Press Releases

Organic–inorganic Heterostructures with Programmable Electronic Properties

cfaed PRESS RELEASE / 28 March 2017

Published on in PRESS RELEASES

graphic: Calculated differential electrical potential induced by a supramolecular lattice of MBB-2 on graphene
Calculated differential electrical potential induced by a supramolecular lattice of MBB-2 on graphene

[Deutsche Version unter 'read more']

Researchers from the University of Strasbourg & CNRS (France), in collaboration with the University of Mons (Belgium), the Max Planck Institute for Polymer Research (Germany) and the Technische Universität Dresden (Germany), have devised a novel supramolecular strategy to introduce tunable 1D periodic potentials upon self-assembly of ad hoc organic building blocks on graphene, opening the way to the realization of hybrid organic–inorganic multilayer materials with unique electronic and optical properties. These results have been published in Nature Communications.

Vertical stacks of different two-dimensional (2D) crystals, such as graphene, boron nitride, etc., held together by weak van der Waals forces are commonly referred to as “van der Waals heterostructures”. Such sophisticated multilayer structures can be used as a versatile platform for the investigation of various phenomena at the nanoscale. In particular, mechanical superimposition of the 2D crystals generates  2D periodic potentials which impart to system unconventional physical and chemical properties.

Here, a team of European researchers applied a supramolecular approach to form self-assembled organic molecular lattices with a controlled geometry and atomic precision on top of graphene, inducing 1D periodic potentials in the resulting organic–inorganic hybrid heterostructures. For that purpose, molecular building blocks were carefully designed and synthesized. Those are equipped with (i) a long aliphatic tail, directing the self-assembly and the periodicity of the potential, and (ii) a photoreactive diazirine head group, whose dipole moment modulates the surface potential of the underlying graphene sheet. Upon irradiation with ultraviolet (UV) light before deposition on graphene, the diazirine moiety is cleaved and a reactive carbene species is formed. The latter is prone to react with solvent molecules, leading to a mixture of new compounds bearing different functionalities.

Scanning tunneling microscope (STM) imaging was used to characterize the nanoscale arrangement of the supramolecular lattices formed on graphite and graphene surfaces, which determines the periodicity and geometry of the induced potentials. Electrical characterization was then performed on graphene-based field-effect devices to assess the effect of the different self-assembled organic layers on the electrical characteristics of the 2D material. Computational simulations allowed to unravel the interactions of the molecular assembly with graphene; a theoretical analysis further confirmed that the origin of the doping effects can be fully attributed to the orientation of electrical dipoles in the head groups. Finally, a periodic potential with the same geometry but a different intensity could be generated from a supramolecular lattice prepared after UV irradiation of the molecular building block in a different solvent.

In this way, the researchers managed to demonstrate that organic supramolecular lattices are suitable to create controllable 1D periodic potentials on the surface of graphene. Interestingly, the periodicity, amplitude and sign of the induced potentials can be pre-programmed and adjusted by careful molecular design. This bottom-up supramolecular approach can be extended and applied to other inorganic 2D materials such as transition metal dichalcogenides, paving the way to more complex multilayer van der Waals heterostructures. These findings are of great importance for the realization of organic–inorganic hybrid materials with controllable structural and electronic properties featuring unprecedented electrical, magnetic, piezoelectric and optical functionalities.

 

Reference:

Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene
Marco Gobbi, Sara Bonacchi, Jian X. Lian, Yi Liu, Xiao-Ye Wang, Marc-Antoine Stoeckel, Marco A. Squillaci, Gabriele D’Avino, Akimitsu Narita, Klaus Müllen, Xinliang Feng, Yoann Olivier, David Beljonne, Paolo Samorì & Emanuele Orgiu
Nature Communications, 2017, 8, 14767
DOI: 10.1038/ncomms14767

 

Press image:

Download at http://bit.ly/2otJ6dK

Caption: Calculated differential electrical potential induced by a supramolecular lattice of MBB-2 on graphene. The supramolecular lattice is superimposed for clarity. The electrical potential is periodically modulated, with negative values in the region below the molecular heads. Carbon atoms are shown in grey, hydrogen in white, nitrogen in red, fluorine in light blue and chlorine in green.

 

Press contact:

Dr. Martin R. Lohe
cfaed Chair for Molecular Functional Materials at TU Dresden
Industry Project Coordinator
Phone: +49 – 351 / 463-40405 or -43255
E-Mail: martin.lohe@tu-dresden.de

Matthias Hahndorf
cfaed Communications Officer
Phone: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de

 


Deutsche Version

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

Forscher der Universität Straßburg und CNRS (Frankreich) haben in Zusammenarbeit mit der Universität Mons (Belgien), dem Max-Planck-Institut für Polymerforschung (Deutschland) und der Technischen Universität Dresden (Deutschland) eine neuartige supramolekulare Strategie entwickelt, mit deren Hilfe sich einstellbare 1D-periodische Potenziale zur Selbstorganisation von organischen ad hoc-Bausteinen auf Graphen realisieren lassen. Diese öffnen den Weg zur Umsetzung hybrider organisch-anorganischer Mehrschichtmaterialien mit einzigartigen elektronischen und optischen Eigenschaften. Die Ergebnisse wurden nun in Nature Communications veröffentlicht.

Vertikale Stapel unterschiedlicher zweidimensionaler (2D-) Kristalle wie Graphen, Bornitrid usw., die durch schwache Van der Waals-Kräfte zusammengehalten werden, werden üblicherweise als "Van der Waals-Heterostrukturen" bezeichnet. Solche anspruchsvollen mehrschichtigen Strukturen können als vielseitige Plattform für die Untersuchung verschiedener Phänomene im Nanometerbereich verwendet werden. Insbesondere erzeugt die mechanische Überlagerung der 2D-Kristalle 2D-periodische Potentiale, die dem System unkonventionelle physikalische und chemische Eigenschaften verleihen.

Hier hat ein Team europäischer Forscher einen supramolekularen Ansatz angewandt, um selbstorganisierende organische Molekülgitter mit einer kontrollierten Geometrie und atomarer Präzision auf Graphen zu bilden, was 1D-periodische Potentiale in den resultierenden organisch-anorganischen Hybrid-Heterostrukturen hervorruft. Zu diesem Zweck wurden molekulare Bausteine sorgfältig entworfen und synthetisiert. Diese sind einerseits mit einem langen aliphatischen Schwanz ausgestattet, der die Selbstorganisation und die Periodizität des Potentials steuert, außerdem besitzen sie eine photoreaktive Diazirinkopfgruppe, deren Dipolmoment das Oberflächenpotential des darunter liegenden Graphenblättchens moduliert. Bei Bestrahlung mit ultraviolettem Licht vor der Abscheidung auf Graphen wird die Diazirineinheit gespalten und eine reaktive Carben-Spezies gebildet. Letztere ist anfällig für die Reaktion mit Lösungsmittelmolekülen, was zu einer Mischung von neuen Verbindungen mit unterschiedlichen Funktionalitäten führt.

Mit Hilfe von Rastertunnelmikroskopie (STM) wurden die nanoskalierte Anordnung der supramolekularen Gitter auf Graphit- und Graphen-Oberflächen charakterisiert, welche die Periodizität und Geometrie der induzierten potenziale bestimmt. Die Graphen-basierten Feldeffekt-Bauelemente wurden dann einer elektrischen Charakterisierung unterzogen, um den Effekt von unterschiedlichen selbst-assemblierten organischen Schichten auf die elektrischen Eigenschaften des 2D Materials zu bestimmen. Computersimulationen erlauben es, die Wechselwirkung des molekularen Zusammenbaus mit Graphen zu begreifen. Weiterhin zeigte eine theoretische Analyse, dass die Effekte der Dotierung gänzlich auf die Anordnung der elektrischen Dipole in den Kopfgruppen zurückzuführen ist. Schließlich konnte aus einem supramolekularen Gitter, das nach UV-Bestrahlung des molekularen Bausteins in einem anderen Lösungsmittel hergestellt wurde, ein periodisches Potential mit der gleichen Geometrie, aber einer anderen Intensität erzeugt werden.

Auf diese Weise konnten die Forscher nachweisen, dass organische supramolekulare Gitter geeignet sind, um kontrollierbare 1D-periodische Potentiale auf der Oberfläche von Graphen zu erzeugen. Interessanterweise können Periodizität, Amplitude und Signatur der induzierten Potentiale vorprogrammiert und durch sorgfältiges molekulares Design angepasst werden. Dieser supramolekulare Bottom-up-Ansatz kann erweitert und auf andere anorganische 2D-Materialien wie Übergangsmetall-Dichalkogenide angewendet werden, die den Weg zu komplexeren mehrschichtigen Van-der-Waals-Heterostrukturen ebnen. Diese Erkenntnisse sind von großer Bedeutung für die Realisierung von organisch-anorganischen Hybridmaterialien mit kontrollierbaren strukturellen und elektronischen Eigenschaften mit beispiellosen elektrischen, magnetischen, piezoelektrischen und optischen Funktionalitäten.

 

Referenz:

Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene
Marco Gobbi, Sara Bonacchi, Jian X. Lian, Yi Liu, Xiao-Ye Wang, Marc-Antoine Stoeckel, Marco A. Squillaci, Gabriele D’Avino, Akimitsu Narita, Klaus Müllen, Xinliang Feng, Yoann Olivier, David Beljonne, Paolo Samorì* & Emanuele Orgiu*
Nature Communications, 2017, 8, 14767
DOI: 10.1038/ncomms14767

 

 

Pressebild:

Download at http://bit.ly/2otJ6dK

Bildunterschrift: Berechnetes differentielles elektrisches Potential, induziert durch ein supramolekulares Gitter von MBB-2 auf Graphen. Das supramolekulare Gitter wird der Klarheit überlagert. Das elektrische Potential wird periodisch moduliert, mit negativen Werten im Bereich unterhalb der Molekülköpfe. Kohlenstoffatome sind grau dargestellt, Wasserstoff in Weiß, Stickstoff in Rot, Fluor in hellblau und Chlor in Grün.

 

Pressekontakt:

Dr. Martin R. Lohe
cfaed Lehrstuhl für Molekulare Funktionsmaterialien, TU Dresden
Industry Project Coordinator
Tel.: +49 – 351 / 463-40405 or -43255
E-Mail: martin.lohe@tu-dresden.de

Matthias Hahndorf
cfaed Communications Officer
Tel.: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de

Go back