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Smaller together:
Groupwise Encoding of Sparse Neural Networks
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Abstract—With the drive towards ever more intelligent devices,
neural networks are deployed on smaller and smaller systems. For
these embedded microcontrollers, memory consumption becomes
a significant challenge. We propose multiple encoding schemes
that convert the decrease in parameter counts, achieved through
unstructured pruning, into tangible memory savings. We first
discuss a sparse encoding scheme for arbitrary sparse matrices
that is based on encoding offsets from a predicted even spacing
of elements in a row. The compression rate of this scheme is
improved further by identifying groups of elements which can be
encoded with even lower overhead. Both methods are combined
into a hybrid scheme which encodes arbitrary sparse matrices
with low overhead, while allowing for parallel access to multiple
elements in a row at once—an important feature for using the
scheme on the latest generation of microcontrollers with parallel
SIMD capabilities. Our scheme compresses sparse models to below
the size of their dense counterparts for sparsities as low as 30%
and reduces model size by 32.4% and 26.4% at less than one
percentage point of accuracy loss for two convolutional neural
network tasks in our evaluation.

Index Terms—neural networks, pruning, microcontrollers,
embedded systems, SIMD

I. INTRODUCTION

BOTH programmers and users have come to rely on neural
networks (NNs) for solving problems where handwritten

algorithms fail. Across an enormous number of fields, NNs
are used for their capacity to learn functions from data [1].
Due to their large consumption of resources, NNs often remain
confined to large and centralized high performance computing
(HPC) clusters. This approach introduces issues through a lack
of privacy, the need for device connectivity and increased
latency. An alternative approach is tinyML, which brings
models directly to a user’s device and uses local NNs to
process the data where it originates [2]. Even these small
models present a significant challenge for microcontroller units
(MCUs), the smallest of compute systems. While desktop and
HPC systems offer an abundance of memory at minimal latency
through hierarchical layers of caches, MCUs are only equipped
with small amounts of Flash and Static random-access memory
(SRAM) memory, usually in the range of KiB to a few MiB [3].

When memory is precious, increasing the performance per
parameter becomes vital. Unstructured Pruning leverages the
redundancy in NN weights by identifying those weights that do
not contribute much to overall performance and replacing them
with zeros. Previous research shows that a significant number
of parameters can be pruned without a noticeable impact on
the NN’s performance [4]. The remaining weights, however,
pose a new challenge: the previously regular structure becomes

highly irregular after pruning. Encoding the positions of non-
zero elements in a way that translates the reduction of effective
parameters into real-world savings requires a data structure
that can quickly reconstruct the position of non-zero elements
at runtime, while keeping its own memory footprint as low as
possible.

Scientific sparse matrix encoding schemes optimize for
extremely high sparsities, but create significant overhead
when they are deployed with the much lower sparsity seen
from unstructured pruning [5]. Scientific applications also put
throughput over memory savings. Schemes for NN accelerators,
in contrast, parallelize the extraction of rows but lack the
capability to employ intra-row parallel single instruction,
multiple data (SIMD) operations present in the latest generation
of commercial off-the-shelf (COTS) embedded systems [6].

We aim to fill this gap with a combination of different
approaches. We present a parallel encoding scheme for sparse
NNs and embedded SIMD instructions that was first introduced
in [7]. We provide an extension to this work by addressing
a major shortcoming: a low compression rate, particularly in
the case of low to medium levels of sparsity. For many NN
architectures, these lower levels of sparsity maintain most of the
original network’s performance. This makes them most relevant
for decreasing the size of NNs while providing performance
similar to that of baseline models. In practice, these sparsities
are rarely used since the overhead of sparse formats negates
most or all of the potential gains from omitting zero values.
As stated above, an important shortcoming of many encoding
schemes is the lack of parallelism from making the recovery of
non-zero element indices a recursive operation. Our proposed
scheme, in contrast, increases the compression rate, but also
maintains parallelism in retrieving element indices.

The novel contributions of this work are:

• A groupwise encoding scheme that encodes groups of
equidistant elements. By grouping non-sequential elements
based on a shared property, encoding overhead is not
incurred for each element, but rather for each group of
elements. This spreads the encoding overhead out across
a larger element pool, which reduces the overhead per
active element. We provide a greedy search algorithm that
can identify these groups of elements from a given sparse
matrix.

• A hybrid encoding scheme that combines the groupwise
encoding with delta-Compressed Storage Row (dCSR) to
leverage the strengths of both formats: while groupwise
encoding is used to encode the majority of elements in
a memory-efficient way, dCSR processes the arbitrarily
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Figure 1. CSR representation of a sparse matrix

positioned elements that can not be assigned to a group.
These encoding formats for sparse matrices add important tools
for deploying NNs with a low memory footprint on compact
devices.

II. BACKGROUND AND RELATED WORK

The landscape of dedicated encoding formats for sparse
matrices can be divided into two major categories. The first
category are schemes that target scientific applications with
extremely high sparsity in HPC environments. Secondly, there
are schemes aimed towards neural network applications on
embedded platforms and accelerators. We lay out where both
categories are similar, and where they differ. We also provide
background on embedded SIMD instructions, a method that
parallelizes NNs execution at the intersection of regular MCUs
and custom NN accelerators.

A. Sparse Matrices in HPC

Large numbers of scientific problems involve computation
on sparse matrices. Examples range from network graphs,
fluid dynamics, computational biology and electrical circuits to
optimization problems and computer vision [8]. Across such
a diverse range of applications, sparse matrix properties like
the degree of sparsity, inherent structure, matrix dimensions
and others vary widely. Because scientific applications are
run on desktop or HPC systems, they are rarely constrained
by memory or power consumption. Sparse matrix encoding
schemes in the scientific domain are instead judged mainly
by the computational throughput they achieve [9]. The most
commonly used representation of a sparse matrix for scientific
applications is the CSR format [10]. CSR decomposes a sparse
matrix into three contiguous, one-dimensional arrays as shown
in Figure 1. The values array holds the non-zero values of
the matrix. The column index of each element is contained in
the col_idx array. Lastly, the row_ptr array holds a pointer
to the first element of each row in the values and col_idx
arrays. Numerous CSR derivatives have been proposed in
the literature to increase throughput, both on SIMD [11] and
graphics processing unit (GPU) [12] systems.

B. Sparsity for Neural Networks

The process of ‘Pruning’, or the removal of unnecessary
weights from the dense, regular computation of an NN, was
proposed early on in the research of NNs [13]. With the
success of deep learning, the method has gained renewed
interest as an effective means to deal with the ever-growing

parameter counts associated with deep NNs [4]. One approach
is the removal of entire filters, a method known as ‘structured
pruning’ [14]. An important benefit of structured pruning is
that the computation and memory representation of the pruned
network remains very similar to the unpruned network. A
different approach—and the focus of this work—is unstructured
pruning; here, each weight parameter can be an independent
subject to pruning. Due to the much larger decision space
on what to prune, unstructured pruning yields models that
achieve a higher performance per parameter, albeit at the cost
of a highly irregular structure [15] of the pruned network.
Much of the existing research on pruning discusses how to
best identify parameters that should be pruned and carry out
retraining of the network to maximize performance per non-
zero parameter. Improvements are typically quantified using the
active parameter count, which leaves the practical aspects of
how to best encode the irregular structure presented by sparse
NNs aside [16]. A notable exception is [5] which explicitly
compares the performance of sparse NN while also considering
the overhead required for encoding the irregular weights. The
authors conclude that, despite the additional overhead, sparse
models outperform dense counterparts that consume similar
amounts of memory.

To enhance both memory and computational efficiency on
resource-constrained edge compute systems, NN weights are
typically quantized to integer formats of low bitwidth for
inference [17]. When incorporating sparsity, storing indexing
information in a plain CSR representation would create an
overhead several times larger than the memory footprint of the
matrix’s small, quantized non-zero values. The main contributor
to this overhead is the col_idx array: while the row_ptr
array only grows with the number of rows, col_idx contains
an entry for each non-zero element. The numerical range of the
values in the col_idx array is determined by the number of
columns in the matrix. For most applications, this means that
it has to be encoded using a larger number of bits, compared
to the actual values.

A common solution to this issue is the use of ‘Relative
Indexing’ [18], [19]. This method transforms the col_idx
array from the CSR representation so that it does not contain
the absolute column index of a non-zero element, but instead
the index relative to its predecessor. This reduces the numerical
range occupied by the values in the col_idx array so that it
can easily be encoded using a smaller number of bits. Padding
elements are inserted where needed to avoid overflow of the
chosen low bitwidth integer base type. It is worth noting that
this sacrifices the inherent parallelism for accessing several
elements within a row that is present in the CSR format. Since
each index depends on its predecessor, calculating the index
of an element is inherently recursive and cannot be carried
out for multiple elements in a row at once. This explains why
Relative Indexing and similar schemes [6] see most use in
custom hardware accelerators, where index computation can
easily be parallelized across multiple rows using dedicated
hardware. Due to the specific quantization requirements of
NNs, embedded SIMD parallelizes across several elements of
a single row. In this setting, sequential encoding would interfere
with parallelism.
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An alternative approach is proposed by [20]. The sparse
matrix is partitioned into smaller sub-matrices, each of which
allows for the column indices to be encoded in a fixed and
small number of bits. This preserves the parallel properties of
the original CSR within the submatrices, but not across entire
rows of elements in the original matrix.

C. Embedded SIMD

Deploying deep NNs on resource-constrained platforms
involves handling computationally complex operations that
can trivially be parallelized. Classical COTS MCUs lack the
necessary low bitwidth, highly parallel datapaths to accelerate
these applications. This limits the field of tinyML to the study
of very small network architectures and problems [21]. One
solution for the lack of parallel compute in embedded systems
is the use of a dedicated co-processor for the processing
of NNs. These neural processing units (NPUs) allow for
full customization of dataflow, quantization and processing
elements [22], resulting in the highest efficiency. This efficiency,
however, comes at the price of added design complexity and
a lack of flexibility once the custom co-processor is fixed in
silicon.

A compromise is the integration of SIMD instructions into
the processor core. This results in a more lightweight, flexible
implementation. Several works have opted to implement a
subset of the RISC-V Vector Extension [23], [24]. In the
domain of proprietary MCUs, ARM has specified the M-Profile
Vector Extension (MVE) as part of the ARMv8.1 architecture
of microcontrollers [25]. This work focuses on it, as it is the
most mature at the time of writing.

III. PROPOSED METHODOLOGY

We present a scheme that encodes the deviation from a
predicted uniform spread of elements in a sparse row. A
decomposition of the resulting delta values is used to encode
non-aligned integer ranges in a SIMD-friendly fashion. From
the observed properties of this encoding scheme, we further
develop an additional format that identifies element groups and
uses a shared property within each group to reduce encoding
overhead further. Both schemes are combined into a hybrid
scheme that combines the strengths of each individual format
to achieve a minimal compression overhead.

A. Delta-Linear Encoding & Dynamic Bitwidths

Delta-Linear Encoding is based on the idea that elements
are roughly uniformly distributed in an NN weight matrix after
pruning.

1) Delta-Linear Encoding (DLE): While the row index array
in CSR only grows linearly withO(n) of the matrix dimensions,
the column indices array grows quadratically. In practice, this
implies that optimizing for low memory consumption should
primarily involve reducing the size of the column indices
array. To preserve parallelism of execution, there must not be a
dependency between adjacent elements in the index calculation.
To achieve this, we first predict an element’s index using a
linear mapping of its position in the column indices array and
store only the deviation (the delta value) from that prediction.

Let us assume a non-zero element has column index ci,
located at position i in the column indices array. We can
decompose ci into a mapping function f(i) and the deviation
from it: ∆ci = ci − f(i). The specific function f(i) is
determined by the user and should depend on the distribution
of elements in the matrix. We examine two Convolutional
Neural Network (CNN) architectures, following the application
of unstructured low-magnitude pruning. Inspection of the
sparse weights shows that non-zero values do not appear to
be concentrated in any particular areas of the weight matrix,
and that the density of non-zero elements is instead similar
throughout all regions of the matrix. This makes a linear
mapping f(i) = i ·m+ n a sensible default. The performance
of this default on two CNNs is explored in more detail
in Appendix B. We can derive the slope of this linear function
as the average distance between two adjacent elements from
the number of non-zero elements in the row of the sparse
matrix ks and the row length of the dense matrix kd. This
results in a slope of m = ⌊kd/ks⌉ that yields small deviations
of values for ∆ci within a single row. The slope is rounded to
the nearest integer to enable integer-only runtime calculations.

For practical implementations, we group several consecutive
delta elements into SIMD runs Sj of length g. This gives us
the group-wise linear mapping function

ci =

⌊
kd
ks

⌉
· (i mod g) + ∆ci (1)

In this representation, only the ∆ci part requires explicit storage,
as the first part of the equation can be inferred at runtime. For
each SIMD group Sj = {∆ci,∆ci+1, . . . ,∆ci+g−1} will be
retained. We assign a group-wise y-axis intercept nj to make
sure that each element within the SIMD unit is unsigned and
minimize the numerical value of delta values within a group
at the same time:

nj = minSj (2)

which we can remove from the per-element values

S′
j = {∆ci − nj ,∆ci+1 − nj , . . . ,∆ci+g−1 − nj} (3)

At runtime, nj now describes the base pointer for the group.
The offset and base pointer of an element ci,j in lane i of
SIMD group j can be reconstructed as

ci,j = i · ⌊kd/ks⌉+∆ci,j︸ ︷︷ ︸
scatter/gather offset

+ nj︸︷︷︸
Base Pointer

(4)

By subtracting the minimum from Sj , we ensure that all delta
elements within S′

j fall into the range [0,maxSj −minSj ].
A numerical range starting from zero means that the minimal
number of bits is required to encode the delta elements. To
further reduce the memory footprint for each group, we apply
the same linear decomposition the base pointer delta values
nj that we applied above to the elements in groups. Our goal
is to avoid encoding the average distance between two groups
explicitly, since it is usually large and redundant. The average
distance between two groups is computed by multiplying the
number of elements in the group by the average distance
between them g · ⌊kd/ks⌉. We can omit the y-axis intercept
as long as the distribution of elements in the matrix is not
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Figure 2. Runtime calculation of base pointer and scatter/gather offsets from
Delta-Linear encoding for one SIMD group

highly irregular. To reconstruct nj with zero-based indexing,
the calculation of nj can be expressed as

nj = j ·
⌊
kd
ks

⌉
· g +∆nj (5)

Alternatively, nj can be stored incrementally, similar to the
encoding of column indices in Relative Indexing.

nj =

{
∆nj for j = 0

nj−1 + ⌊kd/ks⌉ · g +∆nj otherwise
(6)

In both scenarios, ∆nj is the part of the equation that must
be stored in memory. We find that the latter encoding produces
a more even distribution of values with lower magnitude in our
evaluation, albeit at the cost of introducing an interdependence
between groups. The process of deriving a base pointer and
per-element offsets from the delta representation is shown
in Fig. 2.

Certain boundary conditions must be adhered to. The
calculation of per-element offset values must not overflow
the bounds given by the width of the SIMD lane. In addition,
∆nj also must not overflow its base type (an 8-bit signed
integer in our implementation). We insert padding to ensure
that all of these conditions hold. To ensure this, we employ a
greedy algorithm that, in every iteration, inserts a zero padding
value into the center of the largest gap in the row until no
overflow remains.

2) Dynamic Bitwidth Decomposition (DBD): Although
Delta-Linear Encoding (DLE) reduces the size of column
index elements within a group, it can only guarantee the
upper bound for these values that was achieved during the
padding insertion. It would be too wasteful for many memory-
constrained applications to encode every column index’s value
using the size of this upper bound. On the other hand, lower
bitwidths that are not an even divisor of the machine word size
(such as five, six or seven bits) cannot be directly represented
in memory in a way that makes it easy to load them in parallel
at runtime. Having the largest element of a row determine
the bitwidth for all other elements in a row also means that
a single outlier value might lead to a lot of wasted memory
when other elements would be representable with fewer bits.

1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

Base Values (1st - 4th Bit)

0 0 1 1

0 0 0 1 6th Bit 0 1 0 0 5th Bit
≠0?

≠0?

Tracking Bitmap

Figure 3. Memory-aligned representation of a SIMD run with a 6 bit value
range through decomposition into base values, bit masks and a tracking bitmap

To resolve these issues, each group of delta elements is
decomposed into a base value with a fixed number of bits, and
several groups of extension bitmasks as illustrated in Fig. 3.
Every bitmask contains one bit per SIMD lane that marks
whether or not the bit is set in the encoded value. Masks that
would entirely consist of zeroes are not created. The extension
bits can dynamically be added to the base value at runtime if
more bits than available in the base value are required. The
decomposition is done separately for each SIMD run. Through
this, each SIMD run can be encoded in the number of bits
required for the largest element in this run, reducing the impact
of rare outlier values to a single SIMD group rather than an
entire row. The size of the mask is determined by the number
of SIMD lanes which can be expected to be a power of two; the
extension bitmasks do not cause issues with memory alignment
because of this. Since the number of extension bitmasks can
vary for each group, it is necessary to explicitly encode how
many of them need to be consumed per group at runtime.
Each group maintains a tracking bitmap for this purpose. This
tracking bitmap has one bit for every bit position that might
be extended. If the bit is set to one, there exists a bitmask for
this position that needs to be consumed at runtime; if it is set
to zero, there is no bitmask for this position.

In our implementation, we opt for a base value size of four
bits, leaving bits five, six and seven to be extensible. A fixed-
size base value is not strictly necessary for the algorithm, as
any integer could also fully be decomposed into only a set
of extension bitmasks. We introduce the base values because
the re-composition at runtime incurs some overhead. Hence,
it is more effective to dynamically add bit positions that have
a high probability of being absent in a significant number of
groups; we’ve found that this is generally not the case for the
lowest four bits, which is why they are always stored as-is.
To ensure easy access to the 4-bit base values in memory, we
interleave two adjacent groups so that the base values of the
first group occupy the upper nibble, while the base values of
the second group occupy the lower nibble. The advantage of
this memory representation is that when executing a parallel
load, each base value is loaded into the correct SIMD lane. The
values of either group can be accessed through a single parallel
shift or bitwise-or operation. The bitmasks occupy a multiple
of a byte and are stored contiguously without interleaving.

During the recomposition of the original value at runtime,
all extensible bit positions will be iterated over. If the corres-
ponding bit is not set in the tracking bitmap, the iteration is
complete and we continue with the next position. If the bit
is set we load the next bitmask from memory and advance
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the mask pointer. We then do a parallel bitwise-or operation
with the current bit position. The mask is used to apply this
operation only to the lanes that need to be extended in this
group. The binary lane masking feature that is essential for
this process is present in ARM MVE as well as the RISC-V
Vector Extension.

The combination of DLE and Dynamic Bitwidth Decom-
position (DBD) is required to adapt the CSR format to meet
the specific requirements posed by sparse NNs for inference
on embedded SIMD processors: parallelizable computation
and a memory representation that ensures that each individual
component is properly aligned in memory while also providing
minimal memory overhead. Together, these techniques form
the dCSR encoding format for sparse matrices.

B. Groupwise Encoding

In DLE, we observe that almost all of the overhead—both in
terms of memory and algorithmic complexity—originates from
the Delta component ∆ci,j . The delta component encodes the
deviation of an element’s position from an equidistant spacing
and must be retained for each element. If the delta values
within a group span a large numerical range, they need to be
decomposed into a DBD representation and recomposed at
runtime. Out of this arises the question: Can both algorithmic
and encoding overhead be reduced further if we managed to
eliminate the delta component altogether? This would require
all elements within a SIMD run to have an equal spacing from
each other. Furthermore, existing research suggests that most
non-trivial NN models only retain near-baseline performance
for medium sparsities, typically in the range below 60% to
80% sparsity. At these relatively low sparsities, the occurrence
of equidistant groups of elements is highly likely1. The
analysis of throughput in [7] suggests that zero-skipping during
computation is only worthwhile at very high sparsities. At
low sparsities, higher throughput is achieved by extracting
sparse tensors into the system’s SRAM and performing a dense
computation. The cause of this is an additional performance
penalty of using gather memory accesses in sparse compute
kernels. This allows us to relax another requirement: If an
n-dimensional tensor’s data is backed by a contiguous 1-D
array in memory (as is typically the case) then it is sufficient to
recreate this 1-D array at runtime, rather than extract each row
individually. For a high-dimensional tensor, we commit only the
sparse structure of its flattened 1-D memory representation to
memory. A single, large and contiguous array allows groups to
span several rows of the original tensor. Without flattening the
tensor first, a jump from one row to the next would otherwise
be a hard limit. This simplification of the underlying data
structure to a large 1-D array increases the search space and
thus the chance of finding equidistant element groups further.

1) Grouping of Elements: For the relaxed problem instance
of encoding a one-dimensional array, we can describe a sparse
array A of length cmax as a set of tuples. These tuples are

1Refer to Appendix A for a detailed analysis of the portion of a sparse
array that can be assigned to groups.

comprised of a non-zero value v and its corresponding position
c in the array, where c is a unique integer column index:

A :={(v, c) | ∀(v, c) : c ∈ N ∧ c < cmax

∧ (∀(v′, c′) ̸= (v, c) : c′ ̸= c)} (7)

Within A, there might be any number of portions B′ :=
{b1, b2, . . . , bn}, B′ ⊆ A for which all elements are evenly
spaced by some constant distance d, starting from an offset n:

bj :={(v, c) ∈ A| ∃Ij :=
(k · dj + nj , (k + 1) · dj + nj , . . . , (k + s) · dj + nj),

k ∈ Z, dj ∈ N+, nj ∈ N :

(∀(v′, c′) ∈ bj : c
′ ∈ Ij)} (8)

from which we are interested only in the subset that minimizes
the number of groups and thus provides the partitioning with
the lowest overhead while still containing all non-zero elements
that are contained in B:

B := min
B⊆B′

|B| (9)

s.t. ∀(v, c) ∈ B′ : (∃b ∈ B : (v, c) ∈ b) (10)

For each group bj , this makes it possible to reconstruct the
group’s index Ij from only three parameters: the group’s size
sj , the position of the first element nj and the distance between
elements dj—regardless of the number of elements in the group.
Analogous to Equation (4), we can calculate the position of
ci,j as:

ci,j = i · dj︸︷︷︸
scatter/gather offset

+ nj︸︷︷︸
Base Pointer

s.t. i < sj (11)

This representation removes the need for storing a per-element
offset ∆ci,j . Instead, the encoding overhead of the group
is distributed among all its members and remains constant.
Particularly for large groups, this means that the overhead per
non-zero element is spread over many group members. For an
array that can be broken down into large groups, the overhead
will scale favorably.

2) Group Sizes and Occpuancy: In theory a group can have
any number of elements. In practice, this is limited to a handful
of useful groups sizes. First, groups with too few elements can
not profit from the parallel unpacking and reduced overhead
(as the constant overhead is spread over only a few elements).
Second, a group’s elements should be word-aligned in memory
to facilitate fast access at runtime. This limits the practical
groups sizes to multiples of four. The number of lanes in the
ARM MVE is 16, which upper-bounds the group size. We
pick a group size of four as the lower limit for the reasons
given above, leaving 4, 8, 12 and 16 as practically useful group
sizes. This might lead to situations where not every element
from B′ is included in B, violating the optimization constraint
given in Equation (10). The implications of allowing elements
of B′ to be omitted from B are addressed in more detail in
Section III-C. Having a small set of group sizes also eliminates
the need to encode sj for each group individually. Instead, we
assign groups to separate sub-arrays, depending on their size
so that groups of equal size are stored contiguously in memory.
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It might also be advantageous to allow for gaps in groups.
Handling large groups of elements that have some gaps as if
those gaps were not present contributes to lower total overhead.
If we encode a group of 15 non-zero elements and a gap as if
it contained 16 elements by simply including a padding zero in
the position of the gap then the constant overhead will still be
spread out over 15 active elements. Figure 4 exemplifies this
with the first group: allowing for a padding element in a small
number of positions will help in finding more groups that can
be represented using the groupwise scheme. We can formalize
this intuition and calculate how high the group occupancy has
to be. Assume that we want to encode a group of ne non-zero
elements, each with a size of ce. For a group size of s (where
s ∈ {4, 8, 12, 16} in our case) and an additional constant
overhead cg which encodes each group’s starting position and
element distance, the amount of memory mg required to encode
the group becomes

mg =
⌈ne

s

⌉
· (cg + s · ce)

with a compression overhead per non-zero element of

mc = 1− mg

ne · ce
For each group size, this helps determine the number of padding
elements that can be inserted in order to maximize the overall
compression ratio. Due to the proportionally smaller jumps
between the larger group sizes 8, 12 and 16, full occupancy
is required for s = 12 and s = 16, while a group of size 8
can have up to one padding element and still have a favorable
compression ratio, compared to a fully occupied group of
size 4. When comparing each group’s size to an assumed
50% overhead for the remainder, this number increases to
three padding elements for s = 16 and s = 12 and one for
s = 8. This relaxed configuration trades off a small amount of
compression performance in favor of finding fewer and larger
groups. Larger group sizes are beneficial because they also
contribute to faster extraction, since they make better use of
the available SIMD lanes. A case by case distinction based
on these values for different group sizes would complicate the
search algorithm. Instead, we capture the trade-off between
compression rate and preference for larger group sizes in an
occupancy parameter θ that expresses the desired occupancy
as a fraction of the group’s size. We propose a fixed value
of θ = 0.8 for a good balance of larger group sizes with
compression performance. We validate this parameter in more
detail in Appendix C.

3) Discovering element groups in a sparse array: An
important question is how to find B, given A. We opt for
a greedy approach that tries to find the largest groups with the
highest occupancy first. Once a group is found, it is removed
from the search space. When all groups above the threshold for
a certain group size are exhausted, we move to the next smaller
group size and continue the search. We use a 1D convolution
over a binary mask of A to identify groups and their occupancy.
Given a group size s and element distance d, we can create
a binary mask G(s, d) that has ones in the element positions
and zeros in the space between elements. Refer to Appendix D
for more details on layout and generation of the group mask.

a c ed f g hb

a c ed f g hb

a c e d f g h0
start index: 0

distance: 3
start index: 8

distance: 2

Extract Groups2

Identify groups1

Compress Remainder3

b

Figure 4. Decomposition of a sparse array of 8 elements into two groups
b1, b2 of s = 4 with 75% and 100% occupancy and a remainder R of one
element.

Algorithm 1: Extraction of element groups from a
sparse array
Input: sparse array A
Parameters :
S list of group sizes, sorted in descending order
D set of element distances
θ occupancy threshold w. θ ∈ [0, 1]

Data:
MA binary mask of A

G binary group mask
C discrete convolution of G over M

Output:
B list of element groups, defined by bj = (sj , dj , nj)
R sparse remainder

MA[i]←

{
1 where A[i] ̸= 0

0 otherwise
foreach s ∈ S do

repeat
foreach d ∈ D do

G← GroupMask(s, d)
C← G ∗MA
(vmax, nmax)← max C, argmax C
if vmax ≥ s · θ then

B← B + (s, d, nmax)
foreach si ∈ 0, 1, . . . , s− 1 do

MA [nmax + si · d]← 0

until ∀d ∈ D : vmax < s · θ

R[i]←

{
A[i] where MA[i] ̸= 0

0 otherwise

return B, R

Instead of convolving over A, we use a binary mask MA to
indicate the positions of non-zero elements, regardless of their
numerical values. We can then use the result of the convolution
C = G(s, d)∗MA to identify group starting positions with high
occupancy: the convolution response in C indicates positions
with high overlap of ones in the group mask and ones in
the mask of A. The convolution result is equivalent to the
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Figure 5. Model accuracy and comparison of compression rates for different sparse encoding schemes across multiple sparsities. Dotted lines mark baseline
accuracy and 1 p.p accuracy drop.
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Figure 6. Pareto front of sparse model size and accuracy. Dotted lines mark dense model’s accuracy and memory footprint.

group’s occupancy. To avoid an overlap of groups (e.g. a
run of 17 consecutive values would be decomposed into two
fully-occupied groups of 16 elements if we allowed groups
to overlap), we only identify one group at a time, remove
it from MA and repeat the procedure. If several positions in
C are above the threshold, we pick the one with the highest
occupancy as the newly found group’s starting position. If
several positions share the highest occupancy, we pick the first
one. Starting with the largest group size s, we test all group
distances d. If we can find no group for any d, this means that
we have exhausted all groups for the current group size and we
move to the next-smaller size. The search terminates when we
can’t find any groups above the occupancy threshold for the
smallest group size. The procedure is given in pseudocode in
Algorithm 1. This algorithm only provides an approximation of
B as given in Equation (9). An optimal solution to the group
partitioning problem, rather than a simple heuristic, would
likely increase the runtime of the algorithm in a way that is
not scalable to meaningful applications.

C. Hybrid Compression Scheme

If we allow group sizes of s ≥ 1, we can ensure that B = A
for any sparse matrix A. As discussed in Section III-B2, this is
not practical since the benefits of groupwise encoding decrease
with smaller group sizes. When limiting the search to practical
group sizes, there might remain elements that can’t be assigned
to any element group. The question then becomes how the
remaining elements R := A \ B should be handled.

It is important to note that R as a subset of A is simply
another sparse matrix. This means that we can encode it using
any scheme that supports arbitrary sparsity patterns. However,
the dCSR encoding scheme we described in Section III-A
lends itself naturally to this task since it optimizes for the
same parameters as groupwise encoding: parallelism and high
compression rate. To extend groupwise encoding to real world
scenarios, we therefore propose a two-stage encoding algorithm.
First, an exhaustive search for increasingly smaller groups is
carried out. All values assigned to a group are removed from
the sparse matrix. The remainder matrix is then encoded using
dCSR.
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IV. RESULTS AND DISCUSSION

Both dCSR and the hybrid encoding scheme are evaluated
in terms of the compression rate that they achieve and the
performance of the underlying sparse model. Additionally, we
measure the cycles necessary to extract the compressed sparse
tensors into SRAM on a prototype system emulating the ARM
Cortex-M55 MCU.

The complexity of the greedy search algorithm that partitions
the sparse weight tensors into a set of groups B grows with
the number of non-zero elements (i.e. it is proportional to
the size of the flattened array and inversely proportional to
the array’s sparsity). While the partitioning happens within
milliseconds for the smallest weight tensors, partitioning the
largest tensors in the ResNet34/TinyImageNet configuration
(with up to 2.36 million non-zero elements) might take up to
more than an hour. However, this partitioning is only run once
during model preparation. Also, since a fast group partitioning
algorithm is not the purpose of this study, we only implemented
it in a sequential, single-threaded program. Given that the
partitioning of a weight tensor is independent of the rest of the
network’s parameters, a multi-threaded implementation that
parallelizes the partitioning of different weight tensors would
be a straightforward improvement.

A. Model Accuracy and Compression Rate

Sparse models must maintain a delicate balance: increased
sparsity leads to smaller models, but can also negatively impact
model accuracy. How much a model can be shrunk for a given
sparsity depends on the overhead produced by the encoding of
the sparse tensors. We choose three image classification tasks
and CNNs to investigate this trade-off.

1) ResNet8 and CIFAR10: Using a ResNet8 [26] model
to classify images from the CIFAR10 [27] data set is a test
case taken from the TinyMLPerf library [28] of embedded
machine learning challenges. The ResNet8 is trained using the
architecture and optimization parameters given in the original
work. The baseline model is pruned iteratively over 30 epochs to
the desired target sparsity, followed by 10 epochs of retraining.
Network parameters are optimized using stochastic gradient
descent (SGD) with a learning rate of 5× 10−2. The learning
rate is decayed by 90% after epochs 2 and 7 of the retraining.
Small weight tensors do not contribute much to the network’s
memory consumption, but often disproportionately influence
the final accuracy. For that reason, we only prune weight tensors
with more than 2048 parameters. These prunable tensors still
contain 95.2% of all weight parameters.

2) MobileNetV2: We choose MobileNetV2 [29], since it
is a lightweight architecture that is already well-optimized
for use on edge devices. First, a dense baseline model is
trained on the TinyImageNet dataset, a reduced version of the
full ImageNet [30] challenge. In TinyImageNet, the number
of classes is reduced from 1000 to 200, with 500 training
and 50 validation samples per class. Images are reduced to
64× 64 pixels in size from an original 224× 224 pixels for
ImageNet. The augmentation procedure is the same as for the
original Imagenet dataset. The model is pruned over 18 epochs,
which is followed by 8 epochs of retraining. Similar to the

ResNet experiment, the SGD optimizer uses a learning rate of
5× 10−2 for the pruning and the first two retraining epochs
and is lowered by 90% after retraining epochs 2 and 6. The
cutoff for deciding which tensors are pruned is set to 8192.
The prunable tensors then account for 95.7% of the model’s
weights.

3) ResNet34: ResNet34 [26] is included as an example of a
larger model to test performance on CNNs with high parameter
counts. To account for the smaller input size compared to
the full ImageNet dataset, we make a small alteration to the
architecture by changing the stride of the first MaxPooling layer
from two to one. This does not affect the parameter count but
reduces the downsampling in the initial portion of the network.
From a pre-trained model, we prune for 10 epochs, followed
by 6 epochs of retraining. The model is optimized using SGD
with an initial learning rate of 5× 10−2 and a decay of 90%
after the 10th and 14th epoch. In this architecture, even the
smallest weight tensors have 36864 elements, which means
that a cutoff is not necessary and all weight tensors are being
pruned.

4) MobileViT: While the initial success of the Transformer
architecture was limited to the field of Natural Language
Processing (NLP) [31], it has been adopted in other fields,
including computer vision [32]. The Transformer architecture
now competes with the more established CNNs. Due to
the growing importance of this architecture across domains,
we validate whether our method continues to work when
applied to Transformer-style architectures. While large-scale
Transformers like Large Language Models (LLMs) or diffusion
models with billions of parameters will not be deployable
on embedded systems in the foreseeable future, architectures
that combine convolutions with attention layers for image
recognition might be small enough to fit even the tight
constraints of microcontrollers. We include the XXS variant
of the MobileVisionTransformer (MobileViT) [33], one such
architecture, in the comparison. The model is trained for 20
epochs on the TinyImageNet datset with a learning rate of
1 · 10−3 that is decayed to 1 · 10−5 using a cosine schedule.
Iterative pruning is carried out using the same hyperparameters,
but with the initial learning rate reduced to 1 · 10−4. For the
same reasons as above, the cutoff value is set to 8192, meaning
that pruning targets 83% of the model’s parameters.

We carry out a detailed analysis of the trade-off between
model accuracy and memory footprint for the two smaller
models. Each baseline model is pruned to different sparsities
while keeping the same hyperparameters. The resulting sparse
models are compressed using different encoding schemes, as
described in Table II.

Model performance and compression rates across a range
of sparsities are compared in Figure 5. For both networks, we
observe that a steep and mostly linear degradation of accuracy
starts at 50% sparsity for ResNet8 and at around 45% for
MobileNetV2. At these levels of sparsity, the weight matrices
still contain a relatively high number of non-zero elements. This
increases the likelihood of encountering element groups, which
allows for a large portion of the weights to be encoded using
the groupwise scheme with low overhead. The compression
rates achieved by the various encoding formats appears to be
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Table II
REFERENCE ENCODING FORMATS

Format Description

hybrid The proposed hybrid encoding scheme in which the array is
first decomposed into groups with
s = {4, 8, 12, 16}, d = [1, 16], θ = 0.8. The irregular
remainder is encoded using the dCSR format.

dCSR All weight arrays are encoded using the plain dCSR format
with 4bit base indices

RLE CSR encoding with relative column indices [18], [19] where
each relative index is encoded in 4bit and padding elements
are inserted in case of an overflow

PSR Weight arrays are encoded using the PSR format with 8bit
indices as presented in [20]

highly consistent across the different networks in our evaluation
for the same level of sparsity. The additional evaluation of
ResNet34 in Table I supports this finding, suggesting that there
is a strong correlation between sparsity and compression rate.

Within a 1 p.p. drop in accuracy, the ResNet8 model achieves
a compression rate of 1.48 at 55% sparsity when compressed
using the hybrid encoding scheme. In the same performance
envelope, MobileNetV2 reaches a sparsity of 50% and a
compression rate of 1.36. Between the start of an actual
reduction in size and a drop in accuracy exceeding 1 p.p., hybrid
encoding achieves, on average, a size reduction of 4.3% and
5.4% respectively over RLE, the next-best reference format.
Note that the hybrid encoding scheme already compresses

models to below the size of the dense baseline at sparsities
that are as low as 30%. Across the most interesting sparsity
region between 30% and 60% where model performance is
still close to the baseline the hybrid scheme achieves the highest
compression rates of all schemes in the comparison. The trade-
off between accuracy and memory consumption is further
explored in Figure 6, where we compare each sparse model’s
accuracy directly to its size under different encoding schemes.
This confirms that the hybrid scheme performs particularly
well when compressing low to medium sparsities where the
likelihood of encountering element groups is high. These low to
medium sparsities coincide with performance at or near that of
the dense baseline model. The additional evaluation of the larger
ReseNet34 model in Table I confirms the observations from the
two smaller models: While the compression performance of the
hybrid scheme degrades for higher sparsities, it can leverage
even very low sparsities to reduce the size of models within
one percentage point of the baseline accuracy. Evaluation of
the MobileViT model also underlines another finding from
the three CNNs, namely that the same encoding format tends
to produce similar compression rates for the same sparsity,
regardless of the model’s architecture.

B. Decompression Throughput
We estimate the throughput achievable by each sparse

encoding format on the ARM MPS3-AN547 platform. MPS3-
AN547 is an FPGA prototyping system that emulates the
ARMv8.1 architecture and its MVE instructions. For NN
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Figure 7. Cycles for sparse buffer extraction on ARM-MPS3 AN547 for weight tensors from ResNet8 and MobileNetV2. Comparison between 30% and 70%
sparsity.

applications, MVE improves in several ways over previous
generations of Cortex-M devices by providing support for 8-bit
Multiply-Accumulate (MAC) operations and a 128-bit vector
word width. All weights are loaded out of the system’s DDR4
RAM at runtime. From their sparse representation, weights
are extracted into a dense buffer in SRAM. We measure the
execution cycles for each extraction, as reported by the ARM
Cortex-M55 core’s Performance Monitoring Unit (PMU). For
context, we also provide the amount cycles required for a
single inference run with a batch size of one in Table I.
Inference is run using a model that was converted for inference
using the CMSIS-NN kernel library with the microTVM NN
compiler [34] and compiled using the same settings as other
benchmarking code.

All sparse weight tensors from the two reference architectures
in Section IV-A are merged into a benchmark set. We obtain
a broad range of tensor sizes with parameter counts between
2,304 and 409,600 elements. The impact of sparsity on
throughput is assessed by evaluating two different sparsities
at the upper and lower ends of the range of most interesting
sparsities, i.e. the sparsities between the onset of compression
benefits and the point where the degradation of accuracy
becomes too large. The benchmarking results across our
benchmark set are presented in Figure 7. The PSR format
achieves the highest throughput of all reference formats since
its 8-bit index values have a larger memory footprint but require
practically no further processing at runtime. The hybrid scheme
is algorithmically less complex than plain dCSR since it omits
the DBD of indices. Despite this, throughput is lower by a
geometric average of 19.8% for the benchmark with 30%
sparsity and 42.8% at 70% sparsity. This is because a large
portion of the groups neither reach the maximum size nor
are they fully occupied. Both a small group size and reduced
occupancy contribute to the underutilization of SIMD hardware,
since only one group can be extracted at a time. For a group size
of s = 4, this results in 75% of the parallel compute capacity
remaining unused during extraction. This also explains why
throughput is closer to dCSR at lower sparsities, with a larger
gap for increased sparsities; at lower sparsities, the chance
of encountering groups of larger size is increased due to a
higher density of elements. This makes the hybrid scheme more
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Figure 8. Cumulative cycles for buffer extraction on ARM-MPS3 AN547 for
sparse weight tensors from ResNet8 for different sparsities.

efficient at low sparsities, while extraction overhead rises with
higher sparsity. The underutilization of SIMD units is also the
main contributor to the 10% and 38% overhead of the hybrid
scheme over the use of Relative Indices. A hyperparameter
that controls the trade-off between throughput and compression
rate is the set of available groups sizes S. Allowing for small
group sizes, e.g. 4 ∈ S, increases the likelihood of encountering
element groups, which improves the compression rate, but leads
to poorer SIMD utilization. Determining which choice of group
sizes yields the best results is dependent on the requirements
of the target application, the NN hardware architecture used,
hardware platform and resource availability.

The results from Figure 7 suggest that throughput is
directly proportional to the number of parameters in the
extracted buffer. The results also indicate that the throughput
of different methods is influenced in different ways by the
underlying weight tensor’s sparsity. We further investigate this
by comparing the cumulated extraction for all sparse weight
tensors from ResNet8 across a broader range of sparsities
in Figure 8.

When comparing the decompression throughput with the
cycles required for inference in Table I, it is clear that the
total overhead of sparse compression and decompression is
highly dependent on the model architecture. Both ResNet
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variants rely on 2D Convolutions which have a higher arithmetic
intensity. Due to their higher reuse of parameters, their inference
dominates the overall cycle count, while no combination of
sparsity and decompression algorithm adds more than 4%
runtime overhead. The overhead is more pronounced for
MobileNetV2, which uses fewer computations per parameter
due to its reliance on Depthwise-Separable Convolutions.
Whether the reduced throughput justifies the savings in memory
is dependent on the base model’s architecture as well as the
constraints on memory on the target systems. On embedded
systems, where memory is contained on the device itself and
can’t easily be extended after production, even small reductions
in an application’s memory requirements can be crucial.

V. CONCLUSION AND OUTLOOK

While unstructured Pruning is effective at reducing the
active parameters in an NN model, it imposes the challenge of
highly irregular patterns in the remaining weights. This often
means that fewer active parameters do not end up reducing
the network’s memory consumption. We proposed two ways
of encoding these irregular patterns for the latest generation of
embedded MCUs. Small amounts of available memory, low-
bitwidth quantization of weights and the growing availability
of SIMD instructions set embedded applications apart from
their desktop and HPC counterparts. These properties inform
the need for a high compression rate, combined with the
capability of recovering the indices of elements within a
row in parallel. From this, we first develop dCSR. dCSR
predicts an even spacing of elements in a sparse tensor and
only encodes the deviation of each element from that even
spacing in order to reduce the memory footprint. This DLE
produces values of a small numerical range, but does not
guarantee an upper bound of this numerical range. To solve
the resulting issues with memory alignment, DBD is used to
make sure that all data structures can efficiently be accessed by
parallel instructions through proper memory alignment. While
dCSR is most beneficial at high sparsities, we find that many
NN applications can only tolerate medium sparsities before
performance is degraded to inacceptable levels. By augmenting
dCSR with an additional groupwise encoding scheme, we
improve the compression rate for low and medium sparsities.
This scheme finds groups of equidistant elements which can be
encoded with even lower overhead. Both are combined into a
hybrid scheme in which elements that can be assigned to groups
are encoded using the low-overhead groupwise encoding, while
the sparse remainder is encoded using dCSR

Our evaluation shows an average reduction of 4.3% to 5.4%
in size, compared to the closest encoding format for two CNN
models trained on different datasets. This reduction is achieved
in the range of low to medium sparsities, where the model’s
performance remains close to that of the dense model. We
find that the throughput of the hybrid encoding scheme is
below that of other encoding formats, despite being able to
parallelize extraction operations. We attribute this shortcoming
to the underutilization of parallel hardware by small groups.

Embedded microcontrollers and NNs pose a unique set of
challenges when compared to edge, desktop and HPC systems.

This is due to a different balance between memory and compute
capabilities. Enabling the use of sparsity in this domain is a
vital tool for bringing NN performance closer to the user’s
devices and data, without the need for cloud computing and
permanent connectivity.
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Figure 9. Number of non-zero weights in groupwise submatrix B and
remainder R for different sparsities

APPENDIX

A. Likelihood of element groups

To substantiate our theory that a significant portion of a
sparse matrix can be represented using a groupwise encoding,
we perform an experimental evaluation of the number of non-
zero elements assigned to groups compared to the number of
elements in the remainder R. The evaluation is performed using
the parameters described in Section IV-A. The distribution of
non-zero elements into groups and remainder, depending on
sparsity is shown in Figure 9.

Notably, even for 0%, there is a sparse remainder. This is
peculiar since a dense matrix is trivially decomposable into one
or several groups, all of them with d = 0. This indicates that
the greedy aproximation of B generated by Algorithm 1 fails to
produce an optimal solution due to the assignment of elements
to groups of non-optimal sizes. Improving the performance of
the group search algorithm could therefore be a worthwhile
direction of future research.

Despite the non-optimal group search algorithm, the majority
of non-zero elements can be assigned to groups for sparsities of
65% to 70% for both networks. At 30% sparsity, a point that
typically incurs marginal performance loss, 77% of elements
are assigned to groups and can be encoded with reduced
overhead.

B. Spacing of elements

To examine the error between the actual positions and the
positions predicted by a linear mapping function f(i) in the two
example CNN architectures from Section IV-A, we construct a
histogram of the residual error ∆ci between the ground truth
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Figure 10. Histogram of residual error between linear prediction and encoded
indices. Shaded region marks value range that can be encoded in four bits.

and the mapping function f(i). In each SIMD run, we track
the difference between the linear spacing predicted by the
evenly spaced base index and the actual indices encoded in
each lane. If the distances between elements were to follow a
normal distribution, the error residuals would show a normal
distribution that is centered around zero. From the experimental
data shown in Figure 10, we can see that the distribution of
residuals is not perfectly normal, but slightly skewed to the
right. The reason for this skew is likely that the distance
between adjacent elements is lower-bounded by a distance
of one, while it is only upper bounded by the size of the
array. This causes the value range below the mean error to
be slightly more compressed than the range above the mean.
Despite this mismatch, the amount of values with an error
between −8 and 7 (i.e. offsets that can be encoded using 4-bit
values) is very high given the linear spacing function based
on the mean distance of non-zero elements. This suggests that
choosing a different mapping function would likely only lead
to marginal improvements in compression performance for the
weight tensors studied.

C. Impact of group occupancy θ on partitioning

Both the distribution of group sizes and the encoding
overhead are affected by the choice of the group occupancy
parameter θ. We conduct an experiment by varying θ when
partitioning two ResNet8 instances with 30% and 70% sparsity.
For each configuration, we track the amount of non-zero
elements assigned to each group size, as well as the additional
overhead created by padding elements and other metadata.
As partitioning also affects the size of the remainder, we
additionally list the non-zero elements in R and its additional
overhead, as well as the combined overhead in relationship to
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Figure 11. Distribution of memory footprint across group sizes and remainder
for different group occupancy values θ on ResNet8/CIFAR-10 for 30% and
70% sparsity. Dark region marks non-zero elements, shaded region marks
compression overhead.

the compressed non-zero elements. The results in Figure 11
indicate that a low θ value increases the likelihood of finding
more and larger groups because lower occupancy means that
fewer non-zero elements are required to form a group. However,
this lower threshold also causes the inclusion of more padding
elements into the groupwise partitioned portion B. Because
of this, the solution with θ = 0.5, the lowest occupancy
threshold, results in nearly twice the compression overhead of
the solutions that employ higher values for θ. The solutions for
θ = 0.8 and θ = 1.0 are very close in terms of compression
rate with θ = 1.0 giving a 0.58% improvement for the lower
sparsity case and a 0.05% improvement for the higher sparsity.
Particularly for the lower sparsity, a slightly lower value for θ
helps reduce the number of elements in the remainder, which
can be beneficial, depending on the overhead of the encoding
scheme used to encode it. Similarly, the lowered occupancy
threshold of θ = 0.8 helps the search algorithm converge
towards a solution with fewer and larger groups. This can
help in trading compression performance for reduced runtime
overhead.

D. Binary Group Mask

Groups are detected using a greedy search algorithm. A
discrete convolution of a binary group mask over the sparse
array representation shows groups of high occupancy. Each
combination of group parameters s, d is represented by a binary
mask G that is convolved over a binary mask of the array M.

Algorithm 2: Generation of binary convolution Mask
from group parameters
Input:

s Number of group elements w. s ∈ N∗

d Distance between group members w. d ∈ N
Data: total length of mask l
Output: binary group mask G

Function GroupMask(s, d):
l← s+ (s− 1) · (d+ 1)
G← Array(size=l)

G[i]←

{
1 where i mod d = 0

0 otherwise

return G

G will be an array of length s + (s − 1) · d, containing s
ones with s− 1 runs of zeros, each with length d in-between,
e.g. GroupMask(4, 1) = 1010101 or GroupMask(6,
2) = 1001001001001001. Note that there are no trailing
zeros, as those would interfere with finding groups towards
the end of the array. The procedure for generating the group
mask is also given in Algorithm 2.
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