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Abstract—We provide a novel analysis of Wald’s sequential
probability ratio test based on information theoretic measures
for symmetric thresholds, symmetric noise, and equally likely
hypotheses under the assumption that the test exactly terminates
at one of the thresholds. This test is optimal in the sense
that it yields the minimum mean decision time. To analyze the
decision-making process we consider information densities, which
represent the stochastic information content of the observations
yielding a stochastic termination time of the test. Based on this,
we show that the conditional probability to decide for hypothesis
H.1 (or the counter-hypothesis 7o) given that the test terminates
at time instant & is independent of time k. An analogous property
has been found for a continuous-time first passage problem with
two absorbing boundaries in the contexts of non-equilibrium
statistical physics and communication theory. Moreover, we study
the evolution of the mutual information between the binary vari-
able to be tested and the output of the Wald test. Notably, we show
that the decision time of the Wald test contains no information
on which hypothesis is true beyond the decision outcome.

I. INTRODUCTION

In many decision problems it is important to make decisions
as fast as possible but with a given reliability. This problem
has been first studied by A. Wald who introduced a sequential
probability ratio test to enable fast decisions between two
possible hypotheses [1]. For independent and identically dis-
tributed observations this test yields the minimum mean deci-
sion time for a decision with a given probability of error [2].
The test accumulates the likelihood ratio given by the sequence
of time discrete observations. The decision for one of the
hypotheses is made as soon as the cumulative likelihood ratio
reaches a given threshold which depends on the required deci-
sion reliability. The Wald test therefore corresponds to a first-
passage problem with two absorbing boundaries in discrete
time. The key characteristics of the Wald sequential test is
that its termination time is a random quantity that depends on
the actual realization of the random sequence of observations.

Sequential probability ratio tests can also be studied in the
limit where observations occur continuously over time. In this
situation, the probability ratio test becomes a continuous-time
first passage problem. For continuous processes an important
property of this first passage problem is that the threshold is
hit exactly at a specific time. For certain systems described

by a Langevin equation, it was shown previously that the
probability for the process to be terminated at one of the two
symmetric boundaries is independent of the time of absorption,
see, e.g., [3], [4].

In the present paper, we present a novel analysis of the Wald
test based on information theoretic measures for symmetric
thresholds, symmetric noise, and equally likely hypotheses.
Under the assumption that the test exactly terminates on one
of the thresholds, we show that for such a discrete-time
sequential probability ratio test the probability for the test
to be terminated at one of two boundaries is, as in the time
continuous case, independent of the time at which the decision
is taken. The assumption that the trajectory of the cumulative
log-likelihood ratios exactly hits one of the thresholds is
approximately fulfilled in case the average increment of the
log-likelihood ratio per additional observation is small in
comparison to the threshold, which holds in case the allowed
error probabilities are sufficiently small. To obtain this result,
we describe the behavior of the test by a recursive expression
for information densities. This measure describes the statistical
dependencies for every individual sample process. Differently,
mutual information fails to analyze the realization dependent
termination behavior as it takes an average over all possible
realization of the observation process. Using this recursive
equation we show that a key property of the Wald test is that
the conditional probability to decide for hypothesis H; (or the
counter-hypothesis H() given that the test terminates at time
instant k is independent of time k. Moreover, we show that the
decision time 7 of the Wald test contains no information on
which hypothesis is true beyond the decision outcome. Finally,
we provide an expression characterizing the evolution of the
mutual information between the binary variable to be tested
and the decision outcome of the Wald test.

II. SYSTEM MODEL

We consider the following decision problem on the binary
random variable X € {—1,1} based on a sequence of noisy
observations of X where the kth observation is given by

Ye=pX+2Zy, keN. )



Zy,

X Yi Ly

“Py|x=—1

log PYIX=1 - Zf—l L,

Sk Uk D
»S, 2 T10 » Decision——>»

Fig. 1. Extended model of the Wald test

Here, Z;, is additive noise with zero mean and unit variance.
The individual noise samples are assumed to be independent
identically distributed (i.i.d.) with density pz. In addition, we
assume that the noise distribution is symmetric with respect to
zero, i.e., pz(—z) = pz(z) which is for example fulfilled by
a zero-mean Gaussian distribution. Moreover, the parameter
p can be interpreted as the signal-to-noise ratio. We consider
equally likely hypotheses P(X = 1) = P(X = —1) = 1.

The aim is to decide as fast as possible, i.e., with the lowest
possible number of observations Yy, if X = 1 (hypothesis
H1) or if X = —1 (hypothesis Hp) with a given reliability. In
his seminal paper [1] Wald solved this problem by providing
a sequential probability ratio test (the Wald test), which is
optimal in the sense that it minimizes the mean decision time
for a given reliability [2]. The decision time 7 is itself a
random variable, which depends on the actual realization of the
observation sequence. For this purpose, the Wald test collects
observations Y}, until the cumulated log-likelihood ratio
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exceeds (falls below) a prescribed threshold 77 (7p). The
decision time 7 is the minimum value of k for which Sy ¢
(Ty, T1). The test decides for Hy (Ho) when Sy, first crosses
Ty (Tp), where D = 1 (D = —1) is the decision of the test.
In (2), pyx denotes the probability density function of the
observations Y}, conditioned on the event X. The thresholds
Ty and T, depend on the maximum allowed probabilities
for making a wrong decision ay > P(D = 1|X = —1)
and a9 > P(D = —1|X = 1). Here, P(D = 1|X = —1)
(P(D = —1|X = 1)) denotes the probability that the test
decides for hypothesis H; (Ho) although Hg (1) is true.
The thresholds 73} and Ty are functions of the maximum
allowed error probabilities oy and a. As their determination
is rather involved, in the following we use the approximations
Ty ~ log 1f°al and 77 ~ log 1;% with g, ap < 0.5 [1]. This
choice still guarantees that the actual error probabilities are not
larger than the maximum allowed error probabilities. If the
test terminates exactly on one of the thresholds — which we
assume throughout this paper — the actual error probabilities
P(D=1]X=-1) and P(D = —1|X = 1) coincide with the
maximum allowed error probabilities «; and «. If the mean
and the variance of the increments L, are small in comparison
to the thresholds the test ends close to one of the thresholds
[1, pp. 132-133], i.e., the assumption that the test terminates
exactly on one of the thresholds is approximately fulfilled. In
the present paper we focus on the important special case of
ap = a1 = «, yielding symmetric thresholds 77 = —Ty =T,
and symmetric noise.
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Fig. 2. Trellis (a) and state transition diagram (b) of Uy

A. Three state representation of the Wald test

For the analysis of the Wald test we introduce the model in
Fig. 1. Here, the ternary variable Uy, € U = {—1,¢,1} with

1 ifk>7and D=1
—1 ifk>7and D= -1 3)
€ ifk<rt

Uy =

and Uy = € describes the initial state of the Wald test. The
state ¢ denotes the undecided state of the test. Until Uy reaches
41 it is not possible to decide with the required reliability. The
evolution of the state variable Uy can also be described by the
trellis and the state transition diagram in Fig. 2.

To analyze the behavior of the Wald test we derive relations
for the probability distribution of the state variables Uy. In the
following, we assume without loss of generality that hypoth-
esis X = 1 is true. This is possible as we consider symmetric
thresholds and a symmetric noise distribution yielding

PUp,=1X=1)=P(U = —-1|X = -1) “)
PUp=1X=-1)=PU, = -1|X=1). (5)
The probability that the Wald test has already made a

decision for the hypothesis H; (H() corresponding to X =1
(X = —1) at the time instant k or before can be expressed as

PUg=a|X=1)=PUp_1 =a|X=1)
+P(Uk :a|Uk,1 =eX= 1)P(Uk,1 26) (6)

with a € {1, —1}. For (6) we have used that
P(Uk_1:E|X:1> :P(Uk_lie) (7)

which follows from
1

P(Uk_l :E) = E{P(Uk_lié‘xil)+P(Uk_1 :E‘Xifl)}
P(Ug_1=¢/X=1) = P(Up_1=¢|X=-1) (8)

as we assume that both events X = 1 and X = —1 are equally
likely. Additionally (8) follows from the assumption of a
symmetric noise distribution pzy with zero mean. Thus, (6)
provides a recursive relation for P(U, = a|X = 1). The initial
distribution is given by P(Uyg = €) = 1 as at time instant



k = 0 no observation has been considered and the Wald test
has not yet decided for one of the hypothesis. With (6) we get
k
P(Up=alX=1) = > P(U;=alU;_1=¢,X=1)P(U;_; =)
=1
as P(Up = a|X = 1) = 0. Note that P(U;, = a|X = 1)
corresponds to the probability that the Wald test has terminated
at the positive (negative) threshold at any time instant up to
the time instant k. On the other hand, P(U, = a|Ux_1 =
€,X = 1) is the probability that the Wald test terminates at
the positive (negative) threshold at the time instant k.
Finally, due to the assumption of symmetric thresholds,

symmetric noise, and the assumption that X =1 and X = —1
are equally likely, it can be shown that for all %k
P(U =1) = P(Up = —1) ©)

P(Uk = 1|Uk_1 = E) = P(Uk = —1|Uk-_1 = 6). (10)

III. INFORMATION THEORETIC ANALYSIS

We study the mutual information between the binary input X
and the sequence of decision variables Uy, Uy, ..., Us depend-
ing on the number of observations k considered for decision-
making so far. In this regard, we also discuss the statistical
dependency of the decision time 7 and X. In the following, we
denote the vector containing the sequence of decision variables
up to the time slot k by U* ie., UF = [Uo, U1, ..., Ug].

Based on the chain rule for mutual information it holds that

k
I(X;U") = D 1 Uguth. (1)
=1

The summands on the RHS of (11) can be expressed by
I(X; Ug|UF™Y) = H(UR|UFY) — H(U|UF1 X)) (12)

where H(-) denotes the (Shannon) entropy.

As the additive noise samples Z; are i.i.d. it holds that
DSi(S1,..Se_1,.X = DSi|s,_.,x- This and the fact that Uy
does not change anymore once it reaches £1 implies that

P(Ug|Uq, ..., Ug—1,X) = P(Ug|Ug_1,X). Likewise we get
P(Ug|Uq,...,Ug—1) = P(Ug|Ugk_1). Hence, it holds that
H(Ug|UP 1) = H(Ug|Up_1) (13)
H(Up|U*1 X) = H(Ug|Up_1,X) (14)
yielding
k
IOGUR) = D TG UV ). (15)
=1
Thus, the increase in mutual information between the

sequence U* and X from the time k — 1 to time k is given by
TG UR) = I(X UMY = 1(X; Ug|Ug )
= I(X, Uk, Uk-—l) — I(X, Uk—l)

=T(X;Up—1|Ug) + I(X;Ug) — I(X;Up—1).  (16)

where we applied twice the chain rule for mutual information.

Lemma 1. For the Wald test on the model defined in Section 11,
including the assumption that the cumulative log-likelihood
ratio exactly hits one of the thresholds, it holds that

I(X;Up—1|Ug) = 0. (17)
Proof. In Appendix A we show that
P(X|U") = P(X|Uy). (18)
Using Bayes’ rule and (18) we obtain
P(X,Ug-1|Ug) = P(X|Uy) P(Ug—1|Uy). (19

Hence, X and Uj_; are conditionally independent and the
following Markov chain holds X <> Uy <> Ug_;. Thus, (17)
immediately follows. O

Lemma 1 implies that Uj, carries all information on X that
is contained in Uj_;.
Using Lemma 1 and (16) it follows that

I(X;Ug) = I(X; Ug—1) + I(X; Ug|[Up—1). (20)

Eq. (20) describes the increase of the mutual information
between X and the decision variable Uj over one time step.
As Uy, can be considered as the output of the Wald test at time
k, I(X;Uy) is the information the Wald test gives on X at time
k averaged over all possible realizations of the Wald test.

Theorem 1. Under the same conditions as in Lemma 1 the
Wald test satisfies that

I(X; 7|Ug) = 0. 21

Proof. Tt holds that P(X|U¥) = P(X|Uj,7) as the last
element of U* given by Uy and the decision time 7 contain
the same information as Uk, cf. Fig. 2. Thus, with (18) eq.
(21) follows immediately. O]

Theorem 1 states that the decision time 7 gives no additional
information on X beyond Uy, i.e., I(X; U, 7) = I(X; Up).

A. Information Densities

As the mutual information by definition is an average over
all involved random quantities, (20) does not reflect the fact
that the termination time of the Wald test depends on the
actual realization of the observation sequence. Differently,
(20) describes the behavior of averages over all observation
sequences Y1, ..., Y. To be able to resolve the actual termina-
tion behavior, we need an expression reflecting the realization
dependent termination time corresponding to (20) but being
more restrictive in the sense that it holds for every individual
observation process. For this purpose we state the following.

Corollary 1. Under the same conditions as in Lemma 1 the
following recursive expression for information densities holds

i(X;Up) = i(X; Ug—1) +i(X; U |Ug—1) (22)

where the information densities are defined as i(X;Uy) =

P(Ug|X . P(Ug|Ug_1,X
log ( F(,(L’]L))> and 1(X; Ug|Ug—1) = log (7;(61“1_11))) [5].




Proof. Eq. (22) for information densities is equivalent to

P(Ui|X)  P(Up_1|X) P(Ug|Up_1,X)
= (23)
P(Ug) P(Up_1) P(Ug|Up-1)
which follows from (19). O

Note that I(X;Uy) = Ex u, [{(X; Uy)]. Hence, we get (20)
by taking the expectation of (22) with respect to all random
quantities and, thus, (22) implies (20) but not vice versa.

To describe the behavior of the Wald test to terminate when
the process of cumulative log-likelihood ratios Sy, reaches one
of the thresholds at 7, (22) must hold for all combinations
of events of Uy, Ug_1, and X.

B. Time-Independence of Decision Probabilities
Corollary 1 allows to prove the following new Theorem.
Theorem 2. For the system model in Section II the following

holds. In case the Wald test terminates at time k the probability
to decide for hypothesis H1 is independent of time, i.e.

PUp=1Up_1 =, X=1,Ur #€) =k, VkeN (24
with the constant k = P(D = 1|X = 1). Equivalently,
P(Uk:71|Uk_1:e,X:l,Uk#G):lfﬂ, VEk € N.

Lemma 2. The statement in Theorem 2 is equivalent to the
property that the ratio of the termination probabilities at both
boundaries is independent of the time instant k, i.e.,

P(Ug =1|Ugx_1 =, X=1)
]D(U]€ = 71|Uk_1 = E,X = 1)
with ~ being a positive constant.

Proof of Lemma 2. The Wald test fulfills (22) and, thus, (23)
for all combinations of X € {—1,1}, and Uy, Uy_1 € Y. Due
to the symmetry of the problem we consider only the case
X =1 w.l.o.g.. Evaluating (23) for different values of U and
Ug_1 yields

P(Up = 1]X = 1)

Vk € N

=, (25)

P(Upy =1X =1)

= 26
P(Up =1) P(Up_1=1) o
PU =1X=1) PUc=1Ui1=eX=1)
PUg=1) - P(Ug =1|Ug_1 =€)
P(Uk:—1|X:1) o P(Uk:_uukfl :G,le) (28)
P(U, =-1) P(Up = —1|{Up-1 =¢)
P(Up=-1X=1) P(Up1=-1X=1) 29)

P(U, =-1) PUg_1 =-1)

For (26) to (29) we have used that P(Ug =a|Ug_1; =a,X=
1) =1and P(Uy=a|Up_1=a) =1 withae {1, —1} and (7).
Due to the symmetry of the test and the considered scenario

reflected by (9) based on (26) and (29) we get
PUr = —1X=1)  PUp_s = —1X=1)

Le., the ratio between the probability that the Wald test
terminates at the positive boundary and the probability that it
terminates at the negative boundary at any time instant up to

the time instant k is constant over k. We denote this constant
as . Using (27), (28), (9), (10), and (30) we get
P(Uk:1|le) P(Uk:”Uk_l:E,X:l)

_ -~ (31
P(Up=-1X=1)  P(Up=-1|Us_1=¢,X=1) T eD

stating that the ratio of the termination probabilities on the
positive and on the negative threshold at the time instant k is
also a constant independent of the time instant k. O

Proof of Theorem 2. As

P(Uk = 1‘Uk,1 = E,X = 1,Uk 7é 6)
P(Uk = 1,Uk 7’5 E‘Uk,1 = E,X = 1)
P(Ug #€lUg_1 =6, X=1)
B P(Up=1{Up_1 =6, X =1)
- P(Up=1|Up_1=6,X=1)+P(Up=—1|Us_1 =¢,X=1)
1 1

P(Un=—1]Up_1=eX=1) T
1+ Pome ey 113
—PD=1X=1)=x (33)

where for (32) we have used Lemma 2. Finally, (33) holds as

PD=1X=1)=Y PUy=1Us1 =€Us #eX=1)
k=1
X P(Up_1 = 6, Up # €elX =1)

[ 1
Y PUpr =€ Up#eX=1) =
k=1

1+

1
_|_,

= [~

where for (34) we have used (32) and the fact that the Wald
test terminates almost surely [6, Th. 6.2-1]. O

Equation (25) for a discrete-time problem is similar to
a continuous-time result on the first passage problem with
two absorbing boundaries: For stopping time distributions of
stochastic entropy production an analogous expression to (25)
has been found for nonequilibrium steady states [4, Eq. (11)
and Append. S2 in its Suppl. Material], [7]. Moreover, in
communication theory such a symmetry has been found to
show that the probability of cycle slips to the positive/negative
boundary in phase-locked loops used for synchronization is
independent of time [3, Eq. (74)].

C. Evolution of Mutual Information

At time k the mutual information between X and the
decision variable Uj, of the Wald test is given by

I(X:Up) = {P(Up, = 1)X = 1) + P(Uy = —1]X = 1)}
x log (2/(P(Uy, = 1[X = 1) + P(Uj, = —1|X = 1)))
+ P(Uy = 1|X = 1) log (P(Uy = 1[X = 1))
+P(Ug = —1X = 1) log (P(Uy, = —1|X = 1)). (35)

The Wald test terminates almost surely [6, Th. 6.2-1] which
means that limy_, o P(Ux =€) = 0. Thus, it holds that

lim P(Uy = —1[X=1) = P(D = ~1[X = 1) = 1-x (36)
—00
lim P(Uy=1X=1)=PO=1X=1)=r. (7
:— 00



Using (31), and v = 17, cf. (33), eq. (35) becomes

PP

106:Uy) = 2L :K”x “Uixu.). 69
with, cf. (36) and (37)
I(X;Us) =1+ klog(k) + (1 — k) log(1 — k). (39)

Le., I(X;Uyg) linearly increases with P(U; = 1|X = 1) until
it achieves the final value I(X;Us). As we assume that the
test terminates exactly on one of the thresholds it holds that
k = 1—a, cf. Sect. II, and I(X; Uy,) is the mutual information
to be achieved to allow a decision with the predefined error
probability.

IV. SUMMARY

The analysis of the Wald test for symmetric noise, equal
error probabilities corresponding to symmetric thresholds, and
equally likely hypotheses provides an understanding on the im-
plications of the information processing in optimal sequential
decision-making. Under the assumption that the test terminates
exactly on one of the thresholds, we mainly have shown
that for these conditions (i) the decision time contains no
information on which hypothesis is true beyond the decision
outcome (Theorem 1) and that (ii) the probability to decide for
hypothesis H1 (or Hg) is independent of time (Theorem 2).
How far the presented results can be generalized to non-
symmetric conditions will be studied in a forthcoming paper.

APPENDIX A — PROOF OF (18)

Without loss of generality let us assume that n is the time
instant where the state variable U,, changes from ¢ to +1. If
n > k equation (18) is straightforward, see Fig. 2. For n < k
and this specific realization of U* we can rewrite the LHS of
(18) as

PX|U"™ ! = €1, UF =415, 41)

n

= P(X|Up_1 = €,U,, = £1) (40)

with 1,, being the all one row vector of length n and Uﬁ =
[Un,...,Ux]. Here, (40) follows from the fact that in case
U, is in state € it must also have been in state € in all prior
time instants and once U,, changes to £1 it stays in this state,
cf. Fig. 2. Hence, to prove (18) it is sufficient to show that

P(X:].‘Ul,1267ul:1) == P(X:1|Ul:E, Ul+1:1)(41)

holds for an arbitrary [. Here, without loss of generality we
assume a transition of the state variable U; to 1. Expressing
(41) in terms of the cumulated log-likelihood ratio in (2) yields

P(X:1|Sl—1 <T7 Sl ZT) = P(X: 1|Sl <Ta Sl+1 ET)(42)
The LHS of (42) can be rewritten as follows

P(X: 1asl—1 <T75l ZT)
P(Slfl < TS ZT)

(43)

P(X = 1|Sl_1 < T,Sl > T) =

1

P(Slfl <T,SLZT‘X:—1)
P(5171<T,SLZT‘X:1)

14

INote that (38) does not state that 7(X; Uso) is only reached for k — oo.

1
P(Si_1>—T,5<—T|X=1)
P(51_1<T,5 >TIX=1)
where for (43) we have used that P(X = 1) = P(X = —1).
Finally, (44) follows from the symmetry of the noise, i.e.,
pz(—2z) = pz(2), also cf. (5). Thus, to prove (42) we have to

show that ng’@f;;gg;@é;” is independent of .

The Wald test corresponds to a first passage problem of
the discrete-time stochastic process {Si,Sz,...} with two
absorbing boundaries at +7". For a corresponding continuous-
time log-likelihood ratio process {S(t)} we have shown the
following [4], [7]. Let P(7;T)dr denote the probability that
{S(t)} reaches the threshold T for the first time in the time
interval [7,T + d7] given that it has not reached —7" before.
Then it holds that [4, Eq. (11) and Append. S2 in its Suppl.
Mat.], [7, Eq. (E16) in Append. E]

P(r;T)
P(r;-T)

= (44)
1+

= exp(T) 45)
i.e., the ratio between the probability that {S(¢)} terminates in
a given time interval on threshold 7" and the probability that it
terminates in the same time interval on the opposite threshold
—T is independent of the time 7.

Assuming that the Wald test terminates exactly on one of
the thresholds, (45) implies for the discrete-time setup that
(44) is independent of [ which proves (18).

In case the trajectory of the discrete-time log-likelihood ra-
tio process ends close to one of the thresholds, the termination
behavior of the discrete-time process can be well approximated
by the behavior of the continuous-time process. The assump-
tion that the log-likelihhod process ends close to one of the
thresholds is approximately fulfilled in case the size of the
thresholds 7' is large in comparison to the average increase
of the log-likelihood ratio Ly, cf. (2), per observation sample.
This corresponds to the case where the mean number of ob-
servations taken before making a decision is sufficiently large.
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