News

Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling

Published on in NEWS

 

Researches from the Chair for Molecular Functional Materials of Prof. Xinliang Feng at cfaed, TU Dresden, Max-Planck Institute for Polymer Research Mainz, Technical University of Munich and Linköping University, recently, explored an unprecedented way of doping Graphene by incorporating antiaromatic units in the basal plane.

In the joint publication “Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling” in Nature Communications, Xiao-Ye Wang, Marcus Richter, Yuanqin He, Jonas Björk, Alexander Riss et al. (all authors contributed equally) demonstrated azomethine ylide homocoupling as a strategy to synthesize non-planar polycyclic aromatic hydrocarbons in solution and planar nanographenes on surfaces, embeding a central pyrazine ring. The antiaromaticity of the central pyrazine ring is indicated by optical absorption spectroscopy in conjunction with theoretical calculations. This strategy opens up methods for chemically tailoring graphene and nanographenes, modified by antiaromatic dopants.

Reference

“Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling”. Xiao-Ye Wang, Marcus Richter, Yuanqin He, Jonas Björk, Alexander Riss, Raju Rajesh, Manuela Garnica, Felix Hennersdorf, Jan J. Weigand, Akimitsu Narita, Reinhard Berger, Xinliang Feng, Willi Auwärter, Johannes V. Barth, Carlos-Andres Palma, Klaus Müllen, Nat. Commun., 2017, 8, 1948. doi: 10.1038/s41467-017-01934-1. 

C.-A.P. was supported from the European Union’s Horizon 2020 research and innovation program 2D ink (no. 664878). X.-Y.W. is grateful to a fellowship from the Alexander von Humboldt Foundation. R.B. appreciates  support by European Social Fund and the Federal State of Saxony (ESF-Project “GRAPHD”). M.G. acknowledges the H2020-MSCA-IF-2014 program and W.A. a Heisenberg professorship by the DFG. This work was partially supported by the ERC Consolidator Grant NanoSurfs (no. 615233), the Max Planck Society, the German Excellence Initiative “Center for Advancing Electronics Dresden” (cfaed), and the Graphene Flagship.

 

 

Go back