Press Releases

Back to the roots: Germanium outperforms silicon in energy efficient transistors with n- und p- conduction

Press Release of NaMLab / cfaed, February 3, 2017

Published on in PRESS RELEASES / PRESSEMITTEILUNGEN

NaMLab: Energy-efficient germanium nanowire transistor
Energy-efficient germanium nanowire transistor with programmable p- and n- conduction. Transmission electron microscope image of cross section.

(Deutsche Version unten)

NaMLab and cfaed reached an important breakthrough in the development of energy-efficient electronic circuits using transistors based on germanium

Dresden, Germany, February 3, 2017
A team of scientists from the Nanoelectronic Materials Laboratory (NaMLab gGmbH) and the Cluster of Excellence Center for Advancing Electronics Dresden (cfaed) at the Dresden University of Technology have demonstrated the world-wide first transistor based on germanium that can be programmed between electron- (n) and hole- (p) conduction. Transistors based on germanium can be operated at low supply voltages and reduced power consumption, due to the low band gap compared to silicon. Additionally, the realized germanium based transistors can be reconfigured between electron and hole conduction based on the voltage applied to one of the gate electrodes. This enables to realize circuits with lower transistor count compared to state-of-the-art CMOS technologies.

Today´s digital electronics are dominated by integrated circuits built by transistors. For more than four decades transistors have been miniaturized to enhance computational power and speed. Recent developments aim to maintain this trend by employing materials having higher mobility than silicon in the transistor channel, like germanium and indium-arsenide.

One of the limitations in using those materials is the higher static power loss in the transistor´s off-state, also originating from their small band gaps. The scientist team around Jens Trommer and Dr. Walter Weber from NaMLab in cooperation with cfaed succeeded in solving this issue by conceiving the germanium-nanowire transistor with independent gating regions. Dr. Weber who leads cfaed’s Nanowire Research Group points out: “For the first time the results demonstrate the combination of low operation voltages with reduced off-state leakage. The results are a key enabler for novel energy efficient circuits.”

The work has been published in the journal ACS Nano.

The work has been supported by the German Research Foundation (DFG) in the project ReproNano and has been performed in close cooperation with the DFG Cluster of Excellence Center for Advancing Electronics Dresden (cfaed). NaMLab will strive for further implementation in future products as well as further advancement in R&D with its industrial partners.

The publication can be found online under:
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b07531

 

Figure: Energy-efficient germanium nanowire transistor with programmable p- and n- conduction. Transmission electron microscope image of cross section.
Download: https://cfaed.tu-dresden.de/files/Images/dynamic/press_releases/2017/namlab_Energy-efficient-germanium-nanowire-transistor.jpg

 

About NaMLab
The Nanoelectronic Materials Laboratory gGmbH (NaMLab) was founded in July 2006. It is now a non-profit subsidiary company and an associated institute  of the TU Dresden.  The company runs research facilities with four labs, a clean room and office area for more than 40 scientists and employees on the campus of the TU Dresden. Material research and development combined with the implementation in nano-electronic devices are the goal of NaMLab´s activities. Scientists of NaMLab are closely cooperating with the institutes of the TU Dresden.
www.namlab.com

About cfaed
cfaed is a microelectronics research cluster of the German Excellence Initiative. It comprises 11 cooperating institutes in Saxony. About 300 scientists from more than 20 countries investigate completely new technologies for electronic information processing. These technologies are inspired by innovative materials such as silicon nanowires, carbon nanotubes or polymers or based on completely new concepts such as the chemical chip or circuit fabrication methods by self-assembling structures e.g., DNA-Origami. The orchestration of these new devices into heterogeneous information processing systems with focus on their resilience and energy-efficiency is also part of cfaed’s research program which comprises nine different research paths.
www.cfaed.tu-dresden.de


Deutsche Version

Pressemitteilung NaMLab / cfaed, 3. Februar 2017

Zurück zu den Anfängen: Germanium schlägt Silizium - weltweit erster rekonfigurierbarer Transistor aus Germanium demonstriert

NaMLab und cfaed erzielen bedeutenden Durchbruch bei der Entwicklung von energie-effizienten Elektronikschaltungen mit Transistoren aus Germanium

Dresden, 3. Februar, 2017
Wissenschaftler des Nanoelectronic Materials Laboratory (NaMLab gGmbH) und des Exzellenzclusters Center for Advancing Electronics Dresden an der Technischen Universität Dresden haben den weltweit ersten Transistor aus Germanium realisiert, der sich elektrisch zwischen Elektronen- (n) und Löcherleitung (p) umprogrammieren lässt. Aufgrund der geringeren Bandlücke gegenüber Silizium können Transistoren aus Germanium mit niedriger Einsatzspannung betrieben werden. Daher ermöglichen die Transistoren aus Germanium einen wesentlich energiesparenderen Betrieb als vergleichbare Transistoren aus Silizium. Zudem ist der realisierte Transistor aus Germanium abhängig von den angelegten Spannungen sowohl mit Elektronen- als auch mit Löcherleitung (rekonfigurierbar) einsetzbar. Damit lassen sich elektronische Schaltungen bei gleicher Funktionalität mit einer geringeren Anzahl an Transistoren im Vergleich zu der derzeitig angewandten CMOS Technologie realisieren.

Die heutige digitale Elektronik besteht zum überwiegenden Teil aus integrierten Schaltungen. Seit mehr als 40 Jahren werden die in den Schaltungen enthaltenen Transistoren schrittweise verkleinert um die  Rechenleistung und Schaltgeschwindigkeit zu erhöhen. Der aktuelle Trend geht dabei dahin, in den gängigen Transistoren Materialien mit höherer Ladungsträgerbeweglichkeit als Silizium, wie eben Germanium oder auch Indium-Arsenid, einzusetzen. Einem Einsatz in der Praxis steht aber derzeit unter anderem ein signifikant erhöhter Leckstrom und die damit verbundene höhere statische Verlustleistung im Auszustand entgegen, die aus den geringen Bandabständen der Materialien resultiert.

Dem Wissenschaftler-Team um Jens Trommer und Dr. Walter Weber von der NaMLab gGmbH ist es jetzt in Kooperation mit dem cfaed gelungen, Transistoren aus Germanium-Nanodrähten zu entwickeln, die durch ein spezielles Design mit mehreren unabhängigen Elektroden die störenden Leckströme entlang des Kanals unterdrücken. Dr. Weber, der beim cfaed die Nanodrähte-Forschungsgruppe leitet, erklärt: „Die erreichten Ergebnisse demonstrieren erstmalig gleichzeitig niedrige Einsatzspannungen und geringe Leckströme, sowie den damit einhergehenden reduzierten Energieverbrauch, welcher eine Anwendung des neuen Transistors in energie-effizienten Schaltungen ermöglicht.“ Die aktuellen Arbeiten wurden im Journal ACS Nano publiziert.

Die Arbeiten wurden durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Projektes ReproNano gefördert und sind in Zusammenarbeit mit dem Exzellenzcluster „Center for Advancing Electronics Dresden (cfaed)“ durchgeführt worden. Die NaMLab gGmbH wird eine mögliche Umsetzung in zukünftige Produkte sowie weiteren Forschungs- und Entwicklungs-Aktivitäten in diesem Bereich mit ihren Industriepartnern anstreben.

Die veröffentlichte wissenschaftliche Publikation ist im Internet zu finden unter: http://pubs.acs.org/doi/abs/10.1021/acsnano.6b07531

Abbildung: Energiesparender Germanium Nanodraht Transistor, der durch ein elektrisches Signal  in einen  p- oder einen  n- leitenden Zustand  gebracht werden kann. Transmissionselektronenmikroskop-Aufnahme des Querschnittes.
Download: https://cfaed.tu-dresden.de/files/Images/dynamic/press_releases/2017/namlab_Energy-efficient-germanium-nanowire-transistor.jpg

 

Über NaMLab
Die „Nanoelectronics Materials Laboratory gGmbH“ (NaMLab) wurde im July 2006 gegründet. NaMLab ist ein Tochterunternehmen und An-Institut der TU Dresden. NaMLab betreibt am Campus der TU Dresden ein Forschungsgebäude mit vier Laborräumen, einem Reinraumlabor und einem Bürobereich für über 40 Mitarbeiter. NaMLab betreibt Materialforschung zur Anwendung in nanoelektronischen Bauelementen und arbeitet eng mit den Instituten der TU Dresden zusammen
www.namlab.de

Über cfaed
Das Center for Advancing Electronics Dresden (cfaed) an der TU Dresden entstand im Rahmen der Exzellenzinitiative des Bundes und der Länder und wird von der Deutschen Forschungsgemeinschaft (DFG) von 2012 bis 2017 mit rund 34 Millionen Euro gefördert. Koordinator des Exzellenzclusters für Elektronik ist Prof. Gerhard Fettweis, Inhaber des Vodafone Stiftungslehrstuhls Mobile Nachrichtensysteme. Neben der Sprecheruniversität Technische Universität Dresden gehören zu dem Forschungsverband zehn Partnerinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute, das Helmholtz-Zentrum Dresden-Rossendorf, die NaMLab gGmbH und das KSI Meinsberg.
Als eine zentrale wissenschaftliche Einrichtung der TU Dresden vereint es über 300 Wissenschaftler auf neun verschiedenen Forschungspfaden. Sie verwenden dabei neuartige Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte wie Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Ziele sind zudem Energieeffizienz, Zuverlässigkeit und das reibungslose Zusammenspiel der unterschiedlichen Bauelemente. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen.
www.cfaed.tu-dresden.de

Go back