A Framework for the Dynamic Evolution
of Highly-Available Dataflow Programs

Sebastian Ertel Pascal Felber
Systems Engineering Group Institut d’informatique
TU Dresden, Germany Université de Neuchatel, Switzerland

Middleware 2014

Jetty’s Graceful Restart

I I

140 o graceful restart period |
— 120 * misconfigured 0 . 4 fixed cache .
c 100 | cache ° 8 0 config -
> 80k ° . g 8o]
S 60 | °© © © % o Y o]
40—") o) o oo 80 §O gg
S a0t 8 8¢ ;3 80°5Q i

o °8 8§§ .8 Seo o
20 “5,§%§. eoclog g o6 o i

0 2 40 60 80 100 120 140 160 180

® Downtimes ~8-10s & Request latency ~|-2ms.

Smith, E.K.; Hicks, M.; Foster, J.S., "Towards standardized benchmarks for Dynamic Software Updating systems," HotSWUp’ 12
2

Hot Swapping

® Goal: Change a program dynamically, i.e. online.
® Problem: Preserving program correctness.
® Challenges:
® (onsistency Problem = State quiescence (who and when).

® Mutual references = Non-blocking update coordination.

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12
3

Hot Swapping

® Mutual references = Non-blocking update coordination.

expected:
file content = file content

[l
accept read parse load compose —>

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12
4

Hot Swapping

® Mutual references = Non-blocking update coordination.

expected:
file content = file content

]
accept read parse load compose [— | reply
NIO SWITCH L V expected:
file channel 1 file content # file channel :n

accept read arse load D» compose i» reply
p p NIO P NIO

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12
5

Dataflow in a Nutshell

® Widely adopted execution model for parallel processing.
® Building blocks: (FIFO) arcs, operators, dataflow graph.
® (Classic) Dataflow = No operator state.

® FBP (flow-based programming) = Operator state allowed!

Operator
Data

Packets O 00O 0

O _—>_\
e, = .
rc ﬂ

(FIFO) ‘s

DAG - Directed (Acyclic) Data Flow Graph

J. B. Dennis. Data flow supercomputers. Computer, |3(11):48-56, Nov. 1980.
J. P.Morrison. Flow-Based Programming. Nostrand Reinhold, 1994

Micah Beck, Richard Johnson, and Keshav Pingali. |991. From control flow to dataflow.]. Parallel Distrib. Comput.

6

Hot Swapping

® Goal: Change a program dynamically, i.e. online.
® Problem: Preserving program correctness.
® Challenges:
® (onsistency Problem = State quiescence (who and when).

® Mutual references = Non-blocking update coordination.

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12
7

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

8

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

‘ EEEE ST ‘ EEEE ST ST
accept —>@ parse —>E compose

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

9

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

‘ EEEE EEE ‘ EEE C [EE
accept —>@ parse load compose

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

10

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

‘ EEEE ST ‘ T mEm ST
accept —>@ parse —>E compose

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

‘ EEE EEE ‘ EE EE EEE
accept read parse load compose

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

12

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

‘ mED mm ‘ EEm EEE mEm
accept read parse —>E compose

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

13

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

‘ =] EED ‘ EE C [EEE
accept read parse load compose

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

|4

Update Appointment

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

=] EEE EE NIO ([EEE
accept read parse load compose reply

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

|5

Hot Swapping

® Goal: Change a program dynamically, i.e. online.
® Problem: Preserving program correctness.
® Challenges:
® (onsistency Problem = State quiescence (who and when).

® Mutual references = Non-blocking update coordination.

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12
|6

Update Coordination

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

=] EEE EE NIO ([EEE
accept read parse load compose reply

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

|7

Update Coordination

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

=] = EEE NIO EEE EEE
accept read parse load compose reply

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

|18

Update Coordination

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

NIO - Switch

EEE EE EE NIO EEE EEE
accept read parse load compose reply

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

19

Update Coordination

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time!

&> Introduction of a solid notion of time for (live) updates.

O DD mmmE [NJO mm mm [NIO
accept read parse compose
Ei E load reply

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

20

Hot Swapping

® Goal: Change a program dynamically, i.e. online.
® Problem: Preserving program correctness.
® Challenges:
® (onsistency Problem = State quiescence (who and when).

® Mutual references = Non-blocking update coordination.

Feng, N. et.al.., "Dynamic evolution of network management software by software hot-swapping," IFIP/IEEE IM 2001.

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Hayden, C.M.; Hicks, M.; et.al. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12
21

From Live Updates to
Dynamic Evolution

Live
updates
® Procedure: program replica + state transfer.
® |mpact: typically small and local bug fixes or security patches.

® Occurrence: infrequent

Christopher M. Hayden, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. State transfer for clear and efficient runtime
updates. IEEE ICDEWV 'l I.

Christopher M. Hayden, Edward K. Smith, Michail Dencheyv, Michael Hicks, and Jeffrey S. Foster. Kitsune: efficient, general-
purpose dynamic software updating for C. OOPSLA ’[2.

22

From Live Updates to
Dynamic Evolution

Dynamic
= Software
Updates (DSU)

® Procedure:in-place code + state update.
® |mpact: typically small and local bug fixes or security patches.

® Occurrence: infrequent

Michael Hicks and Scott Nettles. 2005. Dynamic software updating. ACM Trans. Program. Lang. Syst. (TOPLAS)
lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09.

Cristiano Giuffrida and Andrew S.Tanenbaum. Cooperative update: a new model for dependable live update. In HotSWUp '09
23

From Live Updates to
Dynamic Evolution

Dynamic
= Software
Evolution

® Procedure:in-place code + state update.
® |mpact: local changes (operators) + program updates (graph).
® Occurrence: part of the development process.

> Dynamic evolution of any (middleware) dataflow program.

Cristiano Giuffrida, Andrew S.Tanenbaum, et.al. Safe and automatic live update for operating systems. In ASPLOS 'l 3.

24

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

EEE EE = EEE EE
accept T read parse load compose

...

cache merge
miss
Cache ! 10ad ‘

Extension

25

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

EEE EEE EE EE =
accept read T parse load compose

...

cache merge
miss
Cache Lo l0ad ‘

Extension

26

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

= EE EEE EEE EE
accept read parse T load compose

...

cache merge
miss
Cache Lol load ‘

Extension

27

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

EEE EE = EE EE
accept read parse load compose

...

cache merge
miss j
Cache Lol l0ad

Extension

28

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

EEm mm] CT mm
accept read parse ———» m compose

...

cache merge
miss j
Cache Lol l0ad

Extension

29

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

EEE EE m Em EE
accept read parse m >‘ compose

. Update
hit N
" ”| cache merge
: miss
Cache. Lol l0ad ‘
Extension

30

Graph Updates

® Marker-based coordination to transition the graph from one
consistent state into the other.

= EED mm EEE
accept read parse >‘ compose

Em hit =
cache

miss
1]
Cache Lo l0ad

Extension

merge

31

Experimental Setup

server
(I thread/operator)

e

proxy

The NIO Switch

Experiment: 30 concurrent clients request |out of 10000
files of size 50kB.

Update: Coordinated switch (after ~40s) of our HT TP server
to support NIO.

load reply
accept read parse NIO 4>{ compose —¥ NIO

33

The NIO Switch

Experiment: 30 concurrent clients request |out of 10000
files of size 50kB.

Update: Coordinated switch (after ~40s) of our HT TP server
to support NIO.

load reply
accept read parse NIO 4>{ compose —¥ NIO

o °° NIO switch
B9 6
50 ® request _

Time (s)

34

Dynamic Server Evolution

® Experiment:
® Small (feeds - 2kB) & “large” (webpage - 100kB) files.
® 30 concurrent clients for each.

® (Goal:avoid penalizing small requests by large requests.

® Evolution: Cache insertion (~70s) and proxy update (~145s).

35

Dynamic Server Evolution

® Experiment:
® Small (feeds - 2kB) & “large” (webpage - 100kB) files.
® 30 concurrent clients for each.

® (Goal:avoid penalizing small requests by large requests.

® Evolution: Cache insertion (~70s) and proxy update (~145s).

90 T - - T T
R0 F cache insertion]
request

’g 70 d proxy insertion }
£ 60 request .
S50k T YA Y E I e E T e \ .
g 40 f e N Bt
~ 30 T requestsize: 100 kB /O interference during N T

20 H — - request size: 2 kB cache loading R e i —

10 | | |

0 50 100 150 200
Time (s)

36

Conclusion

® Dataflow allows to take live updates to a new level:
> Do not update, evolve!

® See the paper for the solutions of the skipped challenges.
® Future work:

® Scalable programming model.

® [External resource updates.

37

Thanks for your attention!

Questions!

38

Update Contention

cache insertion

request inline naive
H I

X--X offline naive
&N offline preloaded
OO offline Redis
O--0 iterative

|
| |
X i
XN
\ A X..
i 1_@5 LI t. 3 ><‘\ i
40 OO B0y _
: R n e P
30 | : O 00 0 Bl BT e e
20 H | | |
45 50 55 60 65 70
Time (s)

39

Motivation

® Jetty: Servlet Engine and HT TP Server.

® Web server as an example of a highly concurrent program.

accept read parse load compose i—V‘ reply \

® Jetty’s graceful restart after 95s into computation:

® Minimal default installation, just serving files.
® 38 concurrent clients request 20 kB file every 20 ms.

® Downtimes ~8-10s & Request latency ~|-2m:s.

140 o graceful restart period i
— 120 o misconfigured o . M fixed cache 7]
e 100 | cache ° 3? o config -
. i1 -
§ 60F ° °go8 o8 & o 8 ° -
S aof y % % o8 foods -
— o °§ 8005 608 g@ o

2000 R B@BeF 20 8 8 2°

0 S o EaHo® B o HOE -5 & 8 &% L & o O _ Qo
0 20 40 60 80 100 120 140 160 180

Smith, E.K.; Hicks, M.; Foster, J.S., "Towards standardized benchmarks for Dynamic Software Updating systems," HotSWUp’ 12
40

Programming Model

(ns com.server)
® Implicit dataflow with Ohua:
(ohua
defn web-server [port]
-> port accept read parse load compose reply))
public static class NIOFilelLoader {
@Function
public Object[] load(String resource) throws IOException {
FileChannel fc = new FilelnputStream(resource).getChannel();

return new Object[] { fc, fc.size() };
}

} ‘ohua com.server/web-server 80)

® Updates in Ohua:

(update
[com.server/reply com.server.update/reply (new ReplyStateTransfer]
[com.server/load com.server.update/load])

public class ReplyStateTransfer implements StateTransfer<server.Reply, server.nio.Reply>{
@0verride
public void transfer(server.Reply oldVersion, server.nio.Reply newVersion) {
// perform some fancy state transfer

}

b]
(update
[com.server/web-server com.server.update/web-server-with-cache])

https://bitbucket.org/sertel/ohua-updates
41

Server Evolution: Proxy

Z
[accept —» read | parse | load [compose —® reply | = 8_]
(]

42

Server Evolution: Proxy

SPON

[accept—> read — parse —®| load ¥ compose —® reply | =

Step 1: G Start the Proxy Flow

{accept—> read — parse | load —» compose —® reply | =

SPON
—

pa
[receive | load —»{ compose [send | ™ 8_]

43

Server Evolution: Proxy

SPON
—

[accept—> read — parse —®| load ¥ compose —® reply | =

Step 1: 0 Start the Proxy Flow

{accept—> read — parse | load —» compose —® reply | =

SPON
—

pa
[receive | load —»{ compose [send | ™ 8_]

Step 2: 0 Reconfigure Server Flow

accept |—»| read | parse —||—> load [compose —I |—> reply

Z
. . | L §
cond preserve client connection - merge)
: send |5 -®»| receive
Extension

-—_— e e e e, —— - ——— - [PR U U U U S R U

| |
|)
|] : =z
' receive | load * compose —» send |- M §

—— Shared MemoryArc ~ ----- Network Arc

44

Graph Transformations

Requirement: Interactive runtime.

Problem: Interfacing highly concurrent (distributed)
programs.

Runtime Graph Rewrite:
® Provide unique entrance and exit points.

® Enhance runtime features with operators (dataflow style).

Graph Rewrite Extensions

Update API
: Advanced Initialization Feedback
\ 4 |_> J
control —® up-init —{ entrance |—> exit
accept read parse load compose reply
- v
O Server Socket Client Socket ©

45

The Beauty of Abstraction

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time! = “When” solved!

O £> \DA
O
SR il o, SR
—]

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

46

The Beauty of Abstraction

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time! = “When” solved!

O 00 o
AT
_____ = }v V
_ﬂ

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

47

The Beauty of Abstraction

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time! = “When” solved!

O OCH \D~
O
..... =)
{1, 2

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

48

The Beauty of Abstraction

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time! = “When”’ solved!

0 Ooa .\DA
O
----- = e
— N =

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

49

The Beauty of Abstraction

® Dataflow building blocks: arcs, operators, dataflow graph.
® No assumptions on execution environment.
® Key insight:

® That’s a distributed system!

® We know how to reason about time! = “When” solved!

O oo O
] B I __I___>
“““ ’BQ: =
_ﬂ =

K. Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst.
3, | (February 1985), 63-75.

50

Related VWork

® Current state-of-the-art: STUMP and Kitsune (for C), Rubah (for Java)
® o “Stop the world”, Update points and relaxed synchronization
® No support for non-blocking updates.
® No easy but yet efficient (runtime overhead, scalability) update algorithms.

® No support for fine-grained and complex updates (mutual references).

NIO : NIO
Accept Read Parse Load Write Reply

®) Need to solve the consistency problem!

® C(Closest work: Cooperative Live Updates (for Operating Systems)

lulian Neamtiu and Michael Hicks. 2009. Safe and timely updates to multi-threaded programs. In PLDI '09. ACM, New York, NY, USA
Hayden, C.M.; Saur, K.; Hicks, M.; Foster, J.5..2012. A study of dynamic software update quiescence for multithreaded programs, HotSWUp’12

Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S. Foster. 2012. Kitsune: efficient, general-purpose dynamic
software updating for C.In OOPSLA 'l2.

Luis Pina and Michael Hicks. 2013. Rubah: Efficient, General-purpose Dynamic Software Updating for Java. In HotSWUp’l 3.
Cristiano Giuffrida and Andrew S.Tanenbaum. 2009. Cooperative update: a new model for dependable live update. In HotSWUp '09.

Cristiano Giuffrida, Anton Kuijsten, and Andrew S.Tanenbaum. 201 3. Safe and automatic live update for operating systems. In ASPLOS 'l 3.

51

