
ar
X

iv
:1

80
3.

03
88

5v
2 

 [
cs

.D
C

] 
 1

9 
A

ug
 2

01
8

1

Parallel FPGA Router using Sub-Gradient method
and Steiner tree

Rohit Agrawal, Chin Hau Hoo, Kapil Ahuja, and Akash Kumar

Abstract—In the FPGA (Field Programmable Gate Arrays)
design flow, one of the most time-consuming step is the routing
of nets. Therefore, there is a need to accelerate it. In [2],
the authors have developed a Linear Programming (LP) based
framework that parallelizes this routing process to achieve signif-
icant speedups (the resulting algorithm is termed as ParaLaR).
However, this approach has certain weaknesses. Namely, the
constraints violation by the solution and a local minima that
could be improved. We address these two issues here.

In this paper, we use the LP framework of [2] and solve it
using the Primal-Dual sub-gradient method that better exploits
the problem properties. We also propose a better way to update
the size of the step taken by this iterative algorithm. We perform
experiments on a set of standard benchmarks, where we show
that our algorithm outperforms the standard existing algorithms
(VPR [1] and ParaLaR).

We achieve upto 22% improvement in the constraints violation
and the standard metric of the minimum channel width when
compared with ParaLaR (which is same as in VPR). We achieve
about 20% savings in another standard metric of the total wire
length (when compared with VPR), which is the same as for
ParaLaR. Hence, our algorithm achieves minimum value for
all the three parameters. Also, the critical path delay for our
algorithm is almost same as compared to VPR and ParaLaR.
On an average, we achieve relative speedups of 3 times when we
run a parallel version of our algorithm using 4 threads.

Index Terms—FPGA, Lagrange relaxation multipliers, sub-
gradient, Steiner tree.

I. INTRODUCTION

A
ccording to the Moore’s law, the number of transistors

in an integrated circuit is doubling approximately every

two years. In the FPGA design flow, the routing of nets (which
are a collection of two or more interconnected components)

is one of the most time consuming step. Hence, there is

a need to develop fast routing algorithms that tackle the
problem of the increasing numbers of transistors per chip,

and subsequently, the increased runtime of FPGA CAD tools.

This can be achieved in two ways. First, by parallelizing
the routing algorithms for hardware having multiple cores.

However, the pathfinder algorithm [8], which is one of the

most commonly used FPGA routing algorithm is intrinsically
sequential. Hence, this approach seems inappropriate for par-

allelizing all types of FPGA routing algorithms.
Second, instead of compiling the entire design together, the

users can partition their design, compile partitions progres-
sively, and then assemble all the partitions to form the entire

design. Some existing works have proposed this approach [9],
[10]. However, the routing resources required by one partition

R. Agrawal and K. Ahuja are with Discipline of Computer Science
and Engineering, Indian Institute of Technology Indore, India e-mail:
kahuja@iiti.ac.in.

C. H. Hoo is with Department of Electrical and Computer Engineering,
National University of Singapore, Singapore.

A. Kumar is with Centre for Advancing Electronics, Technische Universität
Dresden, Germany

may be held by another partition, i.e. there is no guarantee

to have balanced partitions. In other words, in this approach,

there is a need to tackle the difficulties arising in sharing of
routing resources.

The authors in [2] overcome the limitations of existing

approaches by formulating the FPGA routing problem as an

optimization problem. Here, the objective function is linear
and the decision variables can only have binary values. Hence,

the FPGA routing problem is converted to a LP minimization

problem (LP is an optimization technique in which the ob-
jective function and the constraints are linear). In this LP, the

dependencies that prevent the nets from being routed in par-

allel are examined and relaxed by using Lagrange relaxation
multipliers. The relaxed LP is solved in a parallel manner by

the sub-gradient method and the Steiner tree algorithm, which

is called ParaLaR.

This parallelization gives significant speedups. However, in
this approach, the sub-gradient method is used in a standard

way that does not always gives feasible solution (i.e. some

constraints are violated). Further, by this approach, although
the metric of total wire length is reduced as compared to VPR

[1] (which is another commonly used algorithm for FPGA

routing), but the metric of minimum channel width needs to
be further improved.

There are many variants of the sub-gradient method and a

problem specific method gives better result. In this paper, we

use the same framework as for ParaLaR, but use an adapted
sub-gradient method. Our approach substantially solves the

above two problems. That is, as compared to results in [2],

the number of infeasible solutions and the minimum channel
width requirement both reduce by about 22% (which is same

as in VPR). As compared to VPR, we save about 20% in the

total wire length as well, which is the same improvement as
obtained in ParaLaR. Hence, our algorithm achieves minimum

value for all the three parameters. The critical path delay
for our algorithm is almost same as compared to VPR and

ParaLaR. On an average, we achieve relative speedups of 3
times when we run a parallel version of our algorithm using
4 threads.

The rest of this paper is organized as follows: Section
II describes the formulation of the FPGA routing as an

optimization problem. Section III explains the implementation
of our proposed approach. Section IV presents experimental

results. Finally, Section V gives conclusions and discusses

future work.

II. FORMULATION OF THE OPTIMIZATION PROBLEM

The routing problem in FPGA or electronic circuit design is

a standard problem that is formulated as a weighted grid graph

G(V,E) of certain set of vertices V and edges E, where a cost

http://arxiv.org/abs/1803.03885v2


2

is associated with each edge. In this grid graph, there are three

types of vertices; the net vertices, the Steiner vertices, and the
other vertices. A net is represented as a set N ⊆ V , and set

N consist of all net vertices. A Steiner vertex is not part of

the net vertices but it is used to construct the net tree, which
is the route of a net (i.e. a sub-tree T of the graph G). A net

tree is also called a Steiner tree.
Fig. 1 shows an example of 4× 4 grid graph. In this figure,

the black color circles represent the net vertices; the gray
color circles represent the Steiner vertices; and the white color

circles are the other vertices. The horizontal and the vertical

lines represent the edges (as above, these edges have a cost
associated with them but that is not marked here). Two net

trees are shown by dotted edges.
The number of nets and the set of vertices belonging to

each net is given. The objective here is to find a route for
each net such that the union of all the routes will minimize

the total path cost of the graph G. The goal here is to also

minimize the channel width requirement of each edge. Both
these objectives are explained in detail below, after (1).

To achieve the above two objectives, the problem of routing

of nets is formulated as a LP problem given as follows [2]:

Minimize
xe,i

Nnets
∑

i=1

∑

e∈E

wexe,i, (1)

Subject to

Nnets
∑

i=1

xe,i ≤ W, ∀e ∈ E,

Aixi = bi, i = 1, 2, ...Nnets

xe,i = 0 or 1.

This optimization problem minimizes the total path cost of

FPGA routing, where Nnets is the number of nets, E is the

set of edges, we is the cost/ time delay associated with the
edge e, xe,i is the decision variable that indicates whether an

edge (routing channel) e is utilized by the net i (value 1) or not

(value 0), xi is the vector of all xe,i for net i that represents the
ith net's route tree, Ai is the node-arch incidence matrix, and

bi is the demand/ supply vector. The inequality constraints are
the channel width constraints that restrict the number of nets

utilizing an edge to a constant W (which is iteratively reduced

as well; discussed later). The equality constraints guarantee
that a valid route tree is formed for each net, and these are

implicitly satisfied by our solution approach.
To find a feasible route for each net efficiently, the above

LP should be parallelized. There are two main challenges here,
which are discussed next.

Fig. 1. A 4× 4 grid graph.

A. The channel width constraints

The first challenge to parallelize the LP given in (1) is

created by the channel width constraints. These constraints

introduce dependency in the parallelizing process, and there-

fore, should be eliminated or relaxed (see [2] for further
details). The Lagrange relaxation [4] is a technique well

suited for problems where the constraints can be relaxed

by incorporating them into the objective function1. For our
problem, λe times the corresponding channel width constraints

are added to the original objective function to obtain the
modified LP. That is, we have the following [2]:

Minimize
xe,i,λe

(

Nnets
∑

i=1

∑

e∈E

wexe,i +
∑

e∈E

λe

(Nnets
∑

i=1

xe,i −W

)

)

,

(2)

Subject to Aixi = bi, i = 1, 2...Nnets.

xe,i = 0 or 1 and

λe ≥ 0.

This LP is independent of the channel width constraints, and

hence, it can be solved in a parallel manner. After rearranging

the objective function in (2), the above modified LP is given
as [2]

Minimize
xe,i,λe

(

Nnets
∑

i=1

∑

e∈E

(we + λe)xe,i −W
∑

e∈E

λe

)

, (3)

Subject to Aixi = bi, i = 1, 2...Nnets.

xe,i = 0 or 1 and

λe ≥ .

In (3), (we + λe) is the new cost associated with the edge
e.

B. The choice of decision variable

The second challenge to solve the LP given by (1) or the

modified LP given by (3) is created by the decision variables
xe,i. These decision variables are restricted to take value

either 0 or 1 (as earlier, if the edge e is utilized by the

net i, then xe,i = 1 else xe,i = 0). Thus, this is a binary
integer linear program (BILP), which is non-differentiable, and

hence, cannot be solved by conventional methods such as the
Simplex method [11], the interior point method [12], etc. Some

methods to solve non-differentiable optimization problems

include sub-gradient based methods [3], the approximation
method [13], etc.

The sub-gradient based methods are commonly used algo-

rithms to minimize non-differentiable convex functions f(x).
These are iterative in nature that update the variable x as
xk+1 = xk − αkgk, where αk and gk are the step size and a

sub-gradient of the objective function, respectively, at iteration

k. In [2], the LP given in (3) is not solved directly by a
sub-gadient based method but only the Lagrange relaxation

multipliers are obtained by it. After this (i.e. after solving

Lagrange relaxation multipliers), the minimum Steiner tree
algorithm is used in a parallel manner for FPGA routing. Here,

the decision variables xe,i ∀i ∈ 1, 2, ..., Nnets can have only
binary values. Just using a sub-gradient method will not always

give binary solutions. Moreover, using a Steiner tree algorithm

helps us in achieving feasible routing (equality constraints are
implicitly satisfied).

1If this is not possible, then a Lagrange heuristic can be developed [14],
[15], [16].



3

III. IMPLEMENTATION

There are many variants of sub-gradient based methods such

as the Projected sub-gradient method [3], the Primal-Dual sub-
gradient method [5], the Conditional sub-gradient method [6],

the Deflected sub-gradient method [6], etc. In [2], authors use

the Projected sub-gradient method, where the Lagrange relax-
ation multipliers are calculated as λk+1 = max

(

0, λk + αkh
)

.

Here, λk and λk+1 are the Lagrange relaxation multipliers at
the kth and the (k + 1)th iteration, respectively; and h ∈ gk,

i.e. a sub-gradient of the objective function given in (3) at the

kth iteration. Also, αk denotes the size of the step taken in
the direction of the sub-gradient at the kth iterative step, and

is updated as αk = 0.01/ (k + 1). This approach satisfactorily

parallelizes FPGA routing and gives better results over VPR
[1], but there are many inequality constraints that are violated

for some cases. Furthermore, the minimum channel width

requirement needs to be improved further.

In the formulated LP given by (1), we is constant ∀e ∈ E.

Therefore, minimizing the objective function (that is, the

total path cost of FPGA routing) automatically minimizes the

channel width (i.e.
∑Nnets

i=1
xe,i). We start with a constant

value of W , and then solve the optimization problem given
by (3). This gives us the total path cost and the channel

width
(

also the inequality constraints violation from (1), i.e.

max(0,
∑Nnets

i=1
xe,i − W )

)

. Next, we reduce the value of
W and again follow the above steps to obtain a better local

minima both for the total path cost and the channel width.

If we obtain a reduced channel width, then the inequality
constraints violation may reduce, increase or remain same.

Usually, it decreases. Therefore, the above two problems are
interlinked2.

In our proposed work, we overcome the deficiencies of

the existing approach of FPGA routing discussed in [2] by

appropriately calculating the Lagrange relaxation multipliers
and the corresponding step sizes. We implement three different

variants of sub-gradient based methods, namely, the Projected

sub-gradient method (as done in [2]), the Primal-Dual sub-
gradient method, and the Deflected sb-gradient method. The

difference among these variants include the different ex-
pression for the iterative update of the Lagrange relaxation

multipliers and the corresponding step sizes.

A. Our algorithm

Next, we discuss our algorithm that better exploits the prob-
lem properties. We use the Primal-Dual sub-gradient method

because the LP given in (3) is the Lagrange dual problem of

the LP given in (1), and hence, this method is a natural fit
here. That is, the Primal-Dual sub-gradient method is useful

because of the way the Lagrange relaxation multipliers are

updated. That is,

λk+1
e = λk

e + αk max

(

0,

Nnets
∑

i=1

xe,i −W

)

, (4)

where
∑N

i=1
xe,i − W is a sub-gradient of the objective

function at the kth iteration (the partial derivative of the

objective function in (3)), and λ0
e = 0 ∀e ∈ E is the most

general initial guess [4].

2For further detail, please see Section 3 of [2].

Let us now compare (4) with the update given in the

Projected sub-gradient method (as discussed in the above
paragraphs). For both the methods, if the inequality constraints

are violated at the kth iteration, then the Lagrange relaxation

multiplier at the (k+1)th iteration is incremented by αk times
the sub-gradient of the objective function at the kth iteration3.

Otherwise, for the Primal-Dual sub-gradient method, the value
of the Lagrange relaxation multiplier at the (k+1)th iteration

is the same as the kth iteration, while for the Projected sub-

gradient method, it may change. In general, this works better
because, if there is no constraints violation at the kth iteration,

then the Lagrange relaxation multiplier at the (k + 1)th

iteration should remain the same.
Next, we discuss the choice of the step size. If the step size

is too small, then the algorithm would get stuck at the current

point, and if it is too large, the algorithm may oscillate between
any two non-optimal solutions. Hence, it is very important to

select the step size appropriately. The choice of step size can

be either constant in all the iterations or can be reduced in each
successive iteration. In our proposed scheme, the computation

of step size involves a combination of the iteration number as
well as the norm of the KKT operator (Karush-Kuhn-Tucker

operator) of the objective function at that particular iteration

[6] (instead of using the iteration number only, as given in
[2]). This ensures that the problem characteristic is used in

the computation of the step size. That is,

αk = (1/k) /
∥

∥T k
∥

∥

2
,

where k is the iteration number, T k is the KKT operator for

the objective function of (3), and
∥

∥T k
∥

∥

2
is the 2-norm of T k.

The sub-gradient based methods are iterative algorithms,
and hence, we need to check when to stop. There is no ideal

stopping criterion for sub-gradient based methods, however,

some possible measures that can be used [3] are discussed
below (including our choice).

• If at an iteration k, gk ≤ 0 and λkgk = 0, then we obtain

the optimal point. Therefore, we stop here. However, this
stopping criteria is achieved only if strong duality holds

but, in case of our problem, there is weak duality4.
• Let at iteration k, f∗ and fk

best are the optimal value

and the best possible value, respectively, of the objective

function, then the sub-gradient iterations can be stopped
when |fk

best − f∗| ≤ ǫ (where ǫ is a very small positive

number). In this criteria, the optimal value of the objective

function is required in advance, which we do not have.
• In diminishing step size, as discussed at the start of Sec-

tion III, when the step size becomes too small, the sub-

gradient method would get stuck at the current iteration,
and hence, we can stop sub-gradient iterations. However,

for our problem, there is no proper criteria for deciding

the lower limit of the step size.
As any of the above stopping criteria do not suit us, we stop

our algorithm after a sufficient and fixed number of iterations,
as used in [2].

IV. EXPERIMENTAL RESULTS

Using the earlier algorithm, we perform experiments on

a machine with single Intel(R) Xeon(R) CPU E5-1620 v3

3For the Primal-Dual sub-gradient method this is obvious. For the Projected
sub-gradient method, λk , αk , and h all would be positive.

4Detail of strong and weak duality can be found in [6].



4

running at 3.5 GHz and 64 GB of RAM. The operating system

is Ubuntu 14.04 LTS, and the kernel version is 3.13.0-100. Our
code is written in C++11 and compiled using GCC version

4.8.4, and the resulting compiled code is run using different

number of threads. We compare our method with VPR [1]
and ParaLaR [2]. For comparison purpose, VPR 7.0 from the

Verilog-to-Routing (VTR) package and ParaLaR are compiled
using the same GCC version. Some parameters in the input-

output pad and the configuration logic blocks (CLBs) of VPR

and ParaLaR are modified to run them identical to our model.
We test on MCNC benchmark circuits [7], which range from

small sized to large sized logic blocks. We use an upper limit

of 50 for the number of iterations of the sub-gradient method.

In Table I, we compare the total path cost, the channel
width, and the critical path delay (in nanoseconds) as obtained

by our algorithm with VPR and ParaLaR. For sake of easy

comparison, we call the total path cost as the total wire
length here. These metrics are independent of the number of

threads used, therefore, here we do not present the results

for different number of threads (which is discussed in the
following paragraph). If we look at the total wire length, then

our algorithm gives average savings of 20.13% over VPR,

which is the same as for ParaLaR. If we look at the channel
width, then our algorithm gives 22.12% improvement over

ParaLaR, which is the same as for VPR. Recall, the constraints
violation is the difference of the channel width and the input

W. Hence, this improves proportionally to the channel width

improvement. Hence, our algorithm achieves minimum value
for all the three parameters.

Unfortunately, minimizing the channel width and total wire

length causes our algorithm to incur some extra cost (very

less) in terms of critical path delay. We can see from Table I
that this delay for our algorithm is on an average only 1.95%
higher than that of VPR, and on an average 3.87% higher than

that of ParaLaR. Hence, our algorithm incurs very little cost
in terms of time.

Recall, the underlying goal of [2] and us (we improve

the algorithm in [2]) is to efficiently parallelize the routing

process. Hence, next we report results when using different
number of threads in Table II. The benchmark dataset used is

the same as discussed in the earlier paragraph (first column
in Table II). Columns second through sixth give the absolute

runtime and the remaining columns give the relative speedups.

The speedup of execution with n threads is calculated as

Speedup =
Execution time with n threads

Execution time with 1 thread
.

The symbols 1X, 2X, 3X, 4X in Table II refers to the execu-
tion of our algorithm with 1, 2, 3 and 4 threads, respectively.

We can observe from this table that our algorithm (when we

run it using 1 thread) is 2.16 times faster than that of VPR.
It can also be observed from this table that when we use our

algorithm with 2 threads, on an average, speedups of upto 1.78
times are obtained over the single thread execution. Similarly,

using 3 threads, on an average, speedups of upto 2.29 times,

and when using 4 threads, on an average, speedups of upto
2.95 times are observed.

We also calculate the speedup of ParaLaR, and compare

it with our proposed method. We achieve almost similar

speedups, and hence, we do not report this data here. Thus, our

proposed method achieves similar parallelization as compared

to ParaLaR.

V. CONCLUSIONS AND FUTURE WORK

In this work, we extend the work of [2] in proposing a more

effective parallelized FPGA router. We use the LP framework

of [2] and use the Primal-Dual sub-gradient method with
better update of the Lagrange relaxation multipliers and the

corresponding step sizes.

Experiments on the standard benchmarks show that using

our algorithm gives improvements of upto 22% in the standard
metric of the minimum channel width as compared to ParaLaR

[2], our parent algorithm (which is the same as in VPR [1],
another standard algorithm). This proportionally reduces the

constraints violation, which was a problem in ParaLaR. We

achieve the same total wire length (another standard metric)
as ParaLaR. This is 20% better than the corresponding data

for VPR. Hence, our algorithm achieves minimum value for

all the three parameters. Our algorithm incurs very less extra
timing cost in terms of the critical path delay, and executing

it in parallel gives speedups of upto 3 times with 4 threads

(over our serial implementation).

The Lagrange relaxation technique that we use, is not
always guaranteed to satisfy the corresponding constraints

(as observed in Sections III and IV). Hence, one future

direction is to develop a Lagrange heuristic [14]–[16] specific
to our problem to avoid this behavior. Another future direction

involves experimenting on the Titan benchmark [17].

REFERENCES

[1] V. Betz, J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research”, in Proc. 7th Int. Workshop on Field-Programmable
Logic and Applications (FPL), London, UK, September 1997, pp. 213-
222.

[2] C. H. Hoo, A. Kumar, Y. Ha, “PARALAR: A parallel FPGA router
based on Lagrangian relaxation”, in Proc. 25

th Int. Conf. on Field-
Programmable Logic and Applications (FPL), London, UK, September
2015, pp. 1-6.

[3] S. Boyd, L. Xiao, A. Mutapcic, “Subgradient methods”, Notes for EE392o
(Stanford University), October 2003, pp. 1-21.

[4] M. L. Fisher, “The Lagrangian relaxation method for solving integer
programming problems”, Management Science, vol. 27, no. 1, pp. 1-18,
1981.

[5] S. Boyd, “Primal-Dual subgradient method”, Notes for EE364b (Stanford
University), Downloaded in December 2017, pp. 1-13.

[6] B. Guta, “Subgradient optimization methods in integer programming with
an application to a radiation therapy problem”. PhD Thesis, Technische
Universität Kaiserslautern, 2003.

[7] S. Yang, “Logic synthesis and optimization benchmarks user guide: ver-
sion 3.0”, Microelectronics Center of North Carolina (MCNC), January
1991.

[8] L. McMurchie, C. Ebeling, “PathFinder.: A negotiation-based
performance-driven router for FPGAs”, in Proc. 3rd Int. Symposium on
Field-Programmable Gate Arrays, Napa Valley, USA, February 1995,
pp. 111-117.

[9] L. A. F. Cabral, J. S. Aude, N. Maculan, “TDR: A distributed-memory
parallel routing algorithm for FPGAs”, in Proc. 12

th Int. Conf. on
Field-Programmable Logic and Applications (FPL), Montpellier, France,
September 2002, pp. 263–270.

[10] M. Gort, J. H. Anderson, “Accelerating FPGA routing through paral-
lelization and engineering enhancements special section on PAR-CAD
2010”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no.1, pp. 61-74, 2102.

[11] R. H. Bartels, G. H. Golub, “The simplex method of linear programming
using LU decomposition”, Communications of the ACM, vol. 12, no. 5,
pp. 266-268, 1969.

[12] I. J. Lustig, R. E. Marsten, D. F. Shanno, “Interior point methods for
linear programming: Computational state of the art”, ORSA Journal on
Computing, vol. 6, no. 1, pp. 1-14, 1994.



5

TABLE I
COMPARISON OF QUALITY OF RESULTS BETWEEN OUR ALGORITHM, VPR, AND PARALAR.

Benchmark Total wire length Channel width Critical path delay (ns)

Proposed VPR [1] ParaLaR [2] Proposed VPR [1] ParaLaR [2] Proposed VPR [1] ParaLaR [2]

Alu4 5087 6538 5087 35 38 48 7.01 7.43 6.89

Apex2 7927 10233 7928 48 50 59 7.90 8.23 7.50

Apex4 5652 7190 5650 49 48 61 7.50 7.25 6.38

Bigkey 4173 4711 4173 18 26 23 3.69 2.67 4.30

Clma 50310 62086 50328 81 76 104 15.90 15.13 14.95

Des 7050 8892 7047 30 30 41 5.63 5.83 5.32

Diffeq 4522 6299 4522 42 34 50 5.60 5.71 5.60

Dsip 4935 5952 4935 31 28 34 3.86 3.12 2.89

Elliptic 15198 19150 15202 58 54 79 9.30 9.02 9.25

Ex1010 23277 29474 23268 67 62 81 11.90 10.83 12.31

Ex5p 4921 6289 4921 50 50 66 6.40 7.90 7.15

Frisc 19668 24095 19659 71 62 89 12.54 11.67 11.22

Misex 5229 6789 5230 47 44 57 6.70 6.01 6.42

Pdc 30685 36803 30667 75 74 84 12.40 13.60 11.90

S298 5208 6610 5208 37 40 49 12.90 10.24 11.54

S38417 21705 28671 21707 50 48 86 8.05 8.50 8.47

Seq 7672 9691 7671 51 50 63 6.98 6.38 6.67

Spla 20404 25115 20402 66 64 86 11.34 12.50 10.61

Tseng 2436 3504 2436 34 38 47 5.27 5.70 5.27

Total 246059 308092 246041 940 916 1207 160.87 157.72 154.64

Average 12950.47 16215.37 12949.53 49.47 48.21 63.53 8.47 8.30 8.14

TABLE II
EXECUTION TIME (IN SECOND) OF VPR AND OUR ALGORITHM, AND SPEEDUP WHEN USING DIFFERENT NUMBER OF THREADS.

Benchmark Execution time (s) Speedup

VPR 1X 2X 3X 4X 1X vs VPR 2X vs 1X 3X vs 1X 4X vs 1X

Alu4 8.28 10.45 6.25 5.11 3.35 0.79 1.67 2.05 3.12

Apex2 8.58 32.49 17.15 11.53 8.52 0.26 1.89 2.82 3.81

Apex4 4.7 8.06 4.23 2.9 2.67 0.58 1.91 2.78 3.02

Bigkey 2.81 0.97 0.67 0.7 0.61 2.90 1.45 1.39 1.59

Clma 395.86 83.97 44.38 30.24 28.18 4.71 1.89 2.78 2.98

Des 9.57 2.68 1.59 1.31 0.96 3.57 1.69 2.05 2.79

Diffeq 6.54 2.43 1.43 1.27 0.87 2.69 1.7 1.91 2.79

Dsip 4.72 0.76 0.61 0.52 0.49 6.21 1.25 1.46 1.55

Elliptic 52.14 27.56 14.23 9.85 8.99 1.89 1.94 2.80 3.07

Ex1010 37.05 26.4 13.88 9.5 7.56 1.40 1.90 2.78 3.49

Ex5p 6.38 4.42 2.49 1.74 1.6 1.44 1.78 2.54 2.76

Frisc 56.86 9.75 5.53 3.88 3.33 5.83 1.76 2.51 2.93

Misex 5.55 18.74 9.74 8.95 5.59 0.30 1.92 2.09 3.35

Pdc 306.69 107.2 56.41 51.27 27.75 2.86 1.90 2.09 3.86

S298 8.34 6.72 3.61 3.38 2.51 1.24 1.86 1.99 2.68

S38417 26.13 10.76 6.04 4.28 3.86 2.43 1.78 2.51 2.79

Seq 10.67 21.25 11.19 7.5 5.8 0.5 1.90 2.83 3.66

Spla 54.79 156.51 79.81 65.84 49.79 0.35 1.96 2.38 3.13

Tseng 1.74 1.53 0.93 0.83 0.56 1.14 1.65 1.84 2.73

Total 1007.4 532.65 280.17 220.6 163.17

Average 53.02 28.03 14.75 11.61 8.59 2.16 1.78 2.29 2.95

[13] P. B. Dimitri, “Nondifferentiable optimization via approximation”, in
Balinski, M. L., Wolfe, P. (Ed.): Nondifferentiable Optimization (Springer,
Berlin, Heidelberg, 1975), pp. 1-25.

[14] O. .G. Czibula, H. Gu, Y. Zinder, “A Lagrangian relaxation-based
heuristic to solve large extended graph partitioning problems”, in:
Kaykobad, M., Petreschi, R. (Ed.) WALCOM: Algorithms and computa-
tion (Springer, Cham, 2016), pp. 327-338.

[15] K. Holmberg, M. Joborn, K. Melin, “Lagrangian based heuristics for
the multicommodity network flow problem with fixed costs on paths”,
European Journal of Operational Research, vol. 188, no. 1, pp. 101-108,
July 2008.

[16] S. Deleplanque, S. K. Sidhoum, A. Quilliot, “Lagrangean heuristic for
a multi-plant lot-sizing problem with transfer and storage capacities”,
RAIRO-Operations Research, vol. 47, no. 4, pp. 429-443, 2103.

[17] K. E. Murray, S. Whitty, S. Liu, J. Luu, V. Betz, “Titan: Enabling large
and complex benchmarks in academic CAD”, in Proc. 23rd Int. Conf.
on Field-Programmable Logic and Applications (FPL), Porto, Portugal,
September 2013, pp. 1-8.


	I Introduction
	II Formulation of the optimization problem
	II-A The channel width constraints
	II-B The choice of decision variable

	III Implementation
	III-A Our algorithm

	IV Experimental results
	V Conclusions and future work
	References

