution time and power consumed for all the inputs fed to
the SIMDive. We used the cost function defined by [1], i.e.,
Area X Energy x Delay/(1 — NED), Where Normalized Error
Distance (NED) is the error distance for all inputs divided by
maximum error. Design metrics are also reported separately since:
1) the weighted product of quality-resource metrics may not
always be an appropriate figure of merit and lacks distinctiveness
[27]. 2) Depending on designer/application preference, each metric
can have more importance over the other. The behavioral models
of multipliers/dividers are also developed in MATLAB, C++, and
Python to calculate average absolute relative error and peak
absolute relative error (referred to as relative and peak errors,
respectively) for all possible multiplier inputs. We have also
deployed SIMDive during the inference phase of a lightweight
Artificial Neural Network (ANN), Gaussian Image Smoothing, and
Multiply-based Image blending applications to test the
applicability of SIMDive in real-world applications.

4.2 Simulation and Synthesis Results
Tables 2 and 3 summarize design metrics and error analysis.
Following conclusions are notable referring to these tables:

e SIMDive corroborates its superiority by improving resource
consumption: Comparing SIMDive with truncated and
hierarchical-based counterparts, designed upon incorporating
smaller instances, justifies following points:

1) all resource footprints are improved in Mitchell-based
designs compared to the accurate counterparts. In particular,
delay and energy are improved by 4X and 4.6, respectively, in
our proposed divider in SISD mode, as compared to accurate
counterpart. In contrast, CA [31] with hierarchical
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Table 2: Design metrics in SISD multipliers (16x16) and dividers (16/8)

- Area  Delay Power Energy ARE' PRE’ 3
S Cireuit 6 LUD) @) mwW) () () () F
- Accurate IP [38] 287 6.4 47.8 306 - - 1
5 CA [31] 245 68 466 317 03 19.04 0.68
2 Trunc (four 7x7) 200 5.6 40.5 227 2.35 100 0.46
k] Trunc (two 15x7) 202 5.8 42 245 1.19 100 0.51 5
E] Mitchell [21] 174 4.7 35.5 167 3.85 11.11 0.43 %
= MBM [28] 186 5.4 36.3 196 2.63 8.81 0.41
Proposed 211 4.8 37.7 178 082 49 034
- Accurate IP [€7]] 168 214 24.6 526 - - 1
(7} AAXD (12/6) [12 216 18.5 22.8 412 0.74 100 0.96 - . i _
;-E AAXD (8/4) [12] 148 119 21 263 299 100 03 (a) Original image (b) Accurate (c)SIMDive=50.8 (d)MBM [28]=37.2
E Mitchell [21] 119 53 20.3 107 4.11 13 0.17
INZeD [29] 160 5.9 22.5 137 2.93 9.5 0.11
Proposed 140 5.4 21.2 114 0.77 524 0.06

Proposed Integrated Mul-Div. 268 5.8 44 254 0.82 524 022
lAverage Relative Error, 2Peak Relative Error, 3 Cost Function (normalized to accurate IP)

Table 3: Design metrics of proposed approximate 32-bit SIMD multiplier-
divider and SoA multipliers/dividers implemented in SIMD fashion

. Area Throughput Power Energy
SIMD Basic Block (LUT) (4S) (mW)  (mJ)
8 | Accurate Multiplier [24] 1125 561 121 862
£ ‘ CA [31] 1071 412 106 1028
E | Truncated (using 31x7) 970 645 98 608
Accurate Divider (32-bit, SISD) 592 22 38 954
5 5 | Mitchell Mul-Div [21] 782 851 72 339
E% | MBM-INZeD [28]{29] 910 694 89.4 515
E g Proposed SIMDive 834 817 77.5 379

implementation approach dissipates even more energy with
lower throughput than accurate multiplier.

2) Approximation applied on hierarchical multipliers is
rewarding in accuracy-resource trade-off only when it is done
from scratch for each size. Otherwise by integrating smaller
instances, error can be significantly accumulated as truncated
bits are also placed in upper bit-positions. This means that error
of CA multiplier would increase by multiple times in 32-bit SISD
or SIMD mode by using smaller instances. This will drastically
sacrifice output accuracy to achieve resource saving in a larger
design. In contrast, instead of implementing hierarchical
approach by connecting approximate modules, we have
exploited resource reuse in Mitchell algorithm as much as
possible: e.g., 8-bit accurate adders are connected to make a
32-bit instance, or detection of leading one is performed in
parallel in each 4-bit segment of inputs. Therefore, no additional
error is incurred in our design when used in 16- or 32-bit.

3) Through novel light-weight error-reduction scheme
specifically customized for FPGAs, SIMDive has achieved
significant improvement in terms of delay, energy, and accuracy,
specially compared to SoA INZeD [29] (mitchell-based) and
AAXD [12] (dynamically truncation of division operands).

4) Transforming our proposed integrated multiplier-divider
from 16-bit SISD to 32-bit SIMD has increased the area by factor
of 3. This factor is 4 for hierarchical designs which are still
either SIMD multiplier or SISD divider (the increase in delay is
also more pronounced in hierarchical designs). The reason
behind this is two-fold: a) as discussed before, our proposed
LOD detects position of leading one in each 4-bit segment. This
enables resource reuse and imposes small overhead when 32-bit
LOD is converted to 8-bit. b) Mitchell’s algorithm is also
inherently more suited for SIMD architecture, as converting
SISD to SIMD in addition steps of the algorithm poses small
overhead (modifying 32-bit SISD adder in fractional part to four
8-bit adders in SIMD mode). Overall, when input size is
multiplied by a factor of x, resource footprint grows quadratic
(x?) in hierarchical multiplication approach, while it increases
less aggressively by utilizing our logarithmic designs.

(f) Accurate (g)SIMDive=45.3  (h)MBM [28]=30.7

Figure 3: Image blending application with various multipliers (PSNR values
are w.r.t. the accurate multiplier-based filter)

(e) Original image

(a)Noise-induced=20 (c)SIMDive=23.5, 22.7 (d)MBM/INZeD-20.8, 20.1

(b) Accurate=24.1

(g) SIMDive=24, 23.3 (h) MBM/INZeD-21.3,20.5

(e) Noise-induced=20.1 (f) Accurate=24.5

Figure 4: Gaussian noise removal filter (divider and hybrid mul/div modes,
PSNR values are w.r.t the original noise-free image)

e The proposed error-refinement approach surpasses SoAs: By
augmenting Mitchell’s algorithm with our novel error-reduction
schemes independent from the input size, we successfully
achieved the lowest peak error among approximate designs (up
to 20x). Additionally, average relative error is also limited to
<0.8%. Although exhaustive 32x32 test is prohibitively time
consuming [23], average error in Mitchell-based designs will not
significantly change in larger bit-width. Moreover, our proposed
error-reduction scheme is independent from input-width and as
shown by the result, it outperforms MBM design with respect to
both error metrics (5x less average and 2.5 less peak error).
Finally, boosting precision in our approach comes with a
negligible cost: one more LUT increases the precision of
error-coefficient by one bit (as discussed in Section 3.C).

4.3 High-Level ANN & Image Processing Applications

For further quality assessment of SIMDive in high-level
applications, we considered Image Blending and Gaussian Image
Smoothing applications for Miscellaneous test images provided by
USC-SIPI Database [30]. Peak signal-to-noise ratio (PSNR) metric
is used to measure quality of images. For Image Blending
application, all multipliers in the application have been replaced
with approximate versions provided by SIMDive and MBM [28].
The average PSNR value produced by SIMDive-based application
for five random images from the database is 46.6, whereas it is
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Table 4: ANN classification accuracy with accurate/approximate Mul/Div

Inference Accuracy %

MNIST | No. of Nodes in Double 8-bit Fixed Precision

Dataset | Hidden each Hidden Precision
layers layer Accurate | Accurate | SIMDive MBM/INZeD
[28, 29]

Digits 2 100 97.09 96.67 96.68 96.62
Digits 3 100 96.56 96.23 96.22 96.17
Fashion 2 100 85.18 84.07 84.09 84.08
Fashion 3 100 85.29 84.26 84.27 84.39

Area (normalized to 8-bit accurate) 1 0.78 0.74
Energy (normalized to 8-bit accurate) 1 0.62 0.72

limited to 32.1 for the MBM counterpart. Fig. 3 presents visual
qualities of two processed images. For Gaussian Image Smoothing
filter, we modified the application for two distinct modes: 1) only
approximate version of divider is deployed. 2) Hybrid: both
multiplication and division are replaced with approximate
alternatives. For the former case, SIMDive-based Gaussian filter is
capable of producing Superior PSNR (24.5), over INZeD
counterpart (20.9). Interestingly in the latter case, not only the
PSNR value of hybrid SIMDive (23.3) surpasses the hybrid
MBM/INZED (21.3), the values have not changed significantly
compared to their "division only" approximation mode. This
further motivates the deployment of hybrid SIMDive mul/div. The
visual quality of two processed images are shown in Fig. 4.

We also utilized our proposed SIMDive-based approximate
multiplier in an ANN, provided by [22], for testing its efficacy on
the classification accuracy of MNIST handwritten digits [6] and
MNIST fashion [35] datasets. The MNIST datasets provide 28 x 28
grayscale, 60,000 and 10,000 training and testing images,
respectively. These images are categorized into ten different
classes. The ANN under consideration exploits fully connected
layers with 100 nodes for classification. Two different network
configurations implemented: (a) two fully connected hidden layers
and (b) three fully connected hidden layers. In both configurations,
the input and output layers have 784 and 10 neurons, respectively.
For both datasets and both configurations, the network was
trained with 60, 000 images using floating-point numbers; while
during the inference phase for 10, 000 testing images, we quantized
the network parameters and activations to 8-bit fixed point
precision and evaluated the classification accuracy with accurate
and approximate multipliers. The classification accuracy results
are described in Table 4. Due to the inherent error resilience of
ANNs, many of the quantization induced errors have been
partially healed for fashion dataset. Interestingly, SIMDive-based
ANN not only achieves same or higher classification accuracy
compared to accurate and MBM/INZeD counterparts, it also
outperforms accurate design and provides 22% and 38%
improvement in terms of area and energy, respectively.

5 FUTURE WORKS AND CONCLUSION

We proposed for the first time approximate SISD and SIMD soft
multiplier-divider with better throughput and energy than the
cutting-edge SIMD/SISD counterparts. In addition we proposed an
accuracy control knob with our light-weight error-reduction
scheme for the hybrid architecture which tunes error to a desirable
bound and achieve high accuracy (> 99.2%). We intend to utilize
the proposed coalesced multiplier/divider in other domains, e.g.
floating point units (mantissa multiplication and division).
Moreover, to evaluate the potential gains of precision variability in
more details, a customized SIMD-architecture of SIMDive-based
ANN will be investigated in future tracks. Last but not least,
considering the orthogonal contribution of approximate
adder/subtractor in the literature, they can be employed to

add/subtract fractional part LSBs in tandem with accurate ones for
MSBs without imposing high level of inaccuracy.
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