Press Releases

Converting body heat into electricity: A step closer towards high-performance organic thermoelectrics

Published on in PRESS RELEASES

Schematic illustration of the modulation doping process and thermal voltage generation.
Schematic illustration of the modulation doping process and thermal voltage generation. (C) Shu-Jen Wang

[Deutsche Version unter read more]

Researchers from TU Dresden introduce a new path towards superior organic thermoelectric devices: highly efficient modulation doping of highly ordered organic semiconductors under high doping concentrations. The results have now been published in the renowned journal “Science Advances”.

Can you image charging your mobile phone by simply using your body heat? It may still sound rather futuristic, but thermoelectrics certainly can do. Thermoelectrics is all about transforming heat into useful energy, mostly using inorganic materials.

Because of their mechanical flexibility, light-weight and low thermal conductivity, organic semiconductors have emerged as a promising material system especially for flexible thermoelectric applications. Efficient doping for charge-carrier creation is the key in thermoelectric device performance. Conventional bulk doping typically introduces disorder at high doping concentration limiting the electrical conductivity. “In our study, we employed the modulation-doping approach to highly ordered organic thin films, where the dopant impurity is separated from the conduction channel. With this method, we are able to achieve highly efficient doping even at high doping densities without influencing the charge transport in the thin films,” explains first author Dr. Shu-Jen Wang from the Institute of Applied Physics at TU Dresden.

The team around Prof. Karl Leo investigated the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. They were able to show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors. “Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a novel strategy for achieving high-performance organic thermoelectrics. The main advantage of the modulation doping technique is the avoidance of ionized impurity scattering in the highly ordered undoped narrow bandgap semiconductor allowing both carrier concentration and mobility to be independently maximized,” states Shu-Jen Wang and Prof. Karl Leo adds: “Our work paves new ways to achieve flexible thermoelectric devices which allow to directly generate electrical power from heat in an elegant way and efficient way. We believe our work will stimulate further work on high performance organic thermoelectrics using the modulation doping approach with high mobility organic semiconductors.”

Original publication:
Shu-Jen Wang, Michel Panhans, Ilia Lashkov, Hans Kleemann, Federico Caglieris, David Becker-Koch, Jörn Vahland, Erjuan Guo, Shiyu Huang, Yulia Krupskaya, Yana Vaynzof, Bernd Büchner, Frank Ortmann and Karl Leo. “Highly efficient modulation doping: A path towards superior organic thermoelectric devices” Science Advances, DOI: 10.1126/sciadv.abl9264

Image: Schematic illustration of the modulation doping process and thermal voltage generation.
©: Shu-Jen Wang

Media inquiries:
Dr. Shu-Jen Wang
Institute of Applied Physics (IAP)
shu-jen.wang@tu-dresden.de

Prof. Karl Leo
Institute of Applied Physics (IAP)
karl.leo@tu-dresden.de


[Deutsche Version]

Umwandlung von Körperwärme in Strom: Ein Schritt in Richtung organischer Hochleistungs-Thermoelektrika

Forschende der TU Dresden stellen einen neuen Weg zu leistungsstarken organischen thermoelektrischen Bauelementen vor: hocheffiziente Modulationsdotierung von hochgeordneten organischen Halbleitern bei hohen Dotierkonzentrationen. Die Ergebnisse wurden jetzt in der renommierten Fachzeitschrift "Science Advances" veröffentlicht.

Handys mittels Körperwärme aufladen. Was noch wie Zukunftsmusik klingt, kann durch thermoelektrische Bauelemente bald zur Realität werden. Denn bei der Thermoelektrik geht es darum, Wärme in nutzbare Energie umzuwandeln. Dafür werden bisher meist anorganische Materialien verwendet, die für flexible Anwendungen nur begrenzt geeignet sind.

Aufgrund ihrer mechanischen Flexibilität, ihres geringen Gewichts und ihrer niedrigen Wärmeleitfähigkeit haben sich organische Halbleiter als vielversprechendes Materialsystem insbesondere für flexible thermoelektrische Anwendungen erwiesen. Effiziente Dotierung zur Erzeugung von Ladungsträgern ist der Schlüssel zu leistungsstarken organischen thermoelektrischen Bauelementen. Die herkömmliche Volumendotierung führt bei einer hohen Dotierungskonzentration zu Störungen, die die elektrische Leitfähigkeit einschränken. "In unserer Studie haben wir den Ansatz der Modulationsdotierung für hoch geordnete organische Dünnschichten angewandt, bei dem die Dotierstoffverunreinigung vom Leitungskanal getrennt ist. Mit dieser Methode können wir eine hocheffiziente Dotierung auch bei hohen Dotierdichten erreichen, ohne den Ladungstransport in den Dünnschichten zu beeinflussen", erklärt Erstautor Dr. Shu-Jen Wang vom Institut für Angewandte Physik der TU Dresden (IAP).

Das Team um Prof. Karl Leo untersuchte den Ladungs- und thermoelektrischen Transport in modulationsdotierten großflächigen Rubren-Dünnschichtkristallen mit unterschiedlichen Kristallphasen. Sie konnten zeigen, dass durch Modulationsdotierung, anders als bei konventioneller Volumendotierung, selbst bei hohen Dotierdichten stärkere Dotiereffizienzen erzielt werden können. Modulationsdotiertes orthorhombisches Rubren erzielt deutlich verbesserte thermoelektrische Leistungsfaktoren. "Unsere Ergebnisse zeigen, dass die Modulationsdotierung in Verbindung mit hochbeweglichen kristallinen organischen Halbleiterfilmen eine neuartige Strategie zur Erzielung leistungsstarker organischer Thermoelektrika darstellt. Der Hauptvorteil der Modulationsdotierungstechnik ist die Vermeidung der Streuung ionisierter Verunreinigungen in dem hoch geordneten undotierten Halbleiter mit schmaler Bandlücke, wodurch sowohl die Ladungsträgerkonzentration als auch die Mobilität unabhängig voneinander maximiert werden können", erklärt Dr. Shu-Jen Wang und Prof. Karl Leo fügt hinzu: "Unsere Arbeit ebnet neue Wege zu flexiblen thermoelektrischen Bauelementen, die es ermöglichen, auf elegante und effiziente Weise direkt elektrische Energie aus Wärme zu erzeugen. Wir glauben, dass unsere Arbeit weitere Untersuchungen zu organischen Hochleistungsthermoelektrika anregen wird, die den Ansatz der Modulationsdotierung mit beweglichen organischen Halbleitern nutzen."

Originalpublikation:
Shu-Jen Wang, Michel Panhans, Ilia Lashkov, Hans Kleemann, Federico Caglieris, David Becker-Koch, Jörn Vahland, Erjuan Guo, Shiyu Huang, Yulia Krupskaya, Yana Vaynzof, Bernd Büchner, Frank Ortmann and Karl Leo. “Highly efficient modulation doping: A path towards superior organic thermoelectric devices” Science Advances, DOI: 10.1126/sciadv.abl9264

Bild: Schematische Darstellung des Modulationsdotierungsprozesses und der thermischen Spannungserzeugung.
©: Shu-Jen Wang

Kontakt:
Dr. Shu-Jen Wang
Institut für Angewandte Physik (IAP)
shu-jen.wang@tu-dresden.de

Prof. Karl Leo
Institut für Angewandte Physik (IAP)
karl.leo@tu-dresden.de

Go back