Press Releases

Photon Recycling: the Key to High-Efficiency Perovskite Solar Cells

Published on in PRESS RELEASES

3D visualization of the schematic process of recursively recycling trapped photons in perovskites
Additional light emission is achieved by recursively recycling trapped photons in perovskites. Copyright: Dr. Changsoon Cho

[German version under 'read more']

Scientists from TU Dresden, in cooperation with researchers at Seoul National University (SNU) and Korea University (KU), demonstrated the role of the re-use of photons (known as ‘photon recycling’) and light scattering effects in perovskite solar cells, providing a pathway towards high-efficiency solar energy conversion. The study has been published in the renowned journal ‘Science Advances’.

Metal halide perovskites are receiving great attention as next-generation semiconductors for solar energy conversion. Since the first demonstration of 3.8% efficiency in 2009, efficiencies have increased rapidly and state-of-the-art perovskite solar cells exhibit high efficiencies over 25%, close to the record efficiencies of silicon photovoltaics. This fast growth during the last decade raises the question of whether perovskite solar cells will be able to reach the upper (thermodynamic) limit of photovoltaic efficiency, which is known to be 34% in single-junction semiconductors. To approach this goal, it is theoretically known that the solar cell must not only be a good light absorber, but also be a good light emitter.

The researchers from the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) at the TU Dresden noted the role of the photon recycling effect. When a photon is radiated inside re-absorbing semiconductors such as perovskites, it can be re-absorbed by the emitter itself and generate a new photon via photoluminescence. Such a process of recursively re-absorbing and re-emitting the photons is called photon recycling. While this phenomenon has been previously demonstrated by several research groups, its practical contribution to the efficiency of perovskite solar cells has been under extensive debate. Based on the devices prepared by the groups in SNU and KU, the IAPP researchers discovered that photon recycling and light scattering effects greatly improve the light emission efficiency by a factor of ~5, significantly improving the photovoltage of perovskite solar cells.

Their work reveals the practical benefits of photon recycling in perovskite solar cells. “Perovskites are already good absorbers. Now it’s time to improve their light-emitting ability, to even further increase their already high power conversion efficiencies”, says Dr. Changsoon Cho, who led the work as a Humboldt research fellow at IAPP. “Understanding photon recycling is a crucial step towards this direction.” The work predicts that the contribution of photon recycling, along with the suppression of various optoelectrical losses, will lead to a further increase in performance in the future. Using photon recycling, the upper limit for the efficiency of the perovskite solar cells is shown to rise from 29.2% to 31.3%.

“With the fundamental insights regarding the role of photon recycling at hand, we have a unique possibility to further enhance the perovskite solar cell efficiency, thus offering this technology ever brighter prospects to compete with the well-established silicon-based photovoltaics”, adds Prof. Yana Vaynzof, Chair of Emerging Electronic Technologies at the Institute of Applied Physics and the Center for Advancing Electronics Dresden (cfaed). Indeed, the improvements in the potential of perovskite solar cells motivate to further pursue the commercialization of this technology. “Our research shows the potential of the technology, but much further effort in research and development is needed before the technology can enter mass production”, says Prof. Karl Leo, head of the IAPP and European Inventor Award winner.

.

Publication:
Changsoon Cho, Yeoun-Woo Jang, Seungmin Lee, Yana Vaynzof, Mansoo Choi, Jun Hong Noh & Karl Leo. Effects of Photon Recycling and Scattering in High-Performance Perovskite Solar Cells. Science Advances 2021, Vol 7, Issue 52. DOI: 10.1126/sciadv.abj1363

Contact Details:
Dr. Changsoon Cho
Present address:
Cavendish Laboratory
University of Cambridge
Email: cc958@cam.ac.uk

Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)
Institute of Applied Physics
TU Dresden
Tel. +49-(0)351-463-37533
Email: karl.leo@tu-dresden.de
www.iapp.de

Caption: Additional light emission is achieved by recursively recycling trapped photons in perovskites.
Copyright: Dr. Changsoon Cho


[Deutsche Version]

Photonen-Recycling: der Schlüssel zu hocheffizienten Perowskit-Solarzellen

Forschende der TU Dresden haben in Kooperation mit Teams der Seoul National University (SNU) und der Korea University (KU) die wichtige Rolle der Wiederverwendung von Photonen (bekannt als „Photonenrecycling“) und Lichtstreuungseffekten in Perowskit-Solarzellen und damit einen Weg zu einer hocheffizienten Solarenergieumwandlung gezeigt. Die Studie wurde in der renommierten Fachzeitschrift ‚Science Advances‘ veröffentlicht.

Metallhalogenid-Perowskite sind auf großes Interesse als Halbleiter der nächsten Generation für die Solarenergieumwandlung gestoßen. Seit der ersten Demonstration eines Wirkungsgrades von 3,8 % im Jahr 2009 sind die Wirkungsgrade rapide gestiegen und hochmoderne Perowskit-Solarzellen weisen Wirkungsgrade von über 25 % auf, nahe den Rekordwirkungsgraden der Silizium-Photovoltaik. Dieses schnelle Wachstum während des letzten Jahrzehnts wirft die Frage auf, ob Perowskit-Solarzellen in der Lage sein werden, die obere (thermodynamische) Grenze des photovoltaischen Wirkungsgrads zu erreichen, die bei 34 % liegt. Um diesem Ziel näher zu kommen, muss die Solarzelle nicht nur ein guter Lichtabsorber, sondern auch ein guter Lichtemitter sein.

Das Team am Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) der TU Dresden zeigt die Rolle des Photonen-Recycling-Effekts auf: Wenn ein Photon in reabsorbierende Halbleiter wie Perowskite eingestrahlt wird, kann es vom Emitter selbst wieder absorbiert werden und durch Photolumineszenz ein neues Photon erzeugen. Ein solcher Prozess des Reabsorbierens und Reemittierens der Photonen wird als Photonenrecycling bezeichnet. Obwohl dieses Phänomen bereits von mehreren Forschungsgruppen nachgewiesen wurde, konnte sein praktischer Beitrag zur Effizienz von Perowskit-Solarzellen bisher nicht nachgewiesen werden. Das IAPP-Team demonstrierte nun, dass Photonenrecycling und Lichtstreuungseffekte die Lichtemissionseffizienz um einen Faktor von circa fünf verbessern, wodurch die Photospannung von Perowskit-Solarzellen signifikant verbessert wird.

Diese Arbeit weist somit die praktischen Vorteile des Photonenrecyclings in Perowskit-Solarzellen auf. „Perowskite sind bereits gute Absorber. Jetzt ist es an der Zeit, ihre Lichtemissionsfähigkeit zu verbessern, um ihre bereits hohen Leistungsumwandlungs-effizienzen noch weiter zu steigern“, sagt Dr. Changsoon Cho, der die Arbeit als Humboldt-Forschungsstipendiat am IAPP leitete. „Das Verständnis des Photonenrecyclings ist ein entscheidender Schritt in diese Richtung.“ Es ist damit äußerst wahrscheinlich, dass der Beitrag des Photonenrecyclings zusammen mit der Unterdrückung verschiedener optoelektrischer Verluste in Zukunft zu einer weiteren Leistungssteigerung führen wird. Die obere Grenze für den Wirkungsgrad der Perowskit-Solarzellen steigt mit Hilfe des Photonenrecyclings von 29,2 % auf 31,3 %.

„Mit den vorliegenden grundlegenden Erkenntnissen über die Rolle des Photonenrecyclings haben wir eine einzigartige Möglichkeit, die Effizienz von Perowskit-Solarzellen weiter zu steigern und dieser Technologie damit immer bessere Aussichten zu bieten, mit der etablierten siliziumbasierten Photovoltaik zu konkurrieren“, fügt Prof. Yana Vaynzof, Lehrstuhlinhaberin für Neuartige Elektronik-Technologien am Institut für Angewandte Physik und dem Center for Advancing Electronics Dresden (cfaed), hinzu. Tatsächlich motivieren die Verbesserungen des Potenzials von Perowskit-Solarzellen dazu, die Kommerzialisierung dieser Technologie weiter voranzutreiben. „Unsere Forschung zeigt das Potenzial der Technologie, aber es sind noch viele weitere Anstrengungen in Forschung und Entwicklung erforderlich, bevor die Technologie in die Massenproduktion gehen kann“, erklärt Prof. Karl Leo, Leiter des IAPP und Träger des Europäischen Erfinderpreises.

.

Publication:
Changsoon Cho, Yeoun-Woo Jang, Seungmin Lee, Yana Vaynzof, Mansoo Choi, Jun Hong Noh & Karl Leo. Effects of Photon Recycling and Scattering in High-Performance Perovskite Solar Cells. Science Advances 2021, Vol 7, Issue 52. DOI: 10.1126/sciadv.abj1363

Kontakt für Journalisten:

Dr. Changsoon Cho
Present address:
Cavendish Laboratory
University of Cambridge
Email: cc958@cam.ac.uk

Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)
Institut für Angewandte Physik
TU Dresden
Tel. +49-(0)351-463-37533
Email: karl.leo@tu-dresden.de
www.iapp.de

Bildunterschrift:
Zusätzliche Lichtemission wird durch wiederholtes Recycling eingefangener Photonen in Perowskiten erreicht.
Copyright: Dr. Changsoon Cho

Go back