Press Releases

Graphene slides smoothly across gold

cfaed Professor Xinliang Feng Co-authors Publication in 'Science' Journal

Published on in PRESS RELEASES

Visualization graphene nanoribbon
A graphene nanoribbon was anchored at the tip of an atomic force microscope and dragged over a gold surface.

(Deutsche Version unten)

Graphene, a modified form of carbon, offers versatile potential for use in coating machine components and in the field of electronic switches. An international team of researchers led by physicists at the University of Basel, and including TU Dresden (Dr. Andrea Benassi and Dr. Xinliang Feng) have been studying the lubricity of this material on the nanometer scale. Since it produces almost no friction at all, it could drastically reduce energy loss in machines when used as a coating, as the researchers report in the journal Science.

In future, graphene could be used as an extremely thin coating, resulting in almost zero energy loss between mechanical parts. This is based on the exceptionally high lubricity—or so-called superlubricity—of modified carbon in the form of graphene. Applying this property to mechanical and electromechanical devices would not only improve energy efficiency but also considerably extend the service life of the equipment.

Fathoming out the causes of the lubricant behavior

An international community of physicists have studied the above-average lubricity of graphene using a two-pronged approach combining experimentation and computation. To do this, they anchored two-dimensional strips of carbon atoms—so-called graphene nanoribbons—to a sharp tip and dragged them across a gold surface. Computer-based calculations were used to investigate the interactions between the surfaces as they moved across one another. Using this approach, the research team is hoping to fathom out the causes of superlubricity; until now, little research has been carried out in this area.

By studying the graphene nanoribbons, the researchers hope to learn about more than just the slip behavior. Measuring the mechanical properties of the carbon-based material also makes sense because it offers excellent potential for a whole range of applications in the field of coatings and micromechanical switches. In future, even electronic switches could be replaced by nanomechanical switches, which would use less energy for switching on and off than conventional transistors.

The experiments revealed almost perfect, frictionless movement. It is possible to move graphene nanoribbons with a length of 5 to 50 nanometers using extremely small forces (2 to 200 piconewtons). There is a high degree of consistency between the experimental observations and the computer simulation. A discrepancy between the model and reality appears only at greater distances (five nanometers or more) between the measuring tip and the gold surface. This is probably because the edges of the graphene nanoribbons are saturated with hydrogen, which was not accounted for in the simulations.
"Our results help us to better understand the manipulation of chemicals at the nano level and pave the way for creating frictionless coatings," write the researchers.

More information: "Superlubricity of graphene nanoribbons on gold surfaces" Science, DOI: 10.1126/science.aad3569

Press contact:
Prof. Xinliang Feng
Technische Universität Dresden
cfaed Chair of Molecular Functional Materials
01062 Dresden
Phone: +49 351 463-43251
Mail: xinliang.feng@tu-dresden.de

previe_small

Image caption:
A graphene nanoribbon was anchored at the tip of an atomic force microscope and dragged over a gold surface. The observed friction force was extremely low.

Credit: University of Basel, Department of Physics

HiRes picture: http://bit.ly/1T7t8Tr (Download, *.jpg)

 


Deutsche Version

Pressemitteilung vom 4. März 2016

Graphen gleitet fast reibungslos über Gold

cfaed-Professor Xinliang Feng ist Koautor einer Publikation im Wissenschaftsjournal Science

Graphen, eine besondere Form von Kohlenstoff, bietet vielfältige Potenziale für die Nutzung als Beschichtung von Maschinenteilen und im Bereich der elektronischen Schaltungen. Ein internationales Forscherteam unter Leitung von Physikern der Universität Basel, in das auch Wissenschaftler der TU Dresden (Dr. Andrea Benassi und Dr. Xinliang Feng) eingebunden sind, hat die Gleitfähigkeit dieses Materials im Nanometerbereich untersucht. Wie die Forscher in der Fachzeitschrift Science berichten, trägt das Material in seiner Funktion als Beschichtung zu einer drastischen Verringerung des Energieverlustes innerhalb von Maschinen bei, da es fast keine Reibung hervorruft.

Zukünftig könnte Graphen als extrem dünne Beschichtung eingesetzt werden, wodurch der Energieverlust zwischen mechanischen Teilen auf nahezu Null gesenkt werden könnte. Dieser Effekt beruht auf der außergewöhnlich hohen Gleitfähigkeit – die Wissenschaftler sprechen von „Superschmierfähigkeit“, englisch „superlubricity“ –der Kohlenstoffmodifikation Graphen. Die Nutzung dieser Eigenschaft für mechanische und elektromechanische Anlagen würde nicht nur deren Energieeffizienz verbessern, sondern auch die Lebensdauer der Geräte erheblich verlängern.

Die Ursachen der extremen Gleitfähigkeit ergründen

Die internationale Physikergruppe untersuchte die überdurchschnittliche Gleitfähigkeit des Graphens mittels eines zweigleisigen Ansatzes – einer Kombination von Experimenten und Berechnungen. Hierfür verankerten sie Streifen aus einer einzelnen Lage von Kohlenstoffatomen – sogenannte Graphen-Nanobänder – an der scharfen Spitze eines Rasterkraftmikroskops und zogen sie über eine Goldoberfläche. Durch computerbasierte Berechnungen wurden die Wechselwirkungen zwischen den Oberflächen während dieser Bewegung untersucht. Mit diesem Ansatz hofft das Forscherteam, die Ursachen der Supra-Gleitfähigkeit zu verstehen, denn bislang gab es nur wenig Forschung auf diesem Gebiet.

Von der Untersuchung der Graphen-Nanobänder versprechen sich die Forscher aber noch deutlich mehr, als nur das Gleitverhalten zu ergründen. Die Messung der mechanischen Eigenschaften des kohlenstoffbasierten Materials ist auch von daher sinnvoll, weil es für eine ganze Reihe von Anwendungen im Bereich der Beschichtungen und mikromechanischen Schaltern exzellente Potenziale bietet. In Zukunft könnten auch elektronische Schalter durch nano-mechanische Schalter ersetzt werden, welche weniger Energie zum Ein- und Ausschalten verbrauchen würden als herkömmliche Transistoren.

Die Experimente zeigten eine fast perfekte, reibungsfreie Bewegung. Es ist möglich, die Graphen-Nanobänder mit einer Länge zwischen 5 und 50 Nanometern mittels extrem geringer Kräfte (2 bis 200 Pikonewton; 1 Pikonetwon entspricht einem billionstel Newton, 10−12 N) zu bewegen. Es wurde eine hochgradige Übereinstimmung zwischen den experimentellen Beobachtungen und der Computersimulation festgestellt. Eine Diskrepanz zwischen dem berechneten Modell und der Wirklichkeit tritt nur bei größeren Abständen von fünf oder mehr Nanometern zwischen Messspitze und Goldoberfläche auf. Dies erklärt sich vermutlich dadurch, dass die Ränder der Graphen-Nanobänder mit Wasserstoff gesättigt sind, was innerhalb der Simulationen nicht berücksichtigt wurde.

"Unsere Ergebnisse helfen uns, die Veränderung von Chemikalien auf der Nanoebene besser zu verstehen und den Weg zur Herstellung reibungsfreier Beschichtungen zu ebnen", schreiben die Forscher.

Mehr Informationen: "Superlubricity of graphene nanoribbons on gold surfaces" Science, DOI: 10.1126/science.aad3569

Pressekontakt:
Prof. Xinliang Feng
Technische Universität Dresden
cfaed Chair of Molecular Functional Materials
01062 Dresden
Phone: +49 351 463-43251
Email: xinliang.feng@tu-dresden.de

previe_small

Bildunterschrift:
Ein Graphen-Nanoband wurde an der Spitze eines Rasterkraftmikroskops verankert und über eine Goldoberfläche gezogen. Die beobachtete Reibungskraft war äußerst gering.

Visualisierung: Universität Basel, Fachbereich Physik

HiRes-Bild: http://bit.ly/1T7t8Tr (Download, *.jpg)

Go back