Press Releases

Shell Increases Versatility of Nanowires

Laboratory experiments show that semiconductor nanowires can be tuned over wide energy ranges

Published on in PRESS RELEASES

Cross-section of a nanowire featuring a gallium arsenide core, an indium aluminum arsenide shell, and an indium gallium arsenide capping layer (gallium is shaded blue, indium red and aluminum cyan). For comparison, the white bar indicates a scale of 30 nanometers. The image was produced by energy-dispersive X-ray spectroscopy. Source: HZDR/René Hübner

Press release by Helmholtz Center Dresden Rossendorf (HZDR) of June 26, 2019

[Deutsche Version unter "read more"]

Nanowires promise to make LEDs more colorful and solar cells more efficient, in addition to speeding up computers. That is, provided that the tiny semiconductors convert electric energy into light, and vice versa, at the right wavelengths. A research team at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has managed to produce nanowires with operating wavelengths that can be freely selected over a wide range – simply by altering the shell structure. Fine-tuned nanowires could take on several roles in an optoelectronic component, without having to resort to different materials. That would make the components more powerful, more cost-effective, and easier to integrate, as the team reports in Nature Communications (doi: 10.1038/s41467-019-10654-7).

Nanowires are extremely versatile. The tiny elements can be used for miniaturized photonic and electronic components in nanotechnology. Applications include optical circuits on chips, novel sensors, LEDs, solar cells and innovative quantum technologies. It is the free-standing nanowires that ensure the compatibility of more recent semiconductor technologies with conventional silicon-based technologies. Since contact to the silicon substrate is tiny, they surmount typical difficulties in combining different materials.

For their study, which lasted several years, the Dresden researchers first set about growing nanowires from the semiconductor material gallium arsenide on silicon substrates. The next step involved enclosing the wafer-thin wires in another layer of material to which they added indium as an additional element. Their goal: the mismatched crystal structure of the materials was intended to induce a mechanical strain in the wire core, which changes the electronic properties of gallium arsenide. For instance, the semiconductor bandgap becomes smaller and the electrons become more mobile. To magnify this effect, the scientists kept adding more indium to the shell, or increased the shell’s thickness. The result went way beyond expectations.

Taking a known effect to extremes

"What we did was take a known effect to extremes,” explained Emmanouil Dimakis, leader of the study that involved researchers from HZDR, TU Dresden and DESY in Hamburg. “The seven percent of strain achieved was tremendous.”

At this level of strain, Dimakis had expected to see disorders occurring in the semiconductors: in their experience, the wire core bends or defects arise. The researchers believe that the special experimental conditions were the reason for the absence of such disorders: First, they grew extremely thin gallium arsenide wires – around five thousand times finer than a human hair. Second, the team managed to produce the wire shell at unusually low temperatures. Surface diffusion of atoms is then more or less frozen, forcing the shell to grow evenly around the core. The team of researchers reinforced their discovery by conducting several independent series of measurements at facilities in Dresden, as well as at the high-brilliance X-ray light sources PETRA III in Hamburg and Diamond in England.

The extraordinary results led the researchers to undertake further investigations: “We shifted our focus to the question of what triggers the extremely high strain in the nanowire core, and how this can be used for certain applications,” Dimakis recollected. “Scientists have been aware of gallium arsenide as a material for years, but nanowires are special. A material may exhibit completely new properties at the nanoscale.”

Potential applications for fiber-optic networks

The researchers realized that the high strain let them shift the bandgap of the gallium arsenide semiconductor to very low energies, making it compatible even for wavelengths of fiber-optic networks. A technological milestone. After all, this spectral range could previously only be achieved via special alloys containing indium, which caused a number of technological problems due to the material mix.

High-precision methods are required to produce nanowires. Four years ago, a special system was installed at HZDR for this purpose: the molecular beam epitaxy laboratory. The self-catalyzed growth of nanowires from beams of atoms or molecules is achieved in the lab; the beams are directed onto silicon substrates in ultra-high-vacuum. Emmanouil Dimakis played a major part in setting up the lab. Most of the studies reported in the current publication were carried out by Leila Balaghi as part of her doctorate.

 

Publication:
L. Balaghi, G. Bussone, R. Grifone, R. Hübner, J. Grenzer, M. Ghorbani-Asl, A.V. Krasheninnikov, H. Schneider, M. Helm, and E. Dimakis: Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismach, in Nature Communications 2019, DOI: 10.1038/s41467-019-10654-7

More information:
Dr. Emmanouil Dimakis
Institute of Ion Beam Physics and Materials Research at the HZDR
Phone +49 351 260-2765 | Email: e.dimakis@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Press officer and head of HZDR Communications group
Phone: +49 351 260-2450 or +49 160 969 288 56 | Email: c.bohnet@hzdr.de


[Deutsche Version]

Pressemitteilung aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) vom 26. Juni 2019

Druckfähiges Bildmaterial finden Sie unter: https://www.hzdr.de/presse/nanowire

Hülle macht Nanodrähte vielseitiger

Laborexperimente zeigen: Halbleiter-Nanodrähte lassen sich über große Energiebereiche maßschneidern

Nanodrähte können LEDs farbenreicher, Solarzellen effizienter oder Rechner schneller machen. Vorausgesetzt, die winzigen Halbleiter wandeln elektrische Energie und Licht bei geeigneten Wellenlängen ineinander um. Einem Forscherteam am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) ist es gelungen, Nanodrähte zu fertigen, deren Arbeits-Wellenlänge sich über einen großen Bereich frei wählen lässt – und zwar einzig über die Struktur der Hülle. Maßgeschneiderte Nanodrähte könnten verschiedene Funktionen in einem optoelektronischen Bauteil übernehmen, ohne auf unterschiedliche Materialien ausweichen zu müssen. Das macht die Bauteile leistungsfähiger, günstiger und einfacher zu integrieren, wie das Team in der Fachzeitschrift Nature Communications (doi: 10.1038/s41467-019-10654-7) berichtet.

Nanodrähte sind Alleskönner. Sie sind als kleinste Bausteine für miniaturisierte photonische und elektronische Bauteile der Nanotechnologie einsetzbar. Dazu gehören optische Verschaltungen auf Chips, neuartige Sensoren, LEDs, Solarzellen oder auch innovative Quantentechnologien. Freistehende Nanodrähte machen neuere Halbleitertechnologien erst kompatibel zu den herkömmlichen Technologien auf Silizium-Basis. Weil die Kontaktfläche zum Silizium-Träger sehr klein ist, überwinden sie typische Schwierigkeiten beim Verbinden verschiedenartiger Materialien.

Für ihre mehrjährige Studie züchteten die Forscher in Dresden zunächst Nanodrähte aus dem Halbleiter-Material Galliumarsenid auf Silizium-Trägern. Im nächsten Schritt umhüllten sie die hauchdünnen Drähte mit einer weiteren Materialschicht, der sie zusätzlich Indium beimischten. Ihr Ziel: Durch die ungleiche Kristallstruktur der Materialien wollten sie im Drahtkern eine mechanische Verspannung provozieren, welche die elektronischen Eigenschaften von Galliumarsenid verändert. So verkleinert sich die Bandlücke des Halbleiters und die Elektronen werden beweglicher. Um diesen Effekt zu verstärken, gaben die Forscher immer mehr Indium in die Hülle oder erhöhten deren Dicke. Das Ergebnis übertraf ihre Erwartungen bei Weitem.

Bekannter Effekt ins Extrem getrieben

„Wir haben einen bekannten Effekt bis ins Extrem getrieben“, betont Emmanouil Dimakis, Leiter der Studie, zu der Forscher des HZDR, der Technischen Universität Dresden und des DESY in Hamburg beigetragen haben. „Die erreichten sieben Prozent Verspannung sind ein riesiger Wert.“

Bei dieser Verspannung hätte Dimakis erwartet, Störungen in den Halbleitern zu sehen: Erfahrungsgemäß verbiegt sich der Drahtkern oder es entstehen Defekte. Dass es nicht dazu kam, begründen die Forscher mit den besonderen Bedingungen ihrer Experimente: Erstens züchteten sie besonders dünne Galliumarsenid-Drähte – etwa fünftausend Mal feiner als ein menschliches Haar. Zweitens gelang es dem Team, die Drahthüllen bei ungewöhnlich niedrigen Temperaturen herzustellen. Dies friert die Oberflächen-Diffusion der Atome quasi ein und erzwingt das gleichmäßige Wachstum der Hülle um den Kern. Seine Entdeckung bekräftigte das Forscherteam durch mehrere unabhängige Messreihen an Anlagen in Dresden sowie an den brillanten Röntgenlichtquellen PETRA III in Hamburg und Diamond in England.

Die außergewöhnlichen Ergebnisse motivierten die Forscher zu weiteren Untersuchungen: „Unser Fokus verlagerte sich auf die Frage, was die extrem hohe Verspannung im Kern des Nanodrahts auslöst und wie dies für Anwendungen genutzt werden könnte“, erinnert sich Dimakis. „Galliumarsenid ist als Material seit Jahren bekannt, aber Nanodrähte sind speziell. Auf der Nano-Skala kann ein Material völlig neue Eigenschaften zeigen.“

Anwendungen für Glasfasernetze werden möglich

Die Forscher erkannten, dass sie durch die hohe Verspannung die Bandlücke des Halbleiters Galliumarsenid bis zu so niedrigen Energien verschieben konnten, dass sie sogar für Wellenlängen der Glasfasernetze kompatibel wird. Ein technologischer Meilenstein, denn dieser Spektralbereich ließ sich bislang nur über besondere, Indium-haltige Legierungen realisieren, die durch ihren Material-Mix aber verschiedene technologische Probleme mitbringen.

Nanodrähte lassen sich nur mithilfe hochpräziser Verfahren herstellen. Am HZDR existiert dafür seit vier Jahren eine spezielle Anlage: das Molekularstrahlepitaxie-Labor. Hier wachsen die Nanodrähte selbstorganisiert aus Atomen oder kleinen Molekülen heran, mit denen Siliziumträger im Ultrahochvakuum beschossen werden. Emmanouil Dimakis war federführend am Aufbau des Labors beteiligt. Einen großen Teil der aktuell veröffentlichten Untersuchungen verantwortete Leila Balaghi im Rahmen ihrer Promotion.

 

Publikation:
L. Balaghi, G. Bussone, R. Grifone, R. Hübner, J. Grenzer, M. Ghorbani-Asl, A.V. Krasheninnikov, H. Schneider, M. Helm, and E. Dimakis: Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch, in Nature Communications (doi: 10.1038/s41467-019-10654-7)

Bildunterschrift:
GaAs-Nanodraht mit Hülle aus Indium-Aluminiumarsenid, Röntgen-Querschnitt ©Copyright: HZDR/R.Hübner

Weitere Informationen:

Dr. Emmanouil Dimakis
Institut für Ionenstrahlphysik und Materialforschung am HZDR
Telefon +49 351 260 2765 | E-Mail: e.dimakis@hzdr.de

Medienkontakt:
Dr. Christine Bohnet | Pressesprecherin und Leitung HZDR-Kommunikation
Tel.: +49 351 260-2450 | +49 160 969 288 56 | E-Mail: c.bohnet@hzdr.de

 

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.

Go back